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1. Introduction

The goal of these notes is to introduce the reader to complex hyperbolic space CHn

and explore its geometry and curvature. We will do so while making connections
when possible to what is hopefully a more familiar example, real hyperbolic space,
Hn. After defining CHn, we will take a look at two kinds of special subspaces, totally
real subspaces and C-affine lines. This study will lead us to question and explore
curvature and triangles that live “in between” the two special cases.

Complex hyperbolic space is a homogeneous space which can be given both complex
and Riemannian structures. These notes will focus on the Riemannian case. One
can think of Cn as the open unit ball in CHn with a Riemannian metric. Under this
metric, CHn has nonconstant sectional curvature, and it is this aspect of complex
hyperbolic space that we aim to explore.

I would like to thank my advisor Moon Duchin for her guidance. I’d also like to
thank Rosemary Guzman, Daniel Waite, and David Polletta for their helping me
piece together the big picture of these notes.

2. Hyperboloid and projective models of Hn

Before we define complex hyperbolic space, it can be helpful to first look at real
hyperbolic space Hn. In these notes, we will explore the hyperboloid and projective
models of Hn.

2.1. Hyperboloid model. The first step in defining the hyperboloid model is to
consider the symmetric bilinear form 〈 , 〉 : Rn+1 × Rn+1 → R which for x =
(x1, . . . , xn+1), and y = (y1, . . . , yn+1), gives

〈x, y〉 =

(
n∑
i=1

xiyi

)
− xn+1yn+1.

1
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Note that this form does not define an inner product. In fact, we have positive, null,
and negative vectors, i.e. vectors x such that 〈x, x〉 is positive, zero, or negative,
respectively. For example, observe that

〈x, x〉 = 0 ⇔ x21 + . . .+ x2n = x2n+1.

The solution set is a cone in Rn+1, often referred to as the light cone (see Figure 1).
This light cone of null vectors will later serve to define the boundary of hyperbolic
space.

The hyperboloid model of real hyperbolic space is the top sheet of the n-dimensional
hyperboloid defined by

Hn = {x ∈ Rn+1 | 〈x, x〉 = −1}.

Figure 1. Hyperboloid model of H2 (blue) with light cone (yellow).

2.2. The metric. Given x and y in the hyperboloid model of Hn, the distance
between the points is defined by

cosh d(x, y) = −〈x, y〉.
It turns out, however, that when 〈 , 〉 is restricted to the tangent space at any point
x ∈ Hn, it gives us an inner product, and thus the Riemannian metric.

We define the orthogonal complement of a vector x to be

x⊥ = {u ∈ Rn+1 | 〈x, u〉 = 0}.

Proposition 1. If x is a negative vector, i.e. 〈x, x〉 < 0, then the restriction of the
form 〈 , 〉 to the orthogonal complement x⊥ of x is positive definite.
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Proof. Suppose u 6= 0, u ∈ x⊥, and 〈x, x〉 = −c for some c > 0. Since u ∈ x⊥, we
know

〈x, u〉 = x1u1 + . . .+ xnun − xn+1un+1 = 0.

We also know that xn+1 6= 0 since x is a negative vector. Therefore we can rewrite
this line as

un+1 =
x1u1 + . . .+ xnun

xn+1

.

Now using the Cauchy-Schwarz inequality for the Euclidean inner product on Rn,
we calculate:

〈u, u〉 = u21 + . . . u2n −
(
x1u1 + . . .+ xnun

xn+1

)2

=

(
n∑
i=1

u2i

)
−
(

1

xn+1

)2
(

n∑
i=1

xiui

)2

≥

(
n∑
i=1

u2i

)
−
(

1

xn+1

)2
(

n∑
i=1

x2i

)(
n∑
i=1

u2i

)

=

(
1− 1

x2n+1

(
n∑
i=1

x2i

))(
n∑
i=1

u2i

)

=

(
1− 1

x2n+1

(
x2n+1 − c

))( n∑
i=1

u2i

)

=
c

x2n+1

(
n∑
i=1

u2i

)
> 0.

�

Thus the form when restricted to the orthogonal complement at each point x ∈
Hn gives us an inner product. For these inner products to define a Riemannian
metric, we would have to identify the tangent space at each point with its orthogonal
complement. We omit the proof that such an isomorphism exists but will include the
proof later of the isomorphism in the complex case. Therefore, this family of inner
products 〈 , 〉

∣∣
x⊥

defines a Riemannian metric on Hn.

