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1. Introduction and the Heisenberg group

In this set of notes, we explore nilpotent groups from a geometric and geometric group theoretic
point of view. We’ll start off by introducing the discrete and real Heisenberg groups. Next we’ll define
free nilpotent groups and Mal’cev coordinates for finitely generated nilpotent groups. These Mal’cev
coordinates are useful in proving the decidability of equation problems for nilpotent groups, and they
will also provide insight into the proof that nilpotent groups grow polynomially. We will then define
Carnot-Carthéodory metrics on certain nilpotent Lie groups, and explore the asymptotic geometry of
finitely generated nilpotent groups.

1.1. The Heisenberg group. The Heisenberg groups, HpZq and HpRq, are the groups of unipotent

upper-triangular 3ˆ3 matrices
!´

1 ˚ ˚
0 1 ˚
0 0 1

¯)

where the entries are integers and real numbers, respectively.

It is easy to see that HpZq sits as a uniform lattice inside HpRq; that is, it is a discrete subgroup for
which the quotient space is compact. (The cocompactness will become geometrically clear below.) HpZq
is sometimes also denoted H3 because it has three parameters (and there are higher Heisenberg groups
with more parameters, as we will see).

Define

a “
´

1 1 0
0 1 0
0 0 1

¯

, b “
´

1 0 0
0 1 1
0 0 1

¯

, c “
´

1 0 1
0 1 0
0 0 1

¯

.

An easy direct computation shows that ra, bs “ c, where ra, bs denotes the commutator aba´1b´1. Nilpo-
tent groups are defined by their behavior under this commutator operation: note that the commutator
of two group elements vanishes precisely if the elements commute, so in HpZq, we can speak of c as
“measuring the failure of a and b to commute.”

Thus we get HpZq “ xa, b, cy “ xa, by, because the three elementary matrices suffice to generate the
whole group, but c is not needed as a generator since it can be built as the commutator of the other
two. But along the way to this we can note the fundamental asymmetry in the matrix coordinates:

ab “
´

1 1 1
0 1 1
0 0 1

¯

, while ba “
´

1 1 0
0 1 1
0 0 1

¯

.

Actually let’s notice something else: for unipotent upper-triangular matrices of any size, the multi-
plication is additive in the first non-zero superdiagonal. For instance,

ˆ

1 0 x z
0 1 0 y
0 0 1 0
0 0 0 1

˙ˆ

1 0 x1 z1

0 1 0 y1

0 0 1 0
0 0 0 1

˙

“

˜

1 0 x`x1
˚

0 1 0 y`y1

0 0 1 0
0 0 0 1

¸

.

So multiplication in the Heisenberg group is be abelian in the first superdiagonal, i.e., in the a and b
coordinates; it is in the c coordinate where the non-commutativity appears.

1.2. Coordinates. Next, we observe that aAbBcC is a normal form for group elements, meaning that
every group element can be written in exactly one way in this form. (It is not, however, a geodesic
normal form—the spellings are unique but not minimal.) To see this, note that ba “ abc´1 and check
that c is central. That means that any word spelled in a, b, c can be rewritten by pulling c letters to
the end, then organizing the a and b letters, which only generates more c and c´1. Furthermore if
aAbBcC “ aαbβcγ , then one checks easily that A “ α,B “ β,C “ γ.

This means we can regard the triple of integers pA,B,Cq as giving coordinates on the group. We will
call these Mal’cev coordinates, and they are excellent for algebraic arguments on the group.

We can write down the group multiplication formula in these coordinates as follows:

pA,B,Cq ¨ pA1, B1, C 1q “ pA`A1, B `B1, C ` C 1 ´A1Bq.

And we have the following matrix correspondence:

pA,B,Cq Ø
´

1 A C`AB
0 1 B
0 0 1

¯

.

These coordinates allow us to identify HpZq with Z3. However, there is a second coordinate system
for HpRq that is far better suited to geometric arguments, called exponential coordinates. These are the
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coordinates

px, y, zq Ø

ˆ

1 x z` 1
2xy

0 1 y
0 0 1

˙

,

which have the extremely useful property that px, y, zqn “ pnx, ny, nzq. With these coordinates, HpRq
can be identified with R3 and HpZq with the lattice obtained by shifting Z3 vertically by a half-integer
over all (odd, odd) points in the xy–plane. (Note that here is where we see HpZq sitting as a cocompact
lattice in HpRq, as stated above.)

In exponential coordinates, one derives the group multiplication formula

px, y, zq ¨ px1, y1, z1q “

ˆ

x` x1, y ` y1, z ` z1 `
xy1 ´ yx1

2

˙

.

Exercise 1. Write ab in Mal’cev coordinates and in exponential coordinates.

1.3. Near-similarity. Consider the maps
´

1 x z
0 1 y
0 0 1

¯

δn
ÝÑ

´

1 nx n2z
0 1 ny
0 0 1

¯

, which you will note are also given

in exponential coordinates by δnpx, y, zq “ pnx, ny, n
2zq and in Mal’cev coordinates by δnpA,B,Cq “

pnA, nB, n2Cq. We want to show that these are very nearly similarities in HpZq and derive several
interesting consequences. A similarity in a metric space is a family of maps ∆t : X Ñ X such that
dp∆tpxq,∆tpyqq “ t ¨ dpx, yq, such as homotheties of normed spaces.

Exercise 2. First, consider the generators S “ ta, b, cu˘ for and the word metric | ¨ |S with respect to
S in HpZq. Show that

1

2

´

|A| ` |B| `
a

|C|
¯

ď |pA,B,Cq|
S
ď |A| ` |B| ` 6

a

|C|.

Find similar upper and lower bounds in the standard generators std “ ta, bu˘. Explain why something
similar holds for arbitrary generators.

So in general we have that |pA,B,Cq| for any S is bounded above and below by multiples of |A| `

|B| `
a

|C|. And thus we can derive a comparison of |w| with |δnpwq| for an arbitrary word w:

k1n|w| ď |δnpwq| ď k2n|w|,

where k1, k2 are constants coming from the generating set. Let’s call such a map, which is a similarity
up to a bounded multiplicative factor, a near-similarity. So a true similarity has |δnpwq|{n|w| ” 1, and
this near-similarity has that ratio bounded above and below.

