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Abstract 

We report on a teacher development program aimed at improving mathematics teaching and 

learning from grades 5-9. The 18-month online program arose through a partnership of mathematics 

education researchers, mathematicians, physicists, and nine school districts.  The program employs 

functions as a lens to reinterpret, study in depth, and interconnect topics in the curriculum and to 

promote mathematical understanding by drawing upon students’ reasoning about relations among 

quantities and numbers.  The rationale, content, and activities for teachers drew inspiration from 

prior studies on early algebraic reasoning, teacher effectiveness, and student learning. We report on 

changes in teaching and learning after teachers participated in the program and consider whether 

these changes may be attributed to specific characteristics of the program. 

 

Keywords: teacher development, arithmetic, algebra, functions, variables, representations, 

teacher interaction, classroom teaching, student learning, student reasoning, grades 5 to 9, online 

discussions. 
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Poincaré Institute: Course Descriptions and Impact on Teachers and Students 

We report on a development program for teachers in grades 5 to 9 built upon the view that 

functions can take on a productive role throughout the K-12 mathematics curriculum, serving as a 

lens through which to view not only the teaching of algebra, but also key curriculum topics 

regarding numbers, arithmetical operations, transformations, and change.  The program builds upon 

previous research on functional reasoning among young students and on studies of teacher 

effectiveness and student learning. We describe the program’s theoretical foundations, its 

underpinnings in research about teaching and learning, and its implementation.  We also consider 

evidence regarding the possible impact of the program on teachers and students as well as its 

shortcomings and highlight some of the challenges that lay ahead as the field moves forward.  

The program: 

(a) Employs functions as a means of interpreting, studying in depth, and highlighting 

interconnections across a wide range of topics in the curriculum, such as fractions, 

divisibility, ratio and proportion, graphs, equations, growth, and change. 

(b) Aims to integrate content and pedagogical knowledge by requiring participants to solve 

mathematical problems and to design and implement learning activities on the same 

topics. 

(c) Encourages teachers to identify and take into account students’ reasoning and ideas in 

planning and implementing learning activities. 

(d) Includes a wide variety of open-ended problems about everyday and scientific situations. 

(e) Promotes teachers’ discussions and collaboration about mathematics and pedagogical 

activities.  

The program requires three semesters of intensive work (10-12 hours/week). So far, it has 

been offered (mostly online) to nearly 250 teachers who constitute a major part of the middle and 
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beginning high school teachers in 10 New England school districts, with combined population of 

more than 40,000 students a year.  

Functions in Mathematics and in the School Curriculum 

The concept of function evolved over many centuries and now plays “a central and unifying 

role” in mathematics (Selden and Selden, 1992).  A function, 𝑓: 𝑆 → 𝑇 (also called a map), 

consists of three pieces of data: two sets S and T and a rule that associates to each element of S (the 

domain) a unique element of T (the codomain).  This modern view has been built with the rigor of 

set theory. It differs markedly from earlier, “classical” approaches. Galileo employed the concept of 

function when trying to express fundamental quantitative principles or laws by applying 

mathematical reasoning to quantitative statements to deduce new physical laws (Kline, 1962). The 

concept of function was implicitly used well before 1694, when Leibnitz	first	employed	the	Latin	

term,	functio (Piaget et al., 1977).	 As early as 1361, Oresme envisaged constant acceleration in 

map-like format as a linear relation between time (displayed as latitude) and velocity (displayed as 

longitude), thereby foreshadowing modern graphical representations of functions (Boyer, 1968).  

The view that reasoning about functions has a major role to play in secondary mathematics 

education has been increasingly embraced over the years by mathematics educators (e.g. Harel & 

Dubinsky, 1992; Oehrtman, Carlson, & Thompson, (2008); Schwartz & Yerushalmy, 1992). 

Following the National Council of Teachers of Mathematics Standards (1989, 1991), functions and 

their representations became a core feature in the teaching of algebra. Chazan (1999, 2000) reports 

that making functions central to an algebra course helped his students solve problems before 

learning standard methods to solve equations and changed his experience as a teacher. Schwarz & 

Dreyfus (1995) and Schwarz, Dreyfus, & Bruckenhart (1990) examined the effectiveness of a 9th 

grade curriculum built around a software environment that integrates graphical, tabular, and 

algebraic representations. Students in their curriculum reportedly better recognized and coordinated 

properties of functions across different representations while solving verbal problems. Huntley et al. 
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(2000) evaluated the impact of a high school algebra curriculum built upon investigations of real 

life contexts, interweaving strands of algebra and functions with other math content, and making 

frequent use of graphing calculators.   Students who had received that curriculum performed better 

at solving contextualized problems, while those in courses prioritizing manipulation of equations 

performed better in manipulating decontextualized symbolic expressions.   

Much as functions appeared historically well before a theory of functions arose, we believe 

that functions have an important place in mathematics teaching well before they are formally 

introduced (usually in grades 8-10). We suggest that much is to be gained by having pre-secondary 

students engage in expressing associations between physical variables before they are formally 

introduced to functions or encounter functions in equations, where variables are “unknowns” 

constrained to one or two values, namely, solutions. 

In fact, functions are already part of the school curriculum before the teaching of high-

school algebra, even if not named or rigorously defined.  The following informal definition of the 

term, function, offered by Gowers,	Barrow-Green,	and	Leader (2010),	illustrates	how	functions	

enter	mathematics	before	being	formally	introduced: 

One	of	the	most	basic	activities	of	mathematics	is	to	take	a	mathematical	object	and	

transform	it	into	another	one,	sometimes	of	the	same	kind,	and	sometimes	not.		“The	

square	root	of”	transforms	numbers	into	numbers,	as	do	“four	plus,”	“two	times”,	“the	

cosine	of,”	and	the	logarithm	of.”	(p.	10).	

Just as “four plus”, and “two times” (commonly represented as 𝑥 + 4 and 2𝑥), can be 

regarded as functions, arithmetical and algebraic operations and combinations of operations may be 

treated as functions.  

Functions can be usefully exploited in the early mathematics curriculum by employing 

problems where generalized variables appear as variable quantities.  Consider the following 

problem: 
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Mike has $8 in his hand. The rest of his money is in his wallet. 

Robin has exactly three times as much money as Mike has in his wallet. 

Describe in your own words or show in a drawing how much money they have.   