2.3. Projective model of Hn. Note that Hn maps bijectively onto its image in
RP n. We’ll call the projection map π. Then if we give the image π(Hn) ⊂ RP n

the metric defined by the pullback of the metric through π−1, making π an isometry,
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then this is a new projective model of Hn. We’ll use [x] to denote the equivalence
class of x in RP n. This projective model is defined by

Hn = {[x] ∈ RP n | 〈[x], [x]〉 < 0}.
It is worth mentioning that after projectivizing, we no longer can pick out a level
set, but whether the equivalence class [x] of a vector x is positive, null, or negative
is well-defined.

3. Complex hyperbolic space CHn

In the real case, hyperbolic space is defined by its constant negative sectional cur-
vature. In the complex case, we will seek constant negative holomorphic curvature.
Just like real hyperbolic space, complex hyperbolic space has several models, each
of which has its advantages. Here we will define the projective and ball models of
CHn.

3.1. Projective model of CHn. As in the real case, we will start by defining a
form, in this case a Hermitian form 〈 , 〉 : Cn+1 × Cn+1 → C. We will use the same
notation 〈 , 〉 for the form, which we justify by noting it generalizes the one defined
above. For z = (z1, . . . , zn+1) and w = (w1, . . . , wn1), we have

〈z, w〉 =

(
n∑
i=1

z̄iwi

)
− z̄n+1wn+1.

This is also an indefinite form with positive, null, and negative vectors. Again,
the negative vectors will give the points of our space. Our space CHn will have
complex dimension n, and we will obtain it by a projectivization of the (2n + 1)
real dimensional locus {〈z, z〉 = 1}. As above we will projectivize via the standard
projection π : Cn+1 → CP n, and we will use [z] to denote the equivalence class of z
in CP n. We can then define the projective model.

The projective model of complex hyperbolic space is the set

CHn = {[z] ∈ CP n | 〈[z], [z]〉 < 0}.

3.2. The metric. Given two points [z], [w] ∈ CHn, we will define the distance be-
tween the points by

cosh2 d([x], [y]) =
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉

.

One can check, or refer to [BH13] to check, that this does indeed define a metric.
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3.3. Tangent vectors. For a point z ∈ Cn+1, let z⊥ = {w ∈ Cn+1 : 〈z, w〉 =
0}.

Now we want to think about the tangent space at a point [z] ∈ CHn. Note that
CHn is an open subset of CP n. In particular, CHn is an open subset of the open
set Un+1 = {[w] ∈ CP n : wn+1 6= 0}. Since Un+1 is diffeomorphic to Cn, the tangent
space at [w] in Un+1 is isomorphic to Cn as a vector space.

Let φ : T[z]CHn → z⊥ be the map described by

φ

a1...
an

 =


a1zn+1 + z1λ

zn+1

...
anzn+1 + znλ

zn+1

λ

 ,

where λ =
−z2n+1

〈z,z〉

(
n∑
i=1

z̄iai

)
. This map can be found using the differential of the

natural projection map π.

Proposition 2. The map φ : T[z]CHn → z⊥, is an isomorphism of C vector spaces.

Proof: It is not hard to see that this map is linear. Also, since Cn and z⊥ both
have real dimension 2n, it is enough to show that φ is injective. Suppose the vector
a ∈ T[z]CHn is nonzero. Recall that since [z] ∈ CHn, we know 〈z, z〉 6= 0 and

zn+1 6= 0. If

(
n∑
i=1

z̄iai

)
6= 0, then λ 6= 0, and so φ(a) 6= 0. If

(
n∑
i=1

z̄iai

)
= 0,

then

φ

a1...
an

 =


a1zn+1

...
anzn+1

0

 ,
and since one of the ai must be nonzero, then the image is nonzero as well. Thus φ
is injective and, therefore, an isomorphism.

�

So from now, we will identify z⊥ with the tangent space at [z] in CHn. There can be
some ambiguity when talking about tangent vectors since for λ ∈ C×, (λz)⊥ = z⊥. To
resolve this, we will talk about pairs under the equivalence relation (z, v) ∼ (λz, λv).
Note that under this equivalence relation, (z, λv) represents a different tangent vector
from (z, v).