1.3.1. Consequence: Hausdorff dimension 4. Now consider a metric on R3 for which δnpx, y, zq “
pnx, ny, n2zq is an similarity. We will define such a metric on the Heisenberg group in Section 4.2.
What is the dimension of such a space? Hausdorff dimension is defined directly from the distance
function, as follows: we let the d–dimensional Hausdorff measure of a set E Ă X be

νpEq :“ lim
δÑ0

”

inf
ÿ

diampUiq
d
ı

,

where the infimum is over countable covers tUiu of E with diamUi ă δ for all i. Then one proves that
there is a critical dimension: if d is too large, the measure of the whole space is zero; if d is too small,
the space has infinite measure. The Hausdorff dimension is the threshold where νpXq transitions from
being infinite to zero.

Let C be the standard cube in R3 with vertices at p0, 0, 0q and at p1, 1, 1q. Note that δεpCq has vertices
at p0, 0, 0q and pε, ε, ε2q. It clearly requires 1{ε4 slightly fattened copies of these to cover C. And if the
original C has diameter D (in the metric we are studying), then the dilated cube has diameter εD by
the assumption that δn is a similarity. Thus the Hausdorff measure of C is pεDqd{ε4, which only has a
finite nonzero limit if d “ 4. (Of course, this is hiding some work that is needed to show that this is the
most efficient kind of cover.)
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1.3.2. Consequence: n4 growth. Hausdorff dimension doesn’t quite make sense in the same way for
discrete groups, but nonetheless we can see that the group growth has the same rate as in Z4, not Z3.

The standard growth function in geometric group theory is the counting function βpnq :“ |Bn| “
#tg P G : |g| ď nu that counts how many group elements can be spelled in n or fewer letters.

Let us say that fptq ă gptq if DK ą 0 such that fptq ď K ¨ gpKt `Kq `Kt `K for all t ě 0, and
that f — g if f ă g, g ă f . Then it is a classic observation in geometric group theory that although
β depends on pG,Sq, it is well-defined up to — depending only on G. (That is, the change from one
finite generating set to another induces just an affine change in the metric, which is accounted for by
the equivalence relation —.)

The near-similarity says that Bkn is well-approximated by δnpBkq, so if we can inscribe and circum-
scribe a nice Riemann-integrable region around Bk, we’ll have βpknq « n4 ¨ βpkq for some small fixed k,
which means βpnq — n4.

More precisely: all points pA,B,Cq with |A|, |B| ď r and |C| ď r2 have word length at most 8r in
the ta, b, cu˘ generators (by the inequality from Exercise 2), so they are in the ball of radius 8r about
the identity. But there are more than 8r4 many such triples, so we know that βp8rq ě 8r4, which means
βpnq ě 1

512n
4. On the other hand, to be in the ball of radius n a word must satisfy |pA,B,Cq| ď n,

and in particular this forces |A|, |B|, and
a

|C| to all be at most 2n, so there are no more than 4n` 1
possible values for A and B and 8n2` 1 possible values for C. This means βpnq ď 129n4 for large n. So
βpnq — n4.

1.4. Hyperboliclity. The standard definition of δ–hyperbolicity is that triangles are thin, i.e., if you
take any geodesic triangle, then each side is contained in a δ–neighborhood of the union of the other
two sides. This bound δ is sometimes called the insize of a triangle. As long as some triangles have
strictly positive insize, then applying a similarity would produce a geodesic triangle with a larger insize,
so a full family of similarities is an obstruction to hyperbolicity (outside of the δ “ 0 case, which can
be handled with a different argument). Intuitively, it is clear that near-similarities should also be an
obstruction to hyperbolicity. However, to actually prove this is tricky because it’s not obvious that
the δn–image of a geodesic would remain geodesic (or even uniformly quasi-geodesic). So to make the
obstruction rigorous, we can instead use the less-known 4–point definition of hyperbolicity: consider any
four points x, y, z, w in the space and the three pairsums P1 “ dpx, yq ` dpz, wq, P2 “ dpx, zq ` dpy, wq,
and P3 “ dpx,wq`dpy, zq. A space is δ–hyperbolic if the largest two of these numbers differ by no more
than δ. (This definition was formulated by Gromov and, among length spaces, is equivalent to other
definitions of hyperbolicity, though possibly for different values of δ.)

From this definition, it is immediate that if there are any four points for which the top two pairsums
are unequal, then a similarity is enough to rule out hyperbolicity for any δ ą 0.

Exercise 3. Is a near-similarity enough?

Exercise 4. Find four-tuples in HpZq which would have arbitrarily large difference of pairsums in any
generating set. (One concludes that HpZq is not a hyperbolic group.)
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2. LCS, Mal’cev coordinates

Here we will define various algebraic properties of groups, many of which arise from asking that
subnormal series satisfy certain criteria. See Druţu and Kapovich’s book [4] for a more detailed expla-
nation of these algebraic properties. A (finite ascending) subnormal series of a group G is a sequence of
subgroups

t1u “ A1 �A2 � . . .�An “ G

where for i ě 1, Ai is a normal subgroup of Ai`1. The quotient groups Ai`1{Ai are called factor groups.
We say that a group G is solvable if there exists a subnormal series of G such that all factor groups

Ai`1{Ai are abelian.
One (possibly infinite) descending subnormal series of interest is the lower central series. To con-

struct the lower central series, we define G1 “ G, and let Gi`1 “ rGi, Gs, the subgroup generated by
commutators rx, gs, with x P Gi and g P G. We denote by ra1, . . . , ans the nested commutator of group
elements a1, . . . , an P G. For example,

ra1, a2, a3, a4s “ rrra1, a2s, a3s, a4s.

A nilpotent group is a group G whose lower central series terminates in the trivial group t1u after
finitely many steps.

G “ G1 �G2 � . . .�Gs �Gs`1 “ t1u

If s ` 1 is the minimum length of a lower central series for G, then we call s (the index of the last
nontrivial group) the nilpotency class of G. We’ll also say that G is s-step nilpotent. To be clear, if G
is an s-step nilpotent group, the lower central series will have s ` 1 groups in it, where G1 “ G, and
Gs`1 “ t1u. It is worth observing that rGi, Gis Ď rGi, Gs “ Gi`1. Therefore the factor groups Gi{Gi`1

are abelian, and hence all nilpotent groups are solvable.