Third and fourth grade students will typically first interpret this problem as describing a 

story about two children having fixed amounts of money.  Many will claim that one of the children 

has more money than the other by arguing, for instance, that Mike has more because “he started 

with $8”.  By having the students carefully reconsider the wording of the problem and prodding 

them to systematically walk through various scenarios they come to realize that the story could 

correspond to any of several possibilities: if there were $1 in the wallet, Mike would have a total of 

$9 ($8 + $1) and Robin would have $3 (3 times $1); if there were $2 in the wallet, Mike would 

have $10 and Robin  $6, and so forth.  The students gradually come to treat the amount of money in 

the wallet as a generalized variable, thereby treating Mike’s amount and Robin’s amounts 

essentially as functions of the amount in the wallet. Young students, with careful support from the 

teacher, can come to express these functions through algebraic notation, such as w+8 and 3 × 𝑤, 

and interpret the problem through graphs of linear functions (Authors, 2007). 

Recasting mathematics topics with the aid of functions allows for classroom activities based 

on representing, discussing, and solving open-ended problems. Different representational forms for 

functions, notably, verbal statements, number line diagrams, data tables, graphs, algebraic 

expressions, and equations serve as models of relations among physical quantities. Ratio and 

proportion problems can be explored as problems about linear functions and equations and 

inequalities may be interpreted as comparisons between the outputs of two functions.  In such ways, 

functions hold the promise of offering a means for unifying a wide range of topics commonly 

introduced in a piecemeal fashion across the curriculum.   

Teaching mathematics from the perspective of functions and variables aligns with Piaget’s 

theory of cognitive development and Vygotsky’s ideas on the role of cultural tools and social 
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interaction in learning and development. Whereas Piaget’s theory focuses on the development of 

logical and mathematical reasoning by the child, in interaction with the physical and social world, 

the Vygotskian view highlights the degree to which mathematical knowledge entails an 

appropriation of cultural practices and conventions. Mathematics teaching requires that teachers 

constantly shift from one perspective to another. For instance, classroom activities often begin by 

evoking students’ views about a problem and the interrelations among quantities in the problem and 

gradually introduce conventional mathematical representations and tools.  In this way, 

mathematical representations and models of informal mathematical activity may pave the way for 

conventional mathematical representations (Freudenthal, 1973, 1991; Gravemeijer, 1999).  

There is a growing body of studies proposing and providing evidence that, from an early 

age, under conducive circumstances, children can use algebraic thinking and, specifically, functions 

in the broad sense of associations among two sets of values (Blanton et al., 2017; Blanton & Kaput, 

2000; Brizuela, 2016; Brizuela & Schliemann, 2004; Cai & Knuth, 2011; Carpenter & Franke; 

2001; Kaput, Carraher, & Blanton, 2008; Moss & Beatty, 2006; Carraher, Schliemann, & Brizuela, 

2000; Carraher, Schliemann, & Schwartz, 2008; Carraher, Schliemann, Brizuela, & Earnest, 2006, 

2016; Carraher & Schliemann, 2007, 2016, 2018; Kaput, 1995; Kieran, 2018; Schliemann, 

Carraher, & Brizuela, 2007, 2012).  As a whole, these studies have shown that students in 

elementary school, including those from disadvantaged backgrounds, can come to display a firm 

grasp of variables, not merely as “mystery numbers,” but, more generally, as place-holders for 

arbitrary members of large, possibly infinite, sets of values). They can learn to express functional 

relations through verbal statements, number lines, tables, graphs, or algebraic notation and interpret 

graphs as representations of (usually, linear) functions, noting how features of the graph convey 

significant information about word problems they were crafted to model.  Such results far exceed 

the expectations of conventional wisdom and of current standards in mathematics. 
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The contribution of early algebra and experience with functions to the future learning of 

algebra and mathematics in general is still a work in progress. So far, results of an exploratory 

follow-up study by Carraher, Schliemann, & Brizuela (2012) have been encouraging: In a week-

long algebra summer camp offered three-years after students had participated in an early algebra 

intervention from grades 3 to 5, the intervention students performed better than a control group on 

written assessments given before and after the camp. Moreover, the difference between the two 

groups increased after participation in camp lessons. These long-term results, although based on 

relatively few children, suggest that participation in early algebra activities based on the multiple 

representations of functions in elementary school may help prepare students to learn topics of 

algebra in middle school. We would argue that teaching key topics in the mathematics curriculum 

with a focus on algebraic reasoning, variables, and functions, adapted to the needs of school grades, 

may contribute to algebra learning in middle and high school.   

In what follows, after briefly reviewing studies of teacher development and teacher 

effectiveness, we describe the teacher development program and provide evidence suggestive of its 

possible contribution to changes in teachers’ ways of teaching and to their students’ learning. 

Research on Teacher Development and Effective Teachers 

Shulman’s (1986) reflections on “knowledge growth in teaching” have been a point of 

reference for many contemporary studies in teacher development. Shulman proposed that teachers 

need to develop pedagogical content knowledge, or “the ways of representing and formulating the 

subject that make it comprehensible to others (p. 9).” A teacher’s mastery of fractions in no way 

ensures that she will be successful when introducing the topic to students whose experience has 

been restricted to counting numbers. She needs to have a variety of well-mastered examples suited 

to helping students understand why and how operations with fractions build upon, as well as depart 

from, operations with natural numbers.   
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Teachers’ knowledge for teaching mathematics or teachers’ pedagogical content knowledge 

(Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008; Hill & Ball, 2008), as revealed through 

teachers’ surveys, classroom practice, and/or lesson logs, has been found to be related to student 

performance and to value-added scores on students’ achievement tests (Hill, Rowan, and Ball, 

2005; Hill, Kapitula, & Umland, 2011).  

In recent decades, as mathematics educators and researchers have made headway in 

identifying and clarifying characteristics of successful teachers of mathematics, researchers have 

sought to identify critical features of successful teacher development programs.  Hill (2007) 

highlighted the need for programs of long duration that focus on both subject matter and teaching 

methods and rely on multiple formats such as lesson study and collaboration among teachers. 

Bautista and Ortega-Ruiz (2015) also emphasized the need for long programs to provide teachers 

with a deeper understanding of the subject matter, pedagogical strategies to teach specific content, 

and understanding of how students think of and learn about the content. Desimone (2009) remarked 

that there is a consensus about critical characteristics of professional development that promote 

teacher knowledge, improve their practice, and, potentially, student achievement. These are content 

focus, active learning, coherence, program duration, and collective participation. She highlights 

further the importance of student work, administrative support, curriculum materials and 

implementation, and high expectations.       

In a study of nearly 3000 randomly-assigned volunteer teachers and students, the Measures 

of Effective Teaching project (Kane & Staiger, 2012) found significant associations between ratings 

of videotaped classroom lessons based on measures of teacher effectiveness and student 

performance. Lessons were evaluated in terms of students’ intellectual engagement, interactions 

between students and teachers, accuracy with regard to content, emphasis on meaning rather than 

memorization, considering student perspectives, probing techniques for questioning and discussion, 

and promoting student participation. On state-mandated tests of mathematics, students whose 
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teachers were at the 75th percentile of effectiveness performed fully eight months ahead of peers 

whose teachers were at the 25th percentile.   