6 NATE FISHER

3.4. Ball model of CHn. We can get a different, although similar, model of CHn

by taking a canonical set of lifts of the projective model to Cn+1. By the negativity
condition, just as in the real case, if [z] ∈ CHn then we know zn+1 6= 0. Thus we can
choose the representative of [z] with zn+1 = 1, i.e., [ z1

zn+1
: . . . : zn

zn+1
: 1]. In the set of

representatives {z ∈ Cn+1 | [z] ∈ CHn, zn+1 = 1}, the condition that 〈z, z〉 < 0 turns
into

|z1|2 + . . . |zn|2 < 1.

Therefore CHn can be parametrized as the open unit ball in Cn. Each point w =
(w1, . . . , wn) in this unit ball corresponds to a unique point [w1 : . . . : wn : 1] in the
projective model. This allows us to define the metric on the open unit ball by pulling
the metric back through this bijection.

3.5. Hyperbolic segments and real hyperbolic angle. Given [z] ∈ CHn, we can
choose a representative z of [z] such that 〈z, z〉 = −1. Choose a representativeu ∈ z⊥
of (z, u) with 〈u, u〉 = 1. This is possible since we know Then the geodesic segment
from [z] in the direction of u is the curve γ : R→ CHn,

γ(t) = [z cosh(t) + u sinh(t)].

These turn out to be all the geodesics in CHn. See [BH13] for more details. For
any [z] ∈ CHn with two nonzero tangent vectors u, v ∈ T[z]CHn, we define the real
hyperbolic angle ∠z between u and v by

cos∠z(u, v) :=
<〈u, v〉√
〈u, u〉

√
〈v, v〉

,

where <(w) is the real part of the complex number w.

3.6. Alexandrov angle. In this section, we define the Alexandrov angle between
two geodesics issuing from a point p in an arbirtrary metric space, as it is presented
in [BH13]. Suppose X is a metric space, and let c : [0, a]→ X and c′ : [0, a′]→ X be
two geodesics where p = c(0) = c′(0). Given t ∈ (0, a] and t′ ∈ (0, a′], we can consider
the comparison triangle ∆̄(c(0), c(t), c′(t′)) in E2. We also have the comparison angle
∠p(c(t), c′(t′)). The Alexandrov angle or upper angle between the geodesic paths c
and c′ is the number ∠(c, c′) ∈ [0, π] given by

∠(c, c′) := lim sup
t,t′→0

∠p(c(t), c
′(t′)) = lim

ε→0
sup

0<t,t′<ε
∠p(c(t), c

′(t′)).

Proposition 3. The real hyperbolic angle ∠z defined in Section 3.5 agrees with the
Alexandrov angle in CHn.
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4. Curvature and Special subspaces

4.1. Curvature. When talking about curvature (specifically negative curvature here),
we will need to reference model spaces of various curvatures. The model spaces for
negative curvature will be obtained from real hyperbolic space Hn with its hyperbolic
metric d : Hn × Hn → R as defined above. Tor κ < 0, we define the n-dimensional
model space of curvature κ, Mn

κ , to be the metric space (Hn, dκ), where dκ = d√
−κ .

This scaling of the hyperbolic metric provides us with constant negative sectional
curvature κ. Later we will make use of the law of cosines for the model space Mn

κ ,
so we will cite it here.

Proposition 4. Given a geodesic triangle in Mn
κ , with sides of positive length a, b,

and c and Alexandrov angle γ at the vertex opposite the side of length c, for κ < 0,

cosh(
√
−κ · c) = cosh(

√
−κ · a) cosh(

√
−κ · b)− sinh(

√
−κ · a) sinh(

√
−κ · b) cos(γ).

Note that when κ = −1, we get back the law of cosines for real hyperbolic space
Hn.

When we say that a metric space (X, d) is CAT(κ), what we mean is that “geodesic
triangles in X aren’t any fatter than their comparison triangles in (M2

κ , dκ)”. Suppose
we have a triangle ∆ = ∆ABC in our space X with side lengths a, b, and c. A
comparison triangle in M2

κ is a triangle ∆′ = ∆A′B′C ′ such that the side lengths
are still a, b, and c. It’s not hard to show that any two such comparison triangles
in Mn

κ are isometric. If x is a point on ∆, we can find its comparison point x′ on
∆′ by parametrizing the geodesic edges of the triangles by arc length. The triangle
∆′ satisfies the CAT(κ) inequality if for any points x, y ∈ ∆ and comparison points
x′, y′ ∈ ∆′, we have

d(x, y) ≤ dκ(x
′, y′).

