PaperBot Series

HexaBot Activity

Subject: Science & Technology Grade Level: 3 - 5

Topic: Build a HexaBot that implements motors and linkages, allowing for movement of the robot.

Activity Time: 2 hours

Goals	Students will be able to:
	1. Advanced knowledge of assembly techniques.
	2. Advanced knowledge of motors and linkages.
	3. Knowledge of transfer of motion.
	4. An increased knowledge of support structures.
Objectives	Create a walking HexaBot using cardstock, straws, motors, and linkages by
	following the attached assembly instructions.
Materials	Cardstock, brass fasteners, straws, tape, scissors, hole punch, 1 motor, 1 battery
	pack, axle rod.
Introduction	Introduction topics:
	1. Motors
	2. Linkages
	3. Support Structures
Procedure	1. Introduce activity and show students pictures of HexaBot
	2. Split students into teams of two or three
	3. Distribute materials and assembly instruction sheet. (Forthcoming)
	4. The assembly instructions should be followed closely to ensure a HexaBot
	that performs correctly.
	5. Make sure students have tested the functionality of their HexaBot upon assembly completion.
	6. After all students have finished their PaperBots the class should reconvene
	and discuss the activity.
Wrap-up	Suggested discussion points:
	1. What did you learn while assembling the HexaBot?
	2. What did you struggle with during the assembly?
	3. What other objects have motors? How are motors used in these products?
	4. How can we modify the HexaBot to do more tasks?

PaperBot Series

HexaBot Activity

Educational Standards:

Massachusetts State Standards for Educational Framework - Science - Grade 5

- MA.PS.4 → Identify the basic forms of energy (light, sound, heat, electrical, and magnetic). Recognize that energy is the ability to cause motion or create change.
- MA. PS.5 \rightarrow Give examples of how energy can be transferred from one form to another.
- MA.PS.6 → Recognize that electricity in circuits requires a complete loop through which an electrical current can pass, and that electricity can produce light, heat, and sound.
- MA.T/E.1.2 → Identify and explain the appropriate materials and tools (e.g., hammer, screwdriver, pliers, tape measure, screws, nails, and other mechanical fasteners) to construct a given prototype safely.
- MA.T/E.1.3 → Identify and explain the difference between simple and complex machines, e.g., hand can opener that includes multiple gears, wheel, wedge gear, and lever.
- MA.T/E.2.3 → Identify relevant design features (e.g. size, shape, weight) for building a prototype of a solution to a given problem