Some teacher development programs have been found to contribute to teachers’ performance 

on written tests of mathematical knowledge for teaching (e.g., Hill and Ball, 2004; Hill, Ball, and 

Schilling, 2008). However, only a handful of programs have been the focus of systematic research 

and even fewer succeeded in showing impact on student achievement (Sztajn et al., 2017). 

Examples of these are studies by Franke, Carpenter, & Levi (2001), McMeeking, Orsi, and Cobb 

(2012), Santagata et al. (2011), and  Saxe, Gearhardt, & Nasir (2001). In general, as Bautista (2015) 

and Bautista and Ortega-Ruiz (2015), Hill (2007), and Sztajn et al. (2017) stress, most teacher 

development programs have not shown significant changes on student learning. By our count1, of 

the 25 National Science Foundation Math and Science Partnership program projects sponsored 

between 2002 and 2015 (http://hub.mspnet.org), only six (including the present one) report progress 

among both teachers and students. 

The Teacher Development Program 

Since 2011 the program has been engaging successive cohorts of teachers in grades 5 to 9 in 

in-service professional development.  The program, consists of three-semesters of work, with a mix 

of online activities, associated classroom-based assignments, and regular face-to-face meetings.  It 

was developed through a partnership of mathematics education researchers, research 

mathematicians, and physicists drawing on contributions from the three disciplines (mathematics, 

mathematics education, and physics).  Key stakeholders included nine participating school districts 

in New England (in MA, NH, and ME). From the start, the intended beneficiaries were both the 

                                                

1 We employed two independent raters to arrive at this figure. 
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teachers and their students, even though the program mentors did not work directly with the 

students.   

The mathematical content of the program covers not only algebra but many other topics in 

the math curriculum.	We	designed	activities	and	produced	materials	to	help	teachers	develop	

their	own	insights	about	mathematical	topics	and,	in	particular,	apply	the	lens	of	functions	to	

the	topics	they	teach.		Our experience leads us to include not only mathematics content and 

teaching strategies, but also examples of lesson implementation and discussions in successful 

classrooms.  Furthermore, teachers needed to be convinced of the relevance of such examples to 

their own teaching. We will shortly describe some of the ways in which such issues were addressed.  

We worked under the assumption that successful instruction in the middle school classroom 

requires that teachers be scrupulously attentive to both mathematical content and to the 

mathematical reasoning of their students. Teachers must understand the content they teach in depth 

and should understand how different topics in the curriculum can become interrelated. This requires 

long-term programs that focus on understanding mathematical content (rather than mere mastery of 

algorithms) where teachers interact with each other as they discuss mathematics and pedagogical 

activities. For teaching to be effective, teachers must engage students in the analysis of relationships 

between quantities or magnitudes in everyday and science situations, considering students’ intuitive 

ideas and reasoning as starting points for classroom discussions and for the introduction of new 

concepts and strategies. Viewing mathematics through the lens of functions allows such an 

approach. As the devil is in the details, we will illuminate certain characteristics that might 

otherwise remain hidden.  

In what follows, we will describe the program’s structure and pedagogical foundations and 

exemplify its content, requirements, and activities.  Then we discuss data we gathered on (a) 

changes in classroom teaching along with changes in student engagement and (b) improvements in 

performance on state mandated tests for students in each target district, in comparison to those in 



 

  12 

districts matched along dimensions known to be associated with educational outcomes. We 

consider the extent to which the results may be due to the program content and activities as opposed 

to other factors. In doing so, we attempt to further understand how our specific approach to 

mathematics can make a difference in teaching and learning and, hopefully, contribute to theoretical 

ideas about mathematics teaching and learning which, as discussed by Herbst and Chazan (2018), 

could enrich research on mathematics teaching.   

General Features of the Program 

The program is structured around three semester-long courses for in-service teachers of 

mathematics in grades 5 to 10. The courses are taken in succession over an 18-month period.  

Teachers participate in online discussions several times a week and receive feedback from their 

peers and from instructors. At the beginning of each semester they attend a two-day meeting at 

Tufts University campus and meet weekly at their schools, with program mentors joining these 

meetings once a month. The instruction offered online includes video lectures, written notes, videos 

of classroom activities, and education research papers and summaries. Office hours are offered 

online via regularly scheduled meetings as well as individual appointments. 

Asynchronous online delivery was chosen to allow teachers flexible scheduling of  

supporting extensive interaction with other teachers.  When suitably employed, online course 

delivery can actually hold advantages in terms of participants’ interactions (see Hawkes and Good, 

2000).  We designed and improved our online activities to facilitate interactions among teachers 

and instructions and to comply with Tufts University’s requirements in terms of quality of content 

and  quality and quantity of course instructor-participant interaction.   

The program’s main features are: 

1. The interconnection and depth of analysis of mathematical topics: While other programs 

may highlight functions as a core concept, mainly in the teaching of algebra, we use functions and 

their representations as a lens to explore and unite various topics of the curriculum. This offers, we 
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believe, a foundation for deeper understanding and facilitates the use of multiple mathematical 

representations to explore verbal and contextualized problems, even when a problem could be 

solved using a single representation or strategy. 

2. The integration of mathematics and pedagogical content. There was a deliberate effort to 

integrate the content and pedagogical approaches throughout the curriculum, in terms of 

instructional materials and of activities required from the teachers. Course materials, jointly 

developed by the interdisciplinary team, were presented in an integrated format. Teachers discussed 

videotaped classroom activities related to the content of the courses in terms of the mathematical 

content, teaching strategies, and students’ ideas and achievements. They were made aware of the 

need to be precise and clear in their assumptions,  clarify their ideas, and justify their assertions in a 

way that works in any situation rather than for specific numbers.  

3. Eliciting and building upon students’ ideas.  Teachers interviewed students to understand 

how they initially approach particular mathematics topics and discussed videotaped lessons and 

interviews with colleagues and mentors. The design and implementation of classroom activities was 

expected to take into account the information gathered. The activities demonstrated and promoted 

in the courses focused on open-ended questions about relationships between sets of quantities or 

values and were conducive to students’ engagement and discussions. 