Proposition 1. Although it is not true for general groups, if G is nilpotent and generated by the set
S, then the subgroups Gi are generated by the i-step commutators

rg1, g2, . . . , gis, for gk P S.

Consequently, if G is finitely generated, so are the subgroups of the lower central series.

Exercise 5. Compute the lower central series for HpZq.

A group G is said to be polycyclic if there exists a subnormal series for G with cyclic factor groups.
Since the factor groups in the lower central series of a nilpotent group are abelian, the structure theorem
for finitely generated abelian groups tells us that these factor groups Gi{Gi`1 decompose into products
of cyclic groups. Thus the lower central series can be refined to a subnormal series with cyclic factor
groups, making all nilpotent groups polycyclic.

A group G is said to be metabelian if its commutator subgroup rG,Gs is abelian. If G is 2-step
nilpotent, then the factor group G2{G3 “ rG,Gs{t1u “ rG,Gs. Since all factor groups are abelian, in
particular rG,Gs is, and so G is metabelian.

2.1. Free nilpotent groups. The free nilpotent group Ns,m of step s and rank m is made by first taking
the free group on m generators, J “ xx1, . . . , xmy. Let Js`1 be the subgroup coming from the lower
central series of the free group J , generated by the ps` 1q-step commutators. We define Ns,m to be the
quotient

Ns,m “ J{Js`1.

Note that in constructing Ns,m, the group is given the minimal number of relations required to be
nilpotent of step s. This endows free nilpotent groups with a universality property, stated below.

Proposition 2. If G is a nilpotent group of step s and has a generating set ta1, . . . , amu, then G is a
quotient of the free nilpotent group Ns,m.

Exercise 6. What is the free nilpotent group N2,2? What other name does it go by?
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2.2. The torsion subgroup. An element x of G is said to be torsion if there exists a positive integer
exponent n such that xn “ 1 in G. A group G is a torsion group if every element of G is a torsion element.
Our goal will be to show that the torsion elements of a nilpotent group form a finite subgroup. Note
that this is not a trivial statement. Think, for example, of the free product pZ{nZq ˚ pZ{mZq “ xay ˚ xby.
Although a and b are torsion elements, their product ab has infinite order. In the special case of nilpotent
groups, we’ll call the subgroup generated by torsion elements the torsion subgroup, Tor G.

Before we can show that this torsion subgroup exists, we have to do a bit of work.

Exercise 7. Let x, y P G. and suppose that x and rx, ys commute. Show that for all n, we have
rx, ysn “ rxn, ys.

Lemma 3. If a group G is generated by elements of finite order, then for all i ě 1, the quotient group
Gi{Gi`1 is torsion.

Proof. We induct on i. If i “ 1 then Gi{Gi`1 “ G{rG,Gs “ Gab. Abelian groups generated by torsion
elements are torsion.

Assume the statement is true for i. Consider the group Γ “ Gi`1{Gi`2. From above, we know that
all factor groups in the lower central series, in particular Γ, are abelian, and so to show that Γ is torsion,
we need only show that it is generated by torsion elements.

Γ is generated by elements of the form rx, gs, where x P Gi and g P G. Using Exercise 7, we see that
modulo Gk`2, rxn, gs ” rx, gsn since Γ is abelian. Due to the induction hypothesis on Gi{Gi`1, we know
there exists n P N such that xn P Gi`1.

Combining these two facts, we see that rx, gsn “ rxn, gs P Gi`2, and so rx, gsn ” 1 modulo Gi`2.
Thus Γ is torsion. �

Theorem 4. Let G be a nilpotent group. The set of all finite order elements forms a subgroup of G,
denoted by Tor G.

Proof. We induct on the nilpotency class s of G. If s “ 1, then G is abelian, and the statement is clear.
Assume the statement is true for s-step nilpotent groups, and assume that G is a ps`1q-step nilpotent

group. Given two torsion elements x and y, without loss of generality we can let G be the subgroup
generated by x and y. We want to show that xy is also a torsion element. Note that the quotient
group G{Gs`1 is nilpotent of class s. By the induction hypothesis, there exists a positive integer n P N
such that px̄ȳqn “ 1 in G{Gs`1. In other words, pxyqn P Gs`1. By Lemma 3, the factor group
Gs`1{Gs`2 “ Gs`1{t1u “ Gs`1 is torsion. Therefore there exists a positive integer m P N such that
pxyqnm “ 1. �

Proposition 5. A finitely generated nilpotent torsion group is finite.

Proof. We induct on the nilpotency class s. If s “ 1, then G is abelian. It is clear that a finitely
generated abelian torsion group must be finite.

Assume the statement is true for s-step nilpotent groups, and let G be a ps` 1q-step nilpotent group.
Note that the group Gs`1 is torsion and abelian by arguments given above. Therefore it is finite. The
quotient group G{Gs`1 is a finitely generated nilpotent group of step s, so by the induction hypothesis
it is finite. Therefore G is finite. �

2.3. Mal’cev coordinates. In Section 1.2, we defined the Mal’cev coordinates for the Heisenberg group.
Similar coordinates can be defined for any finitely generated nilpotent group. The idea behind Mal’cev
coordinates is to specify generators adapted to every level of the lower central series. This will allow us
to define a normal form for the group. The Mal’cev coordinates are a powerful tool that allow us to
solve equations in HpZq, and they will help us see that nilpotent groups have polynomial growth.

First, we’ll define Mal’cev coordinates for the free nilpotent group G “ Ns,m. There are m generators
that we’ll call a1, . . . , am. Take these as our generators adapted to the first level G1 “ G. We can think
of them as the generators of the abelian group G1{G2 “ G{rG,Gs.

The generators adapted to the second level will be the generators of the abelian group G2{G3. They
are bij :“ rai, ajs for 1 ď i ă j ď m. If the step s is equal to 2, then the bij commute with everything,
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and we take the set tai, biju as our Mal’cev coordinates. If the step s is greater than two, we continue
in the same way.