A geodesic space X is said to be a CAT(κ) space if all of its geodesic triangles satisfy
the CAT(κ) inequality.
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A

B

C

x

d
y

X

A′

B′

C ′

x′

d′

y′

M2
κ

Figure 2. Comparison triangles and CAT(κ).

Proposition 5. CHn is a CAT(-1) space.

See Chapter II.10 of [BH13] for a proof.

4.2. Special subspaces. Note that we can view Cn+1 as an R-vector space. An
R-vector subspace V ⊂ Cn+1 is said to be totally real in Cn+1 with respect to 〈 , 〉 if
〈u, v〉 ∈ R for all u, v ∈ V . Suppose V is a totally real subspace of dimension k + 1
and that there exists a negative vector z ∈ V . Then we call

π(V \{0}) ∩ CHn

a totally real subspace of dimension k in CHn.

Example: Consider V = {(x1, x2, x3) : x1, x2, x3 ∈ R}. Obviously this is a totally
real vector subspace in C3, and the vector z = (0, 0, 1) is a negative vector in V .
Thus if we project and intersect with complex hyperbolic space, we will get a totally
real subspace of (real) dimension 2 in CH2. Picking lifts with x3 = 1, in the ball
model of CH2, this totally real subspace is parametrized by

{(x1, x2, 1) : x21 + x22 < 1}.
We get a copy of the real open unit disk living in CHn.

Suppose U ⊂ Cn+1 is a C-vector subspace of complex dimension k + 1 and that U
contains a negative vector w. Then we call

π(U\{0}) ∩ CHn

a C-affine subspace of dimension k in CHn.
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Example: Consider U = {(z1, 0, z3) : z1, z3 ∈ C}. Again the vector z = (0, 0, 1)
satisfies the negativity condition. Thus if we project and intersect with complex
hyperbolic space, we will get a C-affine subspace of (complex) dimension 1, i.e., a
C-affine line. In the ball model, it is parametrized by

{(z1, 0, 1) : |z1|2 < 1}.

We get a copy of the complex open unit disk living in CHn.

Note that in each example, we got a 2 (real) dimensional open unit disk. One has
real coordinates, though, while the other has complex coordinates. It turns out
that this difference will be very important when we consider the curvatures of these
subspaces.

4.3. Curvature of special subspaces. Let ∆ ⊂ CHn be a geodesic triangle with
vertices A, B, and C, where C = [z] and 〈z, z〉 = −1. Let u, v ∈ z⊥ be the initial unit
vectors at z of the geodesic segments CA and CB. See Figure 3. One could ask about
the “curvature of this triangle.” We know that for all nonpositively curved model
spaces M2

κ there exists a comparison triangle ∆′ in M2
κ . This embedding preserves

side lengths, but we can ask for more. What if we want Alexandrov angles to be
preserved as well? We can also ask if the convex hull of the triangle embeds isomet-
rically into M2

κ for some κ, necessarily preserving both side lengths and Alexandrov
angles.

C = [z]

A

B

u

v

γ

Figure 3. Picture for Proposition 6.

The motivation for the special subspaces above is revealed by the following proposi-
tion cited from [BH13], whose proof can be found in section II.10.12.

Proposition 6. Let ∆ be a triangle in CHn with A, B, C, u, and v as above.
Suppose that the real hyperbolic angle ∠C(A,B) is not equal to 0 or π. Then:

(1) The convex hull of ∆ is isometric to the convex hull of its comparison triangle
in M2

−1 = H2 if and only if 〈u, v〉 is real.
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(2) The convex hull of ∆ is isometric to the convex hull of its comparison triangle
in M2

−4 if and only if u and v span a C-affine line.

So this proposition answers our question for two cases. If u and v are independent
vectors in a totally real subspace V , then ∆ looks like a triangle of curvature -1. And
if u and v are part of a C-affine line, then ∆ looks like a triangle of curvature -4. The
following theorem from [BH13] section II.10.16 generalizes the proposition.

Theorem 1. (1) The totally real subspaces of dimension k in CHn are precisely
those subsets which are isometric to the real hyperbolic space Hk.