4. Conceptual understanding and representations emerging from analyses of situations and 

relationships between sets of quantities: Our approach to functions allowed for building upon the 

role of quantification in learning and development (Abrahamson, 2012a, b; Abrahamson et al., 

2014; Lehrer et al., 2001; Liu et al., 2017; Piaget, 1964) and on the importance of quantitative 

reasoning in the preparation of teachers (Lobato and Ellis, 2002; Thompson, 2015). Teachers were 

encouraged to introduce problems involving physical quantities and sets of values, starting with 

natural language and progressing towards conventional representations such as tables, number lines, 

graphs, and algebra notation.  
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5. Interaction among teachers and of teachers with instructors: In keeping with lesson study 

approaches to teaching (Lewis, 2002; Perry & Lewis, 2008; Stiegler & Hiebert, 1999; Yoshida, 

1999), cooperation among teachers is a key component of the program. Throughout the courses, 

teachers held online and face-to-face discussions with their peers as they solved mathematical 

challenge problems, analyzed videotaped demonstrations from previous research or from prior 

cohorts, and planned, implemented, discussed, and evaluated their lessons, with feedback from 

mentors at each step of the process. We encouraged teachers to frame and interpret ideas and 

activities for themselves, rather than rely solely on ready-made models.  

6. Scope and length of the program: The program extends over three successive 15-week 

semesters, with an expected workload of roughly 10-12 hours per week. The required work includes 

understanding written texts and video lectures, some about the mathematics alone, most relating 

this mathematics to the way they can be presented and used in the classroom.  It includes weekly 

responses to and discussions of challenge questions on mathematical concepts and examples of 

student work and reasoning.  

7. Financial support: The courses were offered tuition-free.  The teachers also received a 

$1,000 stipend for each completed course and were given a laptop computer and a camera at the 

start of the program to easily access course materials, interact online with instructors and 

colleagues, and collect and analyze classroom data. Upon program completion, teachers kept the 

equipment. Since salaries, particularly in urban areas, are often insufficient to cover living 

expenses, these resources allowed teachers to dedicate to the long-term program time they might 

otherwise use working part-time jobs.  

8. Institutional support: Teachers’ institutional support differed widely from district to 

district. While in some districts, administrators (usually a math coordinator) encouraged teacher 

participation and facilitated practical issues arising from it, such as meeting times, in other districts, 

the teachers were left to solve such issues on their own.  
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Program Implementation  

The program’s three semester-long credit bearing graduate level courses were offered by 

Tufts University Departments of Mathematics and of Education, as part of the Poincaré Institute for 

Mathematics Education. Credits awarded by the courses have been accepted as mathematics content 

requirements for master degrees in teacher preparation programs at other universities. 

The first course builds on the idea of numbers, from representations of quantities to 

relatively abstract conceptions of numbers as mathematical objects; it shows how functions are 

intimately associated with diverse topics in the early mathematics curriculum. Teachers work on 

fractions and decimals, rational and irrational numbers, and the many ways numbers can be 

represented, for example, as points on a line or an oriented segment. Course activities focus on 

relations between sets of values culminating in the idea of arithmetic operations as functions of a 

single or of two variables. The second course treats equations and inequalities as entailing the 

comparison of two functions and uses transformations of the line and of the plane to explain solving 

processes.  Questions regarding divisibility appear in the study of numbers (course 1) and in the 

solution of Diophantine equations and factorization of polynomials for solving polynomial 

equations (course 2). The third course compares linear to non-linear functions with the aim of 

examining constant and variable rates of change.  

From January 2011 to May 2014, three cohorts of approximately 60 teachers each, from 

grades 5 to 9 from nine school districts in the northeastern USA (five in Massachusetts, three in 

New Hampshire, and one in Maine), took the courses. A fourth cohort of 70 teachers from a single 

Massachusetts school district took the courses from 2014 to 2015.   

A total of 12 districts with a high percentage of low-income families were initially contacted 

via e-mail messages addressed to their superintendents and mathematics coordinators to discuss the 

possibility of becoming partners in a teacher development program proposal to be submitted to the 

National Science Foundation.  Three districts declined our invitation because they were already 
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committed to teacher development programs offered by other institutions. Each of the nine districts 

accepting the invitation were then visited by two or three senior members of the proposal team.  In 

these visits we met with mathematics coordinators, coaches, and teachers, discussed details of our 

initial plans, and gathered suggestions on how to structure the program. As the proposal developed, 

we invited mathematics coordinators and teacher representatives to meetings, to further get their 

contribution to the proposal. 

The courses are now part of Tufts University regular offerings and are open to pre- and in-

service teachers. During the courses, online discussions are held in groups of about eight teachers 

and one online instructor. Instructors are faculty from the Departments of Mathematics and the 

Department of Physics or advanced PhD students in mathematics. Work by small groups of three to 

five teachers in schools, discussing, planning, evaluating, and writing reports on classroom 

activities, is monitored by and receive feedback from senior researchers in mathematics education, 

postdocs, and PhD students in mathematics education or science education.  Most instructors had 

participated in the planning of the program. 

During the first two weeks of each of the four units of a given course, teachers from the 

three cohorts in this study worked on course materials, and answered and discussed, online, four to 

six challenge questions, one on pedagogical aspects, the others on mathematical content. Each 

week, individual teachers posted successive versions of their answers, commented on postings by 

others, asked questions, responded to instructor questions and comments, and posted a final 

improved version of the work. The amount of feedback by each group’s mentor was fairly high 

compared to what happens in mathematics college level courses. 

In the third week of each unit, in interaction with their small group of teachers from the same 

school, they interviewed students about particular topics to understand their ways of thinking 

(about, for instance, fractions on the number line), analyzed videotaped lessons, and planed, 

implemented, evaluated, and improved classroom activities.  
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At the end of each course teachers individually implemented classroom lessons jointly 

planned with their peers. These lessons were videotaped and analyzed by the group. 

Examples of coursework   

The following examples illustrate how course material is presented in notes, video lectures, 

and software apps and how teachers, working in small online groups, discuss and solve 

mathematics questions. 

First example: Fractions 

Course 1 materials cover fractions and their traditional representations (verbal descriptions, 

pie charts, area and bar models, and number lines), as well as the assignment of a point on the real 

line for every class of equivalent fractions and the representation of fractions as slopes in the 

Cartesian space (see Figure 1).  This aimed at helping teachers to relate fractions to linear functions, 

ratio, proportionality, multiplication, and division and to the algebraic treatment of these concepts, 

replacing specific numbers with variables. The figure shows points (b, a) representing fractions .
/
 , 

each equivalent to either 	1
2
 or to  34

2
	. In the case of 	1

2
 , the fraction corresponds to points, (𝑏, 𝑎) 

lying on the line, 𝑦 = 1
2
𝑥, and on the unit grid. For example, the highlighted points along that line 

refer to the equivalent fractions  1
2
, ;
<
, 31
32
	𝑎𝑛𝑑	 3;

3<
.   
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Figure 1.  Slope representation of fractions in the Cartesian space.  

Identifying the (vertical) line, 𝑥 = 1 as analogous to the real line, the point of intersection of 

the line 𝑦 = 1
2
𝑥 with the line 𝑥 = 1 gives the point corresponding to 1

2
 on this real line. This 

highlights the direct correspondence between this slope representation of fractions and the more 

traditional representation of a fraction as a real number and its corresponding point on the real line. 

