Fall 2015

Resistance Fighter

Longtime faculty member Stuart Levy has spent a lifetime studying mechanisms of antibiotic resistance and crusading to abolish the use of antibiotics in animal feed 

By Anna Azvolinsky

Previous Next

Stuart Levy has testified before Congress many times about the perils of antibiotic resistance. Photo: Kathleen Dooher

As a visiting research fellow at the Pasteur Institute in 1962, on leave from medical school, Stuart Levy met a Japanese scientist who introduced him to an exciting recent breakthrough by researchers from his country. “The Japanese had discovered that resistance to antibiotics could be transferred from one bacterium to another,” Levy says—even across species. “This was unheard of previously. It was the beginning of studies on transferrable drug-resistance genes and infectious drug resistance.”

Inspired, Levy traveled to Tokyo’s Keio University in 1964 and spent several months in Tsutomu Watanabe’s laboratory, working on the so-called R (resistance) factors. Watanabe is credited with bringing the topic to a wide scientific audience with the publication of a 1963 review in English, highlighting the results of Japanese research on what he called the “infective heredity” of multidrug resistance.

Levy published several papers with Watanabe, including a description of episomal resistance factors of Enterobacteriaceae and an investigation of methods for inhibiting their transfer. “We didn’t know at the time about the mechanism, but we knew it was an exciting moment in the history of antibiotics and resistance,” says Levy. “Later, transfer was linked to small pieces of DNA—plasmids—that bore different resistances to antibiotics.”

In this interview, Levy talks about the prank he and his twin brother (Jay Levy, who was among the first to discover the HIV virus) executed that earned them a brief spot in the limelight; how science allowed him to travel the world—and befriend Samuel Beckett; and an urgent call to a castle in Prague about chicken eggs.

Levy Learns

Sunday mornings. As young kids growing up in Wilmington, Delaware, Levy and his identical twin brother, Jay, used to accompany their father, a physician, on Sunday house calls. “House calls were not that common then, but not as rare as they are now,” says Levy. His father, who came from a poor immigrant family, would visit patients, many of whom could only pay him with food grown in their gardens or with services. “He would see the Italian gardener who would exchange Dad’s expertise for his fruit. He was brought up under that kind of understanding, and the patients respected and loved him. He would sometimes discuss with us patients he was seeing; that is probably how my interest in medicine began.”

All in the family. “My twin brother, sister and I were all interested in biology. We lived in the country near a farm and spent a lot of time outdoors with the animals. All three of us went to medical school, but, unlike my father, we stayed in academic circles rather than going into private practice. My brother, Jay Levy, and my sister, Ellen Koenig, both do HIV research.”

Playing both sides. At Williams College, Levy majored in English. “My brother knew by sophomore year that he wanted to go to medical school. I only made the decision my junior year. But I had lots of interests, namely literature and arts. I loved the fact that I could keep these interests and still go to medical school. When I could do something and not give up another I loved, I was happy,” Levy says.

Mistaken identity. After exchanging identities for a day in high school, the Levy brothers took the prank even further in college. As sophomores, the twins swapped identities for an entire week, and each wrote an essay about the experience. Stuart lived life as Jay at Wesleyan University and Jay as Stuart at Williams. “This was our first taste of being in the limelight.”

Levy Launches

Medical school travels. Stuart Levy started medical school at the University of Pennsylvania in 1960. His brother, in medical school at Columbia University, received a Fulbright scholarship and studied at the Sorbonne Institute in Paris. “Our relationship was such that we wanted the other to have what we had, so when my brother was successful in getting a position in Paris at the Sorbonne, he told me, ‘You have to do this; it’s fantastic to be here on your own! There is never anyone directing you,’ ” says Levy. The next year, he followed Jay to Europe, first as a research scholar in Milan and then at the Pasteur Institute in Paris. There Levy worked on a model of viral resistance in a mammalian cell line in Raymond Latarjet’s laboratory. “To tell you the truth, I didn’t care what I was doing. I just wanted to have a new experience, and Latarjet was a wonderful mentor. He loved golf, which is what I was raised on. We had wonderful times golfing together at dusk,” Levy recalls.