(2) The C-affine lines in CHn are precisely those subsets which are isometric to
the model space M2

−4. Moreover, CHn does not contain any subsets isometric
to Mm

−4 for m > 2.

5. Explorations

Now we will explore curvature and triangles that live neither in totally real nor in
C-affine subspaces. We still would like to embed arbitrary triangles from CH2 into
model spaces of negative curvature, but in general we won’t be able to preserve side
lengths and all three Alexandrov angles in these embeddings. Instead, we will aim
to preserve only the side lengths and the Alexandrov angle at vertex [z]. Therefore,
from this point on we can forget some information define triangles to be 4-tuples
Tri(a, b, c, γ), where a, b, and c are the side lengths and γ is the Alexandrov (or
real hyperbolic) angle at [z]. See Figure REFERENCE. If Tri(a, b, c, γ) can be
embedded into the model space M2

κ in a way that preserves the Alexandrov angle γ,
then we will say the triangle has curvature κ.

NEW FIGURE

Now we’ll look at a family of triangles in CH2. Let z = (0, 0, 1) ∈ CH2, so that
〈z, z〉 = −1. Let u = (1, 0, 0) ∈ z⊥, and let vα = (i sinα, cosα, 0) ∈ z⊥ be the
family of tangent vectors at [z] parametrized by 0 ≤ α ≤ π/2. Consider the geodesic
triangle that is formed by traveling from z in the directions of u and vα for time
t = 1 and then connecting those two endpoints by a geodesic. Using the notation
from above, these are the triangles Tri(1, 1, cα, γα). See Figure 4.
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[z]

1
cα

1
u

vα

γα

Figure 4. Setup for the first exploration.

Note that α does not describe the real hyperbolic angle between u and vα, but rather
serves as a parameter. The real hyperbolic angle between u and vα is

γα = ∠z(u, vα) = cos−1

(
<〈u, vα〉√

〈u, u〉
√
〈vα, vα〉

)
= cos−1(<(−i sinα)) = π/2.

So our family of triangles looks like Tri(1, 1, cα, π
2
), where

cα = cosh−1
(√

sin2 α · sinh4 1 + cosh4 1
)
.

As we try to determine the curvature of these triangles, the previous section gives
us information about the two extremal cases.

Case 1: If α = 0, the triangle lives in a totally real subspace: 〈u, v〉 ∈ R, and hence
the triangle has curvature -1.

Case 2: If α = π
2
, the triangle lives in a C-affine line: u and v span a C-affine line,

and the triangle has curvature -4.

For each α, we would be able to find a comparison triangle with side lengths 1, 1,
and cα in any model space of negative curvature. If we ask that the comparison
triangle has Alexandrov angle π

2
, Proposition 4 (the law of cosines) tells us that κ is

uniquely determined by α. Therefore, there is a unique model space M2
κ in which we

can realize the triangle Tri(1, 1, cα,
π
2
). See Figure 5 to see the relationship between

α and κ.
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Figure 5. Curvature of triangles varying α, computed numerically.

It is worth mentioning that the embeddings of Tri(1, 1, cα,
π
2
) do not preserve the

other two angles of the triangle 0 < α < π
2
. In general, γα is the only angle to be

preserved. But the calculation does allow us to see some aspects of the curvature as
we look around in different directions from [z].

Now we ask what happens if our triangles have side lengths not equal to 1. For
this experiment, we’ll fix α. Instead of traveling for time 1, we’ll travel along the
geodesics in the directions of u and vα for time t. Then we can use the law of cosines
again to determine κ.

[z]

t
ct

t
u γα

vα

Figure 6. Setup for the second exploration.
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Figure 7. Fixing α as 0 (green), π
8

(red), π
4

(blue), 3π
8

(purple), and
π
2

(yellow).

Figure 7 shows κ as a function of t for several fixed values of α.

What have we learned? In both explorations, we are standing at [z] = (0, 0, 1) in
complex hyperbolic space. We fix one axis u, and then swivel around as we vary
vα. As we do so, we are getting a sense of what the curvature is in these different
directions. In the second exploration, varying t instead of α, it is as if we’re zooming
in and out in these particular directions to see what happens to curvature. Figure 7
would imply that curvature converges at a larger scale in these directions.

NEED CONCLUSION
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