It also supports visually interpreting equivalent fractions from the correspondence of the 

intersections of the line 𝑦 = 1
2
𝑥 with the unit grid. 

This model helps the discussion of some normally difficult topics such as fractions with 

negative numerators and/or denominators or the ordering of fractions in increasing or decreasing 

magnitude. It was drawn upon later when looking at increasing and decreasing functions. It was 

also used to explain the rules of signs for multiplication of numbers (such as “the product of two 

negative numbers is positive”), when comparing the signs of the numerator and denominator of a 

fraction with the sign of the slope of the line in which it lies. 
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If two fractions are equivalent, then the fraction obtained by adding the numerators and the 

denominators is a third fraction equivalent to the other two. In the unit about fractions, teachers 

discuss the following situation: 

Children in an art class are divided into two groups. The yellow group receives a bag of 

beads that the children completely share equally. The red group gets a different bag and, 

again, when they share them equally, none are left over. It so happens that each child 

whether in the yellow or red group has the same number of beads. It is intuitively clear that 

if the two groups of children had been joined into one single group and the two bags of 

beads had been dumped in a single bag, then the number of beads a child would have 

received would still be the same. Show algebraically that this is indeed the case. You can 

develop some intuitions by picking specific values for the number of beads and the number 

of children in each group and producing tables exemplifying the situation. But, in the end, 

we would like to see you being able to explain this in general, perhaps using variables in 

place of numbers. 

While most teachers analyzed this question using specific numbers, many teachers were able 

to introduce variables and use algebra in their explanations.  

Second example: Equations. 

The second course presents equations as the comparison of two functions. For example, the 

equation 60x + 50 = 40x can be considered as a comparison of the two functions f(x) = 60x + 50 and 

g(x) = 40x. Building upon the study of transformations of functions and equations, teachers read 

and discussed examples of how to interpret each step of the solution to an equation in terms of 

transformations of pairs of graphs and of the quantities in the problem situation. As one of the 

online challenge questions, teachers considered the following description of a situation:  

A delivery truck from the Leakit ice-cream factory leaves Boston at midnight driving 

towards Maine at a constant speed of 40 miles per hour. At the same time, a manager from 
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Leakit leaves from the headquarters in Providence, 50 miles south of Boston, at a constant 

speed of 60 miles per hour, driving also towards Maine via Boston. 

Teachers were asked to write an equation for the number of hours from midnight till the 

manager catches up with the truck, explain what the numbers in the equation mean, solve the 

equation algebraically and graphically, show how each step in solving the equation corresponds to 

changes in the graphs, identify the functions at each step, and consider how the solution steps relate 

to the situation.   

Figure 2 shows a graphical representation, similar to those produced by some teachers, of the 

equation 60x = 40x + 50	and of the intermediary steps towards the solution, x	 = 	2.5.   

 

Figure 2. A graphical representation of the equation 60𝑥 = 40𝑥 + 50	and of the steps towards the 

equation, 20𝑥 = 50 and the solution, 𝑥 = 2.5. 

The following answer by a teacher illustrates how some teachers described the relationship 

between the situation in the problem and the transformations of the two functions by subtracting 

40x, a transformation that lead to a visual representation of the solution to the equation: 
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“Essentially, the first transformation takes away the distance that they both covered at the 

same rate: 40x. What we did was to divide up the distance that the manager drove at 60 mph 

into two sections: one that he drove at 40 mph (which we then “matched up” or cancelled 

with the truck’s side), and then determine how long he would have to drive at 20 mph in 

order to cover the 50 extra miles that he would have to cover from Providence to Boston”.  

During the third week of the same course unit, teachers analyzed classroom video footage of 

fourth grade students as they grappled with the Wallet problem discussed above.  They then adapted 

and implemented it in their classrooms.   

Planning for classroom activities. 

The following excerpt from course materials exemplifies instructions teachers were given 

before planning and implementing a classroom lesson for the Final Project, a major assignment at 

the end of each course: 

When choosing the specific problem, questions, or representations you will include in the 
activity for your Final Project, consider what you have learned from students’ previous 
responses during the Unit 4 Week 3 activity, so that they will further explore, rather than 
repeat, what they had done before. While computations and learning how to use algorithms 
has its place in the curriculum, try to choose, instead, an activity that will engage your 
students in exploring new concepts and new mathematical ideas and representations.  

Avoid starting with a request for a definition of a term or a straightforward computation. 
Choose instead an open-ended problem, that is, a problem in which students are likely to 
come up with different approaches to advance different claims and put forth various, 
possibly conflicting, ideas and representations that will lead to discussions and, hopefully, to 
reconsidering their initial views. After presenting the problem, make sure you elicit your 
students’ ideas and representation. Then encourage discussions on what they may have 
proposed and raise new questions. We would like to see your students taking an active role 
in the discussion. Encourage them to make comparisons between their possibly different 
approaches and to support their arguments with evidence. Provide help and counter-
arguments if needed. Bring them back to the topic if they seem to stray into an unproductive 
dead alley or into non-mathematical details.  

You may choose to implement the same plan as your peers or to develop your own plan. 
Remember, however, that the final implementation and report are individual. In any case, 
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continue discussing your ideas with your colleagues and instructor to get their input about 
your plan.  

Changes in Teaching and Learning 

External evaluators analyzed changes in classroom teaching using a pre-post intervention 

design. Student achievement in mathematics in the five districts in Massachusetts participating in 

the program was examined through state-mandated tests of the period (from the program’s 

inception in the Spring of 2011 until early 2014) and compared to those of students from districts 

with similar student initial test results, size of student population, ethnic composition, and 

demographic variables.  

We aimed at determining changes in teaching practices and in student achievement that may 

be due to participation in the program and consider aspects of the program that may have played a 

role in these changes.  

Establishing evidence of impact is challenging goal.  Establishing how and why the program 

leads to better teaching and learning is even more challenging, for one needs to make a credible 

case that certain characteristics of a successful program, and not others, are responsible for the 

results obtained. In addition, one hopes to acquire insight into the mechanisms underlying observed 

changes. Although, in principle, these challenges might seem likely to benefit from experimental 

design, long-term, broad-scope teacher development programs such as the present one entail a large 

number of critical features that may not work in isolation, rendering them unfit for experimental 

methods. We can however explore the possible contribution of different aspects of the program (or 

lack thereof) using quasi-experimental methods (Campbell & Stanley, 1963).  