For the love of literature. “When my brother was first in Paris, he met Samuel Beckett. Jay had written his thesis at Wesleyan on Beckett and sent it to Sam’s address, which everyone said you could not get through to. Beckett liked what [Jay] had written. Beckett was not a snob; he was shy. So Jay introduced me to Beckett when I was in Paris, and every four to six weeks we would have lunch together in the Latin Quarter. I’d tell him what we were doing in the laboratory, and he would share with me accounts about the production of his new play. It was such a unique opportunity.”

Tangents. Levy did his residency in medicine at Mount Sinai Hospital in New York City. While there, he spent much of his free time working in the laboratory of Charlotte Friend, a microbiologist who had discovered a virus that caused a leukemia-like disorder in mice. “She took me under her wing—I was always looking for something else to do other than look at pathology slides. Jay did the same. We weren’t interested in the status quo. We did what was needed to get the degree, but also pursued our own interests,” says Levy. Although his clinical focus was officially hematology, Levy continued to pursue his interest in antibiotic resistance. “I was so interested in infectious diseases that I used to go on the rounds with the infectious-diseases group in addition to my regular clinical duties.”

A system to call his own. Levy became a staff scientist at the National Institutes of Health in 1967, working for two years in Loretta Leive’s lab on
synthesis of the lipopolysaccharide that populates the outer membrane of E. coli. As an independent researcher on R plasmids and chromosomeless minicells, Levy developed a way to purify large amounts of these E. coli minicells, which form from an aberrant cell division site and possess no bacterial chromosome—what he calls the plasmid-in-minicell system. “The NIH brought me together with senior scientists in the field, but no one was interested in tetracycline resistance. They wanted to understand enzymatic resistance,” says Levy. In 1970, Levy demonstrated that the tetracycline resistance gene is found on plasmids that are transferred to minicells.

Mechanism of resistance. In 1971, Levy moved to Tufts University School of Medicine as an assistant professor of medicine and of molecular biology and microbiology; he has remained ever since. [He is currently a professor of medicine, professor of molecular biology and microbiology and professor of public health and community medicine.] There, his lab went on to show that an R plasmid encoded a protein associated with tetracycline resistance and that no other positive regulation was required for the bacterium to synthesize this protein. “There could be several hundred genes on the plasmid, and in the 1970s, we were not that sophisticated yet to
identify the specific gene,” says Levy.

In 1978, his lab determined that the plasmid-derived resistance to tetracycline involved a novel transport system for tetracyclines. Levy’s lab then discovered the first active efflux mechanism, showing that E. coli resistant to tetracycline actively pumped the drug out of the cell and that this mechanism of resistance was encoded by a single R-plasmid gene. Levy also showed that a nonefflux mechanism was present as well. Others subsequently demonstrated that this second mechanism for tetracycline resistance involved a ribosome-protection protein. “The use of minicells and the discovery of the mechanism of tetracycline resistance is what really put me on a clear path to a successful career,” says Levy.

Ahead of his time. The Animal Health Institute of New York asked Levy to study growth-promoting antibiotics in farm animals. “They were looking for scientists who had not spoken negatively about this use of antibiotics,” says Levy. Still a young investigator, Levy fit the bill. His lab found a farm outside of Boston that was willing to have scientists come in and raise chickens. Levy’s students raised 150 control and 150 experimental chickens fed regular and tetracycline-spiked feed, respectively.

“There is a funny story about me at a castle in Prague and not remembering that I had placed an order for 300 eggs, one-half male and one-half female. Someone was looking for me all over the castle so that I would confirm [over the phone] that we should order the eggs anyway. There is no way to identify if eggs are male or female!”

The study, published in 1976 in the New England Journal of Medicine, showed the ecological effects of feeding farm animals low-dose antibiotics: not only did the antibiotic-resistant bacteria replace the microbiota in the animals’ intestines; they also altered the gut microbiome of the humans who lived and worked on the farm. Through contact with the chickens and their tetracycline-laced feed, resistance was in turn transferred to the microbiome of the animal handlers. Levy’s lab also demonstrated that animals can transfer antibiotic-resistance plasmids to humans and other animals. “That low-dose antibiotics given as growth promotion will lead to high levels of resistance was a surprise,” says Levy. “No one has tried to replicate that study to this day.”