The generators of the 3rd step will be the generators of the abelian group G3{G4. We can call them
tcµu for the proper indexing µ. The cµ are the commutators of the bij with all of the other Mal’cev
coordinates we have so far. Continue in this way until we reach the commutators of step s. In the end,
take the union of the generators adapted to each step to be our Mal’cev coordinates. It is clear that
the Mal’cev coordinates drastically over-generate our group since the ai would be sufficient. But they
have the added feature of providing a normal form for the group. We omit the proof that the Mal’cev
coordinates actually do provide a normal form for nilpotent groups and, instead, we will explore some
examples.

2.3.1. Examples of Mal’cev coordinates. In Section 1.2, we defined at the Mal’cev coordinates of HpZq.
To follow the notation described above, we would have rename the generators a1 “ a, a2 “ b and b12 “ c
since a and b correspond to the first level of the lower central series, or the first factor group G1{rG,Gs.
In the remainder of the notes, we’ll stick with the notation introduced earlier, using a, b, and c as the
Mal’cev coordinates of HpZq.

Let’s find the Mal’cev coordinates of the free nilpotent group G “ N3,2. G is of rank 2 and of step
3. So it is generated by two elements a1 and a2 and has relations rai1 , ai2 , ai3 , ai4s “ 1. Therefore
at the first level, we will take the two generators of Gab, namely a1 and a2. At the second level, we
have commutators of a1 and a2, of which there is only one (and its inverse). So here we add only one
coordinate b “ ra1, a2s. At the third and final level, our generators will be 3-step commutators of the ai.
We end up with two new coordinates, c1 “ ra1, a2, a1s “ rb, a1s and c2 “ rb, a2s. Since all higher step
commutators are trivial, the ci commute with everything, and we are done.

The claim is that every word in N3,2 can be written in the form aA1
1 aA2

2 bBcC1
1 cC2

2 . In fact, given a
word written in these generators, we can rearrange the letters as we did in the Heisenberg group in
Section 1.2. The elements c1 and c2 are central and so can always be pushed to the end of the word.
Rearranging the a1, a2, and b letters will cost us more b, c1, c2, and their inverses. But in the end, we
arrive at the normal form.

Understanding the multiplication formula in these coordinates will give intuition into why nilpotent
groups have polynomial growth. Even in the relatively simple case of G “ N3,2 the multiplication
formula becomes quite complicated. We have

¨

˚

˚

˚

˚

˝

A1

A2

B
C1

C2

˛

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˚

˝

A11
A12
B1

C 11
C 12

˛

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

A1 `A
1
1

A2 `A
1
2

B `B1 ´A2A
1
1

C1 ` C
1
1 `BA

1
1 ´A2

´

A1
1pA

1
1`1q
2

¯

C2 ` C
1
2 `BA

1
2 ´A

1
1

´

A2A
1
2 `

´

A2pA2`1q
2

¯¯

˛

‹

‹

‹

‹

‹

‹

‚

.

Observe that in the first two coordinates (corresponding to the first level of the Mal’cev coordinates),
the multiplication formula is linear. In B, coming from the second level of coordinates, the formula is
quadratic. In the last two coordinates (corresponding to the third level), multiplication is cubic. This
pattern, which generalizes to the Mal’cev coordinates of all finitely generated nilpotent groups, will be
crucial when exploring the growth of nilpotent groups.

Exercise 8. Mal’cev coordinates can help us to better understand higher Heisenberg groups. For
example, consider the Heisenberg group H5pZq of dimension 5. An element of H5pZq is of the form

ˆ

1 ˚ ˚ ˚
0 1 0 ˚
0 0 1 ˚
0 0 0 1

˙

,

with integer entries. What are the Mal’cev coordinates of H5pZq? What does group multiplcation look
like in these coordinates?

In the examples above, the Mal’cev coordinates created a correspondence between HpZq and Z3, and
between N3,2 and Z5, where Z3 and Z5 had multiplication laws that were polynomial in each coordinate.
In general, the Mal’cev coordinates of a finitely generated nilpotent group G will create a correspondence
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between G and ZnˆZ`1 ˆ¨ ¨ ¨ˆZ`t , where Z`1 “ Z{`1Z. Again the group multiplication on this product
will be polynomial in each coordinate. This pattern is, in fact, characteristic of nilpotent groups, as we
will see below

2.4. Mal’cev completion. As stated above, the Mal’cev coordinates for a finitely generated nilpotent
group G provide a group structure on Zn ˆ Z`1 ˆ ¨ ¨ ¨ ˆ Z`t . Let R`i “ R{`1Z. We can endow

Rn ˆ R`1 ˆ ¨ ¨ ¨ ˆ R`t
with the same group multiplication from the Mal’cev coordinates. Doing so gives us a simply-connected,
nilpotent Lie group, called the Mal’cev completion, in which our group G embeds cocompactly.

2.5. Application: Solving single equations. Mal’cev coordinates can be used to get results on the
decidability of equation problems in groups. The equation problem studies the solvability of equations of
the form w “ 1, where w is a word written as a product of constants (group elements) and variables that
can range over group elements. If the problem is decidable, then there exists an algorithm for taking
any single equation and answer either YES or NO to the question of whether solutions exist.

Using Mal’cev coordinates, it can be shown that in HpZq, the equation problem is decidable. This
can be generalized to all 2-step nilpotent groups with rank-one commutators. One can also ask if it
is possible to solve a system of equations simultaneously. As long as s,m ě 2 (making our group is
non-abelian), the problem of solving systems of equations in Ns,m is not decidable.

How can we show that the problem for single equations is decidable? If we want a word w to be equal
to 1, first we can put w in it’s Mal’cev normal form. Then we ask each of the exponents to be equal to
(or congruent to) 0. This will give us a finite set of linear equations, a finite set of congruences, and one
quadratic equation. This type of system of equations with congruences is decidable.

See [5] for more details.
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3. Polynomial growth

3.1. Distortion of a subgroup in a group. Let pG,Sq be a finitely generated group with generating
set S and pH,T q ď pG,Sq a finitely generated subgroup with generating set T . We can assume that
T Ă S, and hence the Cayley graph of pH,T q is a subgraph of the Cayley graph of pG,Sq. Let dS and
dT be the respective word metrics on G and H.