Changes in Teaching 

External evaluators from the Intercultural Center for Research in Education (INCRE) 

examined changes in classroom teaching among teachers in the program’s first cohort by 

conducting systematic observations of classroom lessons chosen by each teacher, one at the outset 

of the program and another at the end of the three-course series.  They also observed a sub-sample 
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of approximately half of these teachers in follow-up visits, six months and a year after program 

completion. External evaluators’ findings were complemented by the project’s research team 

ratings of the same first cohort teachers’ written lesson plans, presented as part of the second course 

assignments, and video-taped lessons collected at the start of the first and at the end of the second 

course. 

The External Evaluation Procedures 

The external evaluators used two classroom observation tools in their program evaluation: 

the Reformed Teaching Observation Protocol (RTOP, AZ State University, Sawada et al., 2002) 

and the INCRE Analytical Observation Tool.  Their overall goal was to evaluate teachers’ support 

for student discussions and uses of multiple representations, in-class time spent addressing students’ 

mathematical reasoning, the design of lessons and discussions of mathematics problems with 

students from various perspectives and representations, and the percentage of students actively 

engaged in the lesson.  It also provided ratings of teachers’ and students’ mathematics mistakes and 

understanding of mathematical content. The two observation instruments complement each other 

and include similar items that help establish the consistency of the observation data.   

The INCRE evaluators conducting the site visits were seasoned math teachers and 

administrators with years of experience in observing and evaluating mathematics lessons. To 

enhance the reliability of their observation ratings, teachers were generally observed by the same 

evaluator across the visits. 

The RTOP serves to determine the degree to which teachers use student-centered and 

engaging learning practices that includes multiple opportunities for collaboration among students. 

The RTOP 25 items assess five areas of instruction: (1) lesson design and implementation; (2) 

propositional pedagogic knowledge; (3) procedural pedagogic knowledge; (4) classroom 

communication interactions; and (5) student/teacher relationship. The 25 RTOP items are rated on a 

scale of 0-4, yielding a 100-point rating scale for each lesson. The observers write detailed notes of 
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teacher and student activity throughout the lesson being observed and, at the end of the lesson, 

complete the RTOP and INCRE rating scales.  

The additional analytical observation tool developed by INCRE included systematic 

observations of the following aspects:  

Teacher’s practices: 

(a) Structure of the lesson (who leads the lesson, how students are grouped, and instructional 

approaches). 

(b) Teacher’s responsiveness to students’ interests, questions, and experiences. 

(c) Use of problems related to real-life contexts. 

(d) The degree to which the teacher gives evidence of having prepared the lesson and 

whether the teacher opens the lesson by connecting to prior lessons and to students’ 

experiences. 

(e) The teacher’s understanding of the mathematical content (terminology, use of notation, 

modeling, use of appropriate problems, tools, and representations, correctness in 

presenting and discussing mathematics content). 

(f) Use of questions to solicit students’ ideas and conjectures, asking students to provide 

evidence for their ideas, probing for revisions of unclear ideas, promoting discussions 

among students to build on or refine responses and understanding. 

(g) Providing students with clear directions and observing and assessing their understanding 

before proceeding further. 

(h) Providing students with opportunity to review, summarize, reflect, and gain deeper 

understanding of the lesson.  

Student participation: 

(a) Engage in reflection, explain results, apply content of the lesson to solve problems, 

correctly apply and discuss mathematical concepts, representations, and operations. 
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(b) Work collaboratively with peers, respect each other’s thinking, pay attention to other 

students’ ideas and explanations.  

(c) Assess their own work, demonstrate understanding, ask questions, support ideas with 

evidence. 

(d) Use appropriate mathematics terminology. 

(e) Apply procedures and concepts to new problems. 

(f) Show interest, motivation, and on-task behavior. 

Of the 56 participants in the first cohort (52 teachers and four coaches), 51 (91%) completed 

the program. Baseline data, using the RTOP and INCRE tool were collected in January 2011 (the 

first month of Course 1) for the classroom lessons of the 52 teachers.  Post data, using the same 

tools, were collected in April 2012 (just before the end of Course 3) for 48 teachers (of the original 

52; two of the teachers were on leave and two were not teaching in the post data collection year).  

After the teachers completed the program, the evaluators interviewed them to gain insight 

into their views about the program and whether they thought it may have influenced their teaching. 

Six months after program completion (October 2012), classroom lessons of 28 of the teachers were 

once more observed. Finally, one year after completion of the program (April 2013), 33 teachers 

were again observed. The ratings for these two sub-groups of 28 and 33 teachers at the start of the 

program did not differ from those of the teachers who were not observed in the two follow-up dates. 

Overall, a total of 23 teachers were observed at all four points in time.   

The External Evaluation Results 

RTOP findings are presented as total score means. Changes in mean RTOP scores over time 

are expressed in terms of effect size (ES), calculated as the difference in means divided by the 

square root of the pooled variance for two-time points. An effect size of 0.5 of a standard deviation 

is seen as substantive. 
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The mean RTOP score for the 48 teachers observed at the start (January 2011) and at the end 

of the program (April 2012) increased from 43.1 to 49.1, a significant mean increase of 6.0 points 

and an effect size of .30 (p<.05) (see Table 1 and Figure 5).  RTOP ratings were obtained for a 

subgroup of 23 teachers (44% of the cohort), six months (October 2012) and a year (April 2013) 

after the end of course 3. This subgroup of teachers, was similar in “pre-test” ratings to the 

remaining teachers. The subgroup’s mean increased from 43.1 in January 2011 to 57.5 in April 

2013, an increase of 14.4 points.  

Table 1: RTOP mean ratings and gains over time from January 2011 (T0) to April 2012 

(T1), October 2012 (T2), and April 2013 (T3) 

 T0: Jan. 2011 

(baseline) 

T1: Apr. 2012  

(courses’ end) 

T2: Oct. 2012 

(follow-up) 

T3: Apr. 2013 

(follow-up) 

T1-T0 

Gain  

T2-T1 

Gain  

T3-T2 

Gain  

T3-T0 

Gain  
 

Mean RTOP 

(N=48) 

	

 
43.1 

	

 
49.1 

	

 
	

 
 

6.0* 

(ES=0.30) 

 

 

 

 

 

Mean RTOP 

(N=23) 

	

43.1 
	

48.9 
	

56.9 
	

57.5 5.8* 

(ES=0.25) 

8.0* 

(ES=0.38) 

0.7 

(ES=0.03) 

14.4** 

(ES=0.69) 

(*) p<.05; (**) p<.01; ES: effect size, in standard deviations.  Source: INCRE, 2013, 2014).  
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Figure 3: Mean RTOP scores for the first cohort at beginning and end of courses and for a sub-

group of 23 teachers observed six months and a year later (source: INCRE, 2013, 2014). 

RTOP mean rates increased after program completion and then remained stable until at least 

one year later. In interviews conducted by the external evaluators, several teachers explained that, 

while taking the courses, they did not have enough time to take into account what they were 

learning and to prepare new lessons inspired by the program. Over the summer, before the 

following semester had started, they were apparently finally able to further put what they had 

learned into practice.  