Antibiotics and politics. Levy has testified many times before Congress on the subject of antibiotic resistance. “Our study from 1976 was [and still is] the only prospective U.S. study on this, and industry didn’t want more studies. They were upset that our data showed them to be wrong. This was highly political.” Levy says he is now more optimistic about prudent antibiotic use, as this issue has garnered more and more attention, especially since this past March, when the White House announced a national action plan, allocating $1.2 billion to combat antibiotic-resistant bacteria. “I think the moment has come for new antibiotics and better use of antibiotics so that people are not as subject to resistance emerging through animal use of other drugs. We won’t see real change until there is a genuine commitment to improve antibiotic use, and I think it’s coming.”

Banding together. In 1981, Levy founded the Alliance for the Prudent Use of Antibiotics (APUA), an international nonprofit with chapters in 65 countries. The idea started at a meeting in the Dominican Republic in the early 1980s because of concern about rising antibiotic resistance in the developing world. The organization provides funding for countries in the developing world to study antibiotic resistance. “I’ve learned a lot from being part of the APUA. The science is one thing, but you need to package the science with good politics to get what you want,” says Levy.

Up to the challenge. “We did the first study that took a patient-by-patient analysis of resistance in a [single] Chicago hospital and what the cost was,” says Levy. The analysis showed a cost of about $21,000 per antimicrobial-resistant infection patient, producing a cost to the hospital of about $4 million and a total societal cost of as high as $15 million, including the loss of productivity. “[The study] came from a challenge that Ted Kennedy gave me. He said that if you are not going to save money, you won’t get much interest in [antibiotic resistance], and we took him up on the challenge.”

Dream experiment. If money were no object, Levy says, he would design an experiment that would definitively and quantitatively demonstrate the link between subtherapeutic use in animals and the emergence of antibiotic-resistant infections in people.

Influential mentor. “I think the biggest training I received was with Tsutomu Watanabe, and that was just for a summer! He was patient, methodical and a master.”

Anna Azvolinsky is a freelance science and health writer in New York City. This profile originally appeared in the June 2015 issue of The Scientist. It is reprinted here with permission.

Stuart Levy’s Greatest Hits

Discovered the first active efflux pump involved in tetracycline resistance in Enterobacteriaceae.

Identified the mar operon, a bacterial regulatory locus that results in multidrug resistance to different antibiotics as well as to disinfectants.

Provided some of the first evidence that feeding animals low doses of antibiotics leads to high levels of resistant bacterial strains that can spread to other animals, people and the environment.

Established the International Alliance for the Prudent Use of Antibiotics.

In 1993, published The Antibiotics Paradox: How Miracle Drugs Are Destroying the Miracle.

Served as an advisor on antibiotic resistance to multiple organizations, including the National Institutes of Health, the World Health Organization, the Food and Drug Administration and the Environmental Protection Agency.

Top Stories

Laboratory Ace

Almost 40 years ago, Te-Wen Chang was instrumental in determining the cause of a life-threatening disease 

Resistance Fighter

Longtime faculty member Stuart Levy has spent a lifetime studying mechanisms of antibiotic resistance and crusading to abolish the use of antibiotics in animal feed 

Field Marshal

At the height of the Depression and against all odds, Dorothy Boulding Ferebee, ’24, ventured to Mississippi to blaze a resonant new trail in public health

Fortune Teller

Barry Levy says worsening air pollution and frequent floods are just the start of public health hazards apt to occur with climage change

Disease Detective

On the trail of health threats around the globe 

Editor's Picks

Big Road Blues

Living near a highway can be bad for your health in a million small ways

Dockside Medicine

Born into a lobstering family, I worry about their well-being in a special way 

On Designer Babies

Genetic enhancement of human embryos is not a practice for civil societies

The Mercy Ship

Born from a wish to improve the lives of Boston’s poor, sickly children by exposing them to fresh air, the original Floating Hospital quickly created new and better forms of pediatric medicine

Tell Me More

Because interviewing patients effectively is such a precious skill in medicine, Tufts has redoubled its emphasis on teaching students how to do it right