Define the distortion of H in G to be

∆H
G pnq “ maxtdT p1, hq | h P H, dSp1, hq ď nu.

The subgroup H is said to be undistorted in G if ∆H
G pnq — n.

3.1.1. Subgroup distortion in the Heisenberg group: Consider the Heisenberg group HpZq. We showed
above that HpZq has the normal form aAbBcC via the Mal’cev coordinates. Since rHpZq, HpZqs “ xcy,
the lower central series is

HpZq� xcy� t1u.
Let’s look at the distortion of G2 “ xcy in HpZq. Let S “ ta, b, cu be the generating set of HpZq and
T “ tcu the generating set of xcy. A simple exercise shows that

cn
2

“ ra, bsn
2

“ ran, bns.

Thus dSpc
n2

q “ 4n, while dT pc
n2

q “ n2. This implies that ∆
xcy
HpZqpnq ľ n2. Now we just have to show

that the distortion can be no worse than quadratic. Here we can use the bounds on word length from
Section 1.3. We said that for any generating set S, the word length of a word in Mal’cev coordinates
was bounded above and below by multiples of

|A| ` |B| `
a

|C|.

Thus if a sequence of word grows linearly in | ¨ |S , then A and B can grow at most linearly, and C can
grow at most quadratically. A sequence of words in G2 “ xcy can, therefore, grow at most quadratically
while geodesic word length grows linearly. This proves that the subgroup distortion is quadratic.

We won’t prove it here, but the example of the Heisenberg group follows a pattern that generalizes
to all nilpotent groups. In general, we have that

∆Gi

G pnq — ni.

So if, for example, your group is 3-step nilpotent like G “ N3,2, then G2 “ rG,Gs is quadratically
distorted. Meanwhile, G3 is cubically distorted in G.

3.2. Growth function. Let G be a group generated by the finite symmetric set S (i.e., S “ S´1) and
| ¨ |S the word length. As in the first section of the notes, we define the growth function of G to be

βpnq “ |Bn| “ #tg P G
ˇ

ˇ |g|S ď nu.

In this section we want to study the asymptotic behavior of this growth function for nilpotent groups.
If βpnq grows polynomially (or exponentially), we say that the group G has polynomial (or exponential)
growth.

In Section 1.3.2, we showed that for HpZq, βpnq grows like n4. To do so, we used the Mal’cev

coordinates and bounds on word length by multiples of |A| ` |B| `
a

|C|. Now we’ll show that the
polynomial growth is characteristic of nilpotent groups.

3.3. History of polynomial growth. Let dpGq “
ř

iě1

i rkpGi{Gi`1q denote the homogeneous degree of

the nilpotent group G. Wolf showed in 1968 [?, wolf1968]hat there are constants K1, K2 ą 0 such that

K1n
d ď βpnq ď K2n

e,

for all n " 1, where d “ dpGq and e “
ř

iě1

2i´1 rkpGi{Gi`1q. This tells us that the growth function is

polynomial but does not specify the degree of polynomial growth.
Then in the early 1970s, Bass [1] and Guivarc’h [7] separately found that it suffices to let e “ d. Thus

we get the following proposition.
8
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Proposition 6. (Bass-Guivarc’h formula) The degree of polynomial growth of a finitely generated
nilpotent group is equal to

dpGq “
ÿ

iě1

i rkpGi{Gi`1q.

So all finitely generated nilpotent groups have polynomial growth. Is the converse true? The answer
turns out to be yes (in a sense). In 1981 Gromov [6] proved the following theorem.

Theorem 7. If a finitely generated group G has polynomial growth, then G is virtually nilpotent, i.e.,
G contains a nilpotent subgroup of finite index.

So polynomial growth, in a sense, is characteristic of nilpotent groups.

3.4. Polynomial growth via distortion. Subgroup distortion allows us to sketch a proof of the
polynomial growth of nilpotent groups. Let G be a nilpotent group of class s. Then we lower central
series of G is of the form

G “ G1 �G2 � . . .�Gk �Gs`1 “ t1u

Recall from above that we claimed to know the order of distortion of Gi inside of G. This is intimately
related to the fact that the multiplication for Mal’cev coordinates adapted to the ith level of the lower
central series is polynomial of degree i. We claimed that

∆Gi

G pnq — ni.

This pattern allows us to place bounds on word length using the Mal’cev coordinates as we did
in Exercise 2. Recall from the construction of the Mal’cev coordinates that at level i we added as
coordinates the generators of the abelian group Gi{Gi`1. Asymptotically, the generators of the torsion
parts of this abelian group will not affect the growth function, so for our purposes, we need only consider
the generators of the nontorsion part. There are rkpGi{Gi`1q nontorsion coordinates added at this ith

level of the lower central series. If we believe that Gi is ni-distorted in G, then the “directions” associated
to each of the rkpGi{Gi`1q generators will be distorted to this degree. This implies that word length of
a group element will be bounded between linear combinations of the ith-roots of the Mal’cev coordinates
from level i. So as the geodesic word length grows linearly, these coordinates can grow like ni. The
growth function, therefore, grows polynomially with degree equal to the homogenous dimension of G,
ř

iě1

i rkpGi{Gi`1q.

9
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4. Carnot-Carathéodory metrics and coarse vs fine geometry

In this section we will define Carnot-Carthéodory metrics on HpRq. These constructions generalize
to all Carnot groups: stratified, nilpotent, homogeneous Lie groups. Here, though, we will focus on the
Heisenberg group. For further reading, we suggest [3], [10].

4.1. Horizontal subspace. Above we mentioned that HpRq is a nilpotent Lie group, but we never
defined what that meant. A nilpotent Lie group is a connected Lie group G whose Lie algebra g is
nilpotent. That is, its Lie algebra lower central series

g1 “ g, g2 “ rg, gs , . . . , gi`1 “ rgi, gs, . . .

eventually terminates in gs`1 “ 0. (Note the similarities between this Lie algebra lower central series
and the group lower central series.) This lower central series allows us to associate to g a graded Lie
algebra,

g8 “ ‘iě1 gi{gi`1.

We endow this algebra with the unique Lie bracket r¨, ¨s8 with the property that for X P gi and Y P gj ,
the bracket is defined modulo gi`j`1, as

rX,Y s8 “ rX,Y s.