Data collected using INCRE’s own observation tool also showed statistically significant 

gains in student engagement and active participation in mathematical questioning, reasoning, and 

problem solving.  As noted in the external evaluator report (INCRE, 2013), students were found to 

increasingly explain their thinking, engage in dialogue and questioning, and collaborate more with 

their peers. Teachers were found to be more inclined to use drawings, bar diagrams, number lines, 

data tables, algebra notation, and graphs.  They also increasingly made connections among different 

math concepts and between algebraic and geometrical representations. Furthermore, the teachers 

more often used tools and technology, worked with contextualized problems, encouraged students 

to use variables and to think algebraically, listened to students and displayed longer wait times.  

As the reader may have noted, the changes in classroom teaching described by the external 

evaluators are consistent with the aims of the three courses and also consistent with features 

associated with teacher effectiveness. Moreover, the external evaluators found that these results 

were consistent with teachers’ own judgments, as revealed in individual interviews, about the 

influence of the program on their teaching and development, both in terms of content and approach 

and in the timing of the changes. We will not systematically analyze these self-reports, given our 

focus on direct, rather than on indirect, data about the possible contribution of the program.	
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Internal Analyses of Lesson Plans and of Videos 

At the end of each of the four units of the second course, teachers in the first cohort were 

asked to design, in small groups of three to five teachers (18 groups in all), a learning activity 

related to the content of the unit. Our analysis of the written plans for all groups, conducted by two 

judges, showed that the learning activities teachers produced for each of the four units in Course 2 

were increasingly designed so as to engage students with multiple representations, a core feature of 

the program (see Table 2).    

Table 2 - Multiple Representations in Teachers’ Lesson Plans 

 

Content of Course 2 Units 

Average Number of 

Representations 

Percent of Plans with 

More Than Two 

Representations 

Unit 1: Fractions 2.56 50% 

Unit 2: Divisibility 3.00 56% 

Unit 3: Transformations of Line and the Plane 4.67 83% 

Unit 4: Transformations of Graphs of Functions 4.88 95% 

 

For example, in Unit 1 of Course 2, on fractions, 44% of the plans used the length model, 

11% included the representation of fractions on the number-line, and 17% used Cartesian graphs 

and slope to represent equivalent fractions. These models were proposed and illustrated by course 

materials.  For the corresponding assignment in Unit 3 of Course 2, on Transformations on the Line 

and on the Plane, the plans included Translations (44%) and Dilations (44%) on the Cartesian 

plane, as means to clarify issues related to arithmetic operations (56%) or to fractions, ratios, and 

proportions (10%).  In the plans, coherent with course materials and activities, Transformations 

provided opportunities for reflection upon scaling and similarity of geometric figures (56%), 

perimeter and area (33%), or everyday situations (28%), as well as opportunities to practice plotting 
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points on the plane (94%), as the other goals were addressed.  Among the 18 plans, 44% and 39% 

included questions aimed at eliciting students’ predictions and generalizations, respectively. 

Representations promoted by the courses such as use of verbal descriptions, manipulatives, tables, 

number lines, coordinate points, graphs in the Cartesian plane, algebra notation, and software 

demonstrations, permeated the teachers’ work in these assignments. 

Because the concomitant use of multiple representations became more prevalent in the 

lesson plans for the last two units, it might be argued that the topics of Units 3 and 4 lend 

themselves to a more geometric approach than those of Units 1 and 2. However, the change was 

gradual rather than abrupt. And many teachers stated in their evaluations of the courses that, as they 

advanced in the program, they became more comfortable with exploring different representations in 

their lessons.  

Another internal analysis focused on videotaped lessons collected by the program’s research 

team at the start of Course 1 (lessons by 31 teachers) and at the end of Course 2 (lessons by 24 

teachers), on a regular school day. The decrease in numbers was due to scheduling problems. This 

analysis once more showed that, from the start to the end of the two courses, in addition to using 

more representations for the same problem, teachers posed more questions requiring students’ 

reflective thinking, and were more likely to treat equations as involving a comparison of two 

functions. Because they were the teachers who responded to our invitation to be videotaped, we 

may want to treat this second set of data with some caution.  

Changes in Student Achievement 

Data Collection 

We compared student performance on state mandated tests in the five target districts in 

Massachusetts to that of students in similar districts, from the Spring term of 2011 to the Spring of 

2014. By this last test’s date, 33% of teachers in grades 5 to 8 in the five target districts had 
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completed the three courses. They constituted the first and the second cohort of teachers in the 

program. 

We focused on changes in the percentage of proficient and advanced students of grades 5 to 

8 in the Massachusetts Comprehensive Assessment System (MCAS) test, the standardized, state-

mandated measure of mathematical proficiency at the time. At the end of each academic year the 

test was given to students in grades 5 to 8 (students from grade 9 are not included in this analysis 

because they do not take the MCAS in high school till grade 10). Each of the target districts was 

matched, as we will describe below, to five comparison districts.   

The MCAS test is a statewide standards-based assessment created by the Massachusetts 

Department of Elementary and Secondary Education (ESE) and used throughout the state, from 

1997 through 2014, to measure student performance in a variety of disciplines, including 

mathematics. Until the end of the 2013-2014 academic year, students in all public schools were 

scheduled to take the MCAS test, typically in early May. After 2014, with the implementation of 

the Common Core State Standards Initiative, a new test (the Partnership for Assessment of 

Readiness for College and Careers - PARCC) replaced the MCAS in some Massachusetts districts. 

The mathematics portion of the MCAS test included (a) multiple-choice questions for which 

students select an answer from four alternatives, (b) short-answer questions where students generate 

a brief response, usually a numerical solution or a brief statement, and (c) open-response questions 

to be answered by presenting, in writing, one or two paragraphs in the form of a narrative, a chart, 

table, diagram, illustration, or graph, using a variety of strategies and approaches. Each year, the 

ESE developed new problems for each new test. 

The ESE does not provide researchers with data on individual students.  This prevented us 

from analyzing how students’ performance may have varied according to the practice of their 

teachers. However, by carefully selecting comparison districts with similar populations and with 
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similar initial MCAS test results, we could compare the evolving performance of students in the 

target districts to that of students from districts not involved in the program.  

Performance on the MCAS is reported in terms of percentage of students falling into four 

categories, ordered from highest to lowest as: Advanced, Proficient, Needs Improvement, and 

Warning/Failing. In the custom of MCAS summary reports, we will focus on the percentage of 

students assessed as Advanced and Proficient and to changes in these percentages across the years.  