Example 8. Let’s take another look at our favorite example, the Heisenberg group. The Lie algebra,
i.e., the tangent space at the identity, is generated by the three vectors

X1 “

´

0 1 0
0 0 0
0 0 0

¯

, X2 “

´

0 0 0
0 0 1
0 0 0

¯

, X3 “

´

0 0 1
0 0 0
0 0 0

¯

.

One can check that rX1, X2s “ X3 and rX1, X3s “ rX2, X3s “ rX3, X3s “ 0. Therefore, we have the
grading

g8 “ xX1, X2y ‘ xX3y.

The first factor of this grading plays a special role, and we’ll call it the horizontal subspace, denoted
by m. We’ll abuse notation and think of m as both the horizontal subspace in the Lie algebra as well as
the horizontal xy-plane in HpRq – R3. Let πmpx1, x2, x3q “ px1, x2q denote the orthogonal projection
to m. Since we are in a Lie group we can push this subspace m at the identity to the tangent space at
any point via the differential. For each p P HpRq, we can push m to mp “ xdLppX1q, dLppX2qy, giving
us a plane field in HpRq.

A curve γ P HpZq is called admissible if for all t,

γ1ptq P mγptq.

In words, a curve is admissible if its tangent vectors lie in the plane field for all time t.

Lemma 9. (Balayage lemma) Given a path γ “ pγ1, γ2q from p0, 0q to px, yq in the horizontal plane m,
there is a unique admissible curve (a Legendrian lift) γ “ pγ1, γ2, γ3q starting at the origin that projects
down to γ under πm. The lifted curve connects p0, 0, 0q to the point px, y, zq where z is equal to the
signed area of the region enclosed by γ and a straight chord from p0, 0q to px, yq in the horizontal plane.

Proof. Let γ “ pγ1, γ2q : r0, 1s Ñ m be a curve in the horizontal subspace. Use a straight line to connect
γp1q to the origin, and call the closed loop γ̂. Let S be the region enclosed by the curve γ̂. If we want
γ to be admissible and if we want πmpγq “ γ, its derivative must be of the form

γ1 “ xγ11, γ
1
2,

1

2

`

γ1γ
1
2 ´ γ2γ

1
1

˘

y.

10
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A direct computation shows that the straight line we used to close off γ does not affect the integral of
γ13 “

1
2 pγ1γ

1
2 ´ γ2γ

1
1q . Therefore, by Green’s Theorem we have

γ3 “

ż 1

0

γ13ptqdt

“
1

2

ż 1

0

pγ1γ
1
2 ´ γ2γ

1
1qptqdt

“
1

2

ż

γ̂

x1dx2 ´ x2dx1

“

ż ż

S

dxdy.

�

Note that since the third coordinate of an admissible path is given by the signed area enclosed,
almost all of the data of the curve is preserved if we project any path in HpRq via πm : HpRq Ñ m to the
horizontal plane m. What we lose is the initial height of the path since the plane field mp is invariant
under vertical translations. Still, it will often be convenient to perform calculations on these “shadows”
of paths instead of on the paths themselves.

It is also important to note that we can construct an admissible curve that connects any two points,
say p0, 0, 0q and p “ pp1, p2, p3q. Projecting to m, we need only connect p0, 0q to pp1, p2q via a circular
arc enclosing signed area equal to p3. Then the admissible lift of this curve will connect the origin to
our point p. See Figure 1 for a few examples. Observe that the red signed area A1 is negative due to the
orientation of the curve, so in this case p3 would be negative. Meanwhile the paths enclosing A2 and A3

are positively oriented, making p3 positive.

0

p

A1

A2

A3

Figure 1. How to connect any two points with an admissible curve using circular arcs.

Exercise 9. The push-forward (differential) dLp of left multiplication Lp in HpRq is derived as follows:

Lppxq “ px “ pp1 ` x1, p2 ` x2, p3 ` x3 `
1

2
pp1x2 ´ p2x1qq; pdLpqx “

¨

˝

1
1

´
p2
2

p1
2 1

˛

‚

11
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Let X1, X2 be the tangent vectors in the x, y directions at the identity. Then we get a vector field by

X1ppq “ dLppX1q “

¨

˝

1
1

´
p2
2

p1
2 1

˛

‚

¨

˝

1
0
0

˛

‚“

¨

˝

1
0
´
p2
2

˛

‚. Similarly, X2ppq “

¨

˝

0
1
p1
2

˛

‚.

(Note that these are linearly independent but not orthogonal.) Sketch part of this plane field. Choose
two different examples of smooth curves γ in m. Find their admissible lifts to HpRq using the balayage
lemma. For a point along each curve, check explicitly that the tangent vector γ1ptq is in the plane mγptq.

4.2. Carnot-Carthéodory metric. We are now ready construct our Carnot-Carthéodory metrics on
HpRq. We’ll start with any norm || ¨ || on the horizontal subspace m. Given an admissible path γ “
pγ1, γ2, γ3q : r0, 1s Ñ HpRq, we can calculate its Minkowski length

Lpγq “

ż 1

0

||πmpγ
1ptqq||dt “

ż 1

0

||pγ11ptq, γ
1
2ptqq||dt.

Again, we recall that by projecting an admissible curve to m via πm we do not lose information about
the length of the curve. Then we define the distance dpp, qq between p and q to be the infimum of the
Minkowski lengths of admissible paths connecting p to q. This CC metric depends only on the norm || ¨ ||

chosen on m. It is a sub-Finsler metricnsince non-admissible paths are not given lengths, and lengths are
defined using a norm which may or may not be induced by an inner product as in the sub-Riemannian
case.

Exercise 10. Let m “ xX1, X2y and mp “ xX1ppq, X2ppqy. Note that mp sits in the R3 space coordi-
natizing HpRq as p ` xX1ppq, X2ppqy. Check that the length of an arbitrary vector in m is the same as
the length of the projection to m of its push-forward in mp. Explain how to interpret this as saying that
admissible curves in HpRq for any CC metric can have their lengths computed just from their shadows
in the xy-plane.

4.3. The Heisenberg similarity. Recall from the first section that we have a dilation δn : HpZq Ñ
HpZq taking px, y, zq ÞÑ pnx, ny, n2zq. While for the word metric on HpZq this was a near-similarity, in
the real Heisenberg group with a CC metric, the map δn is a similarity.

Proposition 10. For HpRq with any CC metric, the maps δn are similarities. In other words,

dCCpδnppq, δnpqqq “ n ¨ dCCpp, qq.

To prove this proposition, we’ll first need a lemma.

Lemma 11. If γ is an admissible curve between p and q, then δnpγq is an admissible curve between
δnppq and δnpqq.

Proof. Let γ “ pγ1, γ2, γ3q be an admissible curve. Then δnpγq “ pnγ1, nγ2, n
2γ3q. The differential dδn

acts on γ1 as follows:

dδnpγ
1q “ pnγ11, nγ

1
2, n

2γ13q.

We showed above that admissible curves γ satisfy

(1) γ13 “
1

2
pγ1γ

1
2 ´ γ2γ

1
1q.

Since γ is admissible, it follows that

n2γ13 “ n2
1

2
pγ1γ

1
2 ´ γ2γ

1
1q

“
1

2
ppnγ1qpnγ

1
2q ´ pnγ2qpnγ

1
1qq.

Thus dδnpγ
1q also satisfies equation (1), making δnpγq admissible. �

12
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Proof. (of Proposition 10). Suppose γ is an admissible curve. Lemma 11 tells us that δnpγq is an
admissible curve between δnppq and δnpqq. If the Minkowski length of δnγ is nLpγq, then we are done.
Indeed,

Lpδnpγqq “

ż 1

0

||pnγ11ptq, nγ
1
2ptqq||dt

“

ż 1

0

n ¨ ||pγ11ptq, γ
1
2ptqq||dt

“ nLpγq. �

4.4. Commutator calculus and area. Here we will take a look at how the so-called “commutator
calculus” relates to area in the Heisenberg group HpZq. Recall (or check) that in HpZq,

ram, bns “ ambna´mb´n “ cmn.

We can use this relationship to adjust the projections of paths to the horizontal plane without losing
information about height of the lifted path.

Let a and b be the standard generators of HpZq. Starting at the origin 0, follow the path represented
by the word w “ ambk``anb´`a´pm`nqb´k as in Figure 2a. We can view this path as living in m “

R2 Ă HpRq, which we’ll endow with the L1 norm. We know that this path has a unique admissible
lift and that the height of the lift at any point should be given by signed area enclosed by the shadow
so far. Therefore, although we have a closed loop in the shadow, the lift in general is not a loop. The
balayage lemma tells us that at the end of the path when we arrive again at the origin in the shadow,
the z-coordinate of the lift should be the difference of the areas A1 ´ A3, or mk ´ nl. (Note that we
travel around A3 clockwise, and so its signed area is negative.)

am

bk

b`

an

b−`

a−n

a−m

b−k A1

A3

0

(a) Start with a curve in
the xy-plane.

am

bk

b`

an

b−`

a−na−m

b−k A1 A2

0

(b) Replace bk``an with
anbk``c´npk``q.

am

bk

b`

an

b−`

a−na−m

b−k A1

A3

A2

A4

0

(c) Replace b´`a´pm`nq

with a´pm`nqb´`c´`pm`nq.

Figure 2. How commutator algebra relates to area in the plane. Blue corresponds to
positive signed area, and red is negative.

We can use commutator algebra to change our path from Figure 2(a) into something more familiar.
Our goal is to get the rectangular path in Figure 2(c), since we know that

am`nbk``a´pm`nqb´pk``q “ ram`n, bk``s “ cpm`nqpk``q.

So traveling around the lift of the rectangular loop is the same as traveling vertically pm`nqpk``q units.
In this rectangular case, we can forget about the CC metric and area, instead using the commutator
relation to algebraically compute the height of our curve. To morph w into the rectangular path, we’ll
use the same manipulations we did when putting words into their Mal’cev coordinates, remembering
that ba “ abc´1. First we’ll move an across bk``. This move is not free, though! It costs us c´npk``q to
make this move. Making this switch is telling our path to do an first and then bk``. Figure 2(b) shows
what this new path looks like. (Note that in the shadow we don’t see the effect of c.) Now our word is

w “ am`nbk``b´`a´pm`nqb´kc´npk``q.
13
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Next, we’ll want to do travel along a´pm`nq before b´`. Making this switch algebraically costs us
c´`pm`nq. So we see that w is

w “ am`nbk``a´pm`nqb´pk``qc´npk``q´`pm`nq

“ ram`n, bk``sc´npk``q´`pm`nq

“ cpm`nqpk``qc´npk``q´`pm`nq

“ cmk´n`.

Note that we get back the height/area we computed above, mk´n`! Between Figures 2(a) and 2(b), we
added A2 “ nk and A3 “ n` to the signed area, and to compensate for it, we had to multiply our word
by c´nk´n`. Likewise between Figures 2(b) and 2(c), we added A3 “ n` and A4 “ mk to the signed
area and in return had to multiply our word by c´nl´mk.

In the end, the algebraic manipulation may not be the easier way to compute the height of an
admissible life, but this example allows us to see how the commutator, the algebra, and the geometry
are related.

14
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5. Asymptotic geometry

5.1. Asymptotic cone, Pansu’s theorem, Krat’s theorem. In this section, we ask about the large-
scale geometry of finitely generated nilpotent groups. Let Γ be a finitely generated nilpotent group with
symmetric generating set S “ S´1. As we zoom out on the group and view its Cayley graph as a finer
mesh, what does it look like? Pansu showed in [9] that the Cayley graphs of Γ with word metrics scaled
by 1

n converge in the pointed Gromov-Hausdorff topology to a connected, simply-connected nilpotent Lie
group with a left-invariant Carnot-Carthéodory metric pG8, d8q. Before precisely stating the theorem,
we should say something about the construction of pG8, d8q, the asymptotic cone of a finitely generated
torsion-free nilpotent group.

Let Γ be a finitely generated, torsion-free nilpotent group with symmetric generating set S. In
Section 2.4, we introduced the Mal’cev completion, the simply-connected nilpotent Lie group G in which
Γ embeds cocompactly. Let πm : G Ñ m “ g{rg, gs be the projection to the horizontal subspace as
defined in the previous section. Since Γ embeds cocompactly in G, it must be the case that πmpΓq forms
a discrete full-rank lattice inside of m. Let P be the polyhedron formed from the convex hull of πmpSq.
Since S is symmetric, P is symmetric about the origin. Also, it has full dimension inside m since it
generates the lattice formed by πmpΓq. Therefore we can define a norm || ¨ || on m by taking P to be the
unit ball.

Recall that m “ g{rg, gs is the first summand in the graded Lie algebra g8 constructed from g. Let G8
be the group associated to g8. Then we can use the norm || ¨ || to put a sub-Finsler Carnot-Carthèodory
metric d8 on G8. We’ll call this space the asymptotic cone of Γ.

Example 12. Let Γ “ HpZq with generating set S “ ta, b, a´1, b´1u. Then the Mal’cev completion of
Γ is G “ HpRq. The horizontal subspace m at the origin is the xy-plane, as shown in Example 8. The
projection map πm sends a to X1 “ p1, 0q, sends b to X2 “ p0, 1q, and sends their inverses to ´X1 and
´X2, respectively. The convex hull, therefore is the unit diamond. Therefore, the asymptotic cone of
HpZq with the standard generating set is HpRq with the CC metric induced by the L1 norm on R2.

(1, 0)

Figure 3. The L1 unit circle.

Now we are ready to state Pansu’s theorem.

Theorem 13. (Pansu) Let Γ be a finitely generated, torsion-free nilpotent group with generating set
S. Let pG8, d8q be the asymptotic cone of Γ as defined above. Then

lim
|x|Ñ8

dSp1, xq

d8p1, xq
“ 1.

Restricting to the Heisenberg group, we can get an even stronger statement from Krat [8].

Theorem 14. (Krat) For the Heisenberg group HpZq and any generating set S, there exists a constant
C dependent on S such that for all x P HpZq,

ˇ

ˇ dSp1, xq ´ d8p1, xq
ˇ

ˇ ď C.
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Krat’s theorem says not only that the distances have similar asymptotic growth, but that they must
stay bounded distance from one another for all x. Krat proved this is true for HpZq and for word
hyperbolic groups. It is not true for nilpotent groups in general. In particular, Breuillard and Le Donne
show in [2] show in that Krat’s Theorem does not hold for HpZq ˆ Z.

5.2. The unit ball and the isoperimetric problem. Let’s consider what the unit ball in HpRq is
with the CC metric induced by the standard generators ta, bu˘. Pansu’s theorem tells us that this
generating set induces the L1 norm on m. For starters, we have the L1 unit circle (diamond) in the
horizontal plane. The straight lines from the origin to the unit diamond have length 1, do not enclose
any area, and hence their lifts in HpRq remain in the horizontal plane.

But we know that these straight lines are not the only geodesics with respect to the L1 norm. In the
horizontal plane, as long as we do not backtrack in any direction, we remain geodesic. In Figure 4, we see
four different geodesics from p0, 0q to p1{2, 1{2q. The first three curves (a), (b), and (c) enclose different
signed areas, and so their lifts to HpRq will have different endpoints at different heights. The final two
curves, (c) and (d), enclose the same amount of area, and so they are distinct geodesics between two
points.

(
1
2 ,

1
2

) (
1
2 ,

1
2

)

(
1
2 ,

1
2

) (
1
2 ,

1
2

)

(
1
4 ,

1
4

) (
1
4 ,

1
4

)

(
1
2 , 0

)

(c) Encloses area 1/32.

(a) Encloses area 0. (b) Encloses area 1/8.

(d) Encloses area 1/32.

Figure 4. Various heights of the unit ball above the point p1{2, 1{2q.

By building staircases between p0, 0q and p1{2, 1{2q in different ways, we can achieve any height
between 0 and 1{8. This tells us that the unit sphere in pHpRq, dCCq contains a vertical line segment
through p1{2, 1{2, 0q. In fact, the unit ball contains vertical faces along each edge of the unit diamond.
We can ask, though, what the maximal height above p1{2.1{2q is. Of our examples in Figure 4, 1{8 is
the maximal height. Is it possible to travel from p0, 0q to p1{2, 1{2q geodesically while enclosing area
more than 1{8?

We’re fixing the length of our line and asking how much area we can enclose. Suddenly we’re talking
about the isoperimetric problem for L1! Fortunately, it is known that the square is the isoperimetrix for
the L1 norm in R2. So a geodesic curve of maximal height in HpRq will be one that follows the shape
of a square. The curve in 4(b) does just that. Therefore, 1{8 is indeed the maximal height of the unit
ball above p1{2, 1{2q.

Now we can look at different points within the L1 unit ball and ask what height (or heights) the unit
ball achieves above it (worrying only about positive heights since the ball will be symmetric across the
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xy-plane). In Figure 5, we draw one geodesic of unit length between p0, 0q and p 12 , 0q. This is, indeed,

the only unit-length geodesic connecting these two points. Any other positive area less than 1
8 can be

enclosed by a rectangular curve of length less than 1. So p 12 , 0,
1
8 q is the unique point on the unit ball

above p 12 , 0q.

(
1
2 , 0

)

(
0,− 1

4

)

Figure 5. Finding the height of the unit ball above the point p1{2, 0q.

Exercise 11. Let’s explore the large-scale geometry in the standard generators on HpZq, which induces
the L1 norm on m. For the three points p0, 0q, p1{3, 1{3q, and p2{3, 0q in the normed plane pm, L1q,
compute the height of the CCF unit sphere over each point. Above we showed that the maximum
height over p1{2, 1{2q was 1{8 and that the unique height over p1{2, 0q was also 1{8. Using this and the
Heisenberg similarity, find the distance from the origin to p0, 0, zq in the CC metric. Compare that to
the word length of a long central word in the discrete group. If Pansu’s theorem is right, they should be
very close to the same. (Hint: it’s right.)

Exercise 12. Which geodesics based at 0 are prolongable in this CCF metric? Which are infinitely
prolongable (i.e., what are the geodesic rays based at the origin)? Which geodesics are uniquely pro-
longable? For what p P HpRq is there a unique geodesic 0p? (Note these are four different questions
with quite different levels of difficulty, so say what you can.)
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