The first cohort of Massachusetts teachers in the program began course 1 in the Spring of 

2011 and ended course 3 in the Spring of 2012. The second cohort started in the Fall of 2012 and 

completed the courses in the Fall of 2013. Table 3 shows the timeline of courses taken by the first 

two cohorts of teachers and MCAS tests taken by their students. A third cohort of teachers started 

the program in Spring 2014 and concluded the three courses in the Spring of 2015.  Data from this 

third cohort are not included in this analysis because, for the year 2014-2015, student performance 

in two target districts and in 11 comparison districts was then evaluated by the new PARCC 

assessment.   

Table 3: Timeline of courses and tests from Spring 2011 to Spring 2014  

Semesters Cohorts and Courses MCAS  

Spring 2011 Cohort 1 Course 1 (started) MCAS 2010-2011 [baseline] 

Fall 2011 Cohort 1 Course 2  

Spring 2012 Cohort 1 Course 3 (completed) MCAS 2011-2012 

Fall 2012 Cohort 2 Course 1 (started)  

Spring 2013 Cohort 2 Course 2 MCAS 2012-2013 

Fall 2013 Cohort 2 Course 3 (completed)  

Spring 2014  MCAS 2013-2014 
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At the start of the first course offered by the program (Spring of 2011), an average of 47.9% 

of the students in the target five districts in Massachusetts were performing at the proficient or 

advanced levels in the MCAS, a performance that fell below the state average of 55.0% by 7.1 

points (Table 4). We matched each of these five target districts to five other similar districts in the 

state. The MCAS test results in the Spring of 2011 served as the main criterion for matching 

districts. Once several districts with similar performance to that of each target district were 

identified, we chose five of them as comparison districts based upon similarity in terms of size of 

student population, ethnic composition, and several socio-economic and demographic variables. 

Table 4 also shows that the average percentage of students in the comparison districts performing at 

the Proficient and Advanced levels was approximately the same as that for the target districts.  

Table 4: Percentage of students performing at the Proficient and Advanced Levels in the 

MCAS Assessment at the end of academic year 2010-2011 (baseline). 

Districts Percentage of Advanced and Proficient Students  

Target  47.9 

Comparison  48.0 

State  55.0 

 

Compared to the whole state of Massachusetts (see Tables 5 and 6), students from the five 

target districts and from the comparison districts were more likely (1) to come from minority 

groups; (2) to come from homes where English was not the first language; (3) to be English 

language learners; (4) to come from low-income populations; (5) to be diagnosed with disabilities; 

and (6) to be eligible for reduced lunch.  
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Table 5: Population characteristics and number of students in the state, target, and  

comparison districts in 2010-2011 

 
Districts Population 

Total 

Population 
Density 

per square 
mile) 

Average 
Family 
Income 

Percent of 
Families 
Below 

Poverty Line 

Number of 
K-12 

Students 

State 6,646,144  840  83,371  7.6 954,773 

Target  225,756  5,783  66,632  7.2 23,179 

Comparison 1,257,947 4,062 63,082 8.0 165,385 

 

Table 6: Percentage of grades 5 to 8 students in each group in the state, target, and comparison 

districts in 2010-2011 

Districts Minority 
Students  

First 
Language 

not 
English 

English 
Language 
Learner 

Low-
Income 

With 
Disabilities 

Free 
Reduced 
Lunch 

State 34.0 17.3 7.7 37.0 17.0 37.0 

Target 41.9 25.1 8.3 46.7 18.8 46.7 

Comparison  38.6 24.6 7.9 45.9 16.7 48.3 

 

As Table 7 shows, teachers from the comparison districts were similar to those of the target 

districts according to seven criteria. 
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Table 7: Percentage of state, target, and comparison districts’ teachers by relevant variables in 

2010-2011 

Districts 

Licensed in 

Teaching 

Assignment  

Classes with 

Highly 

Qualified 

Student 

Teacher 

Ratio 

Average 

Salary 
% Retained Exemplary* Proficient* 

State 97.5 97.7 13.9 $70,340 88.20 --- --- 

Target  98.58 99.02 14.2 $69,413 87.64 8.48 83.16 

Comparison  98.73 97.67 14.3 $68,202 89.20 6.21 87.50 

 

Educators are evaluated by the state and earn a Performance Rating of Exemplary, 

Proficient, Needs Improvement, or Unsatisfactory, based on “multiple categories of evidence, 

including (a) evaluator judgments based on observations and artifacts of professional practice; (b) 

evidence of fulfillment of both professional practice and student learning goals; and (c) multiple 

measures of student learning, growth, and achievement”. In the Proficient category are teachers 

whose “performance fully and consistently meets the requirements of a standard or overall” while 

the Exemplary category includes those who exceed those standards 

(http://profiles.doe.mass.edu/statereport/educatorevaluationperformance.aspx). 

In our analysis, the results of the five target districts are compared to those of the respective 

comparison districts and to the results for the whole state of Massachusetts. This amounts to three 

sources of data: 

Data from the target districts:  The target districts include both students who had been 

taught by teachers in the program and those taught by other teachers. These are the five 

Massachusetts districts in which part of the teachers had participated in the first two cohorts of the 

program.  Our analysis includes data on 6,531 students in grades 5 to 8 from the Spring of 2011 to 

the Spring of 2014 in these districts.  This represents approximately 2.3% of the students in the 

state.  The state does not release data at the teacher-level. Therefore, target district data originate 
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from students who had been taught by teachers in the program as well as students taught by other 

teachers. This provides a conservative estimate of impact, something that should be borne in mind 

when examining changes in student performance, below.  

Data from the comparison districts: The five comparison districts were matched according 

to criteria listed in Tables 4, 5, and 6 to each one of the target districts, before accessing MCAS 

results for the years 2013-2015. Comparison districts educational goals, as stated in publicly 

available websites, were similar to educational goals in the target district. 

Data from the State of Massachusetts: State results refer to all Massachusetts school districts 

(281,964 students from grades 5-8 in 2014). 

Overall Results 

We compared the percentages of students from grades 5 to 8 at the Advanced and Proficient 

levels in the target districts to (a) the percentages of students across the state and (b) the percentages 

of students in the 25 corresponding comparison districts (five comparison districts for each of the 

five target districts).  

As already noted, in the Spring of 2011, when the program started, the overall percentage of 

students at the Proficient and Advanced levels in the target districts was nearly identical to that of 

comparison districts (47.9% vs. 48.0%). Three years later, the target districts had surpassed 

comparison districts by 4.5 points and had narrowed the gap with regard to the state from 7.1 to 4.5 

percentage points (see Table 8 and Figure 4). 

Table 8: Average Percentage of Students at the Advanced and Proficient Levels from 2011 

to 2014. 

Districts 2010-2011 2011-2012 2012-2013 2013-2014 

State 55.0 55.0 57.3 55.8 

Target  47.9 48.5 52.2 51.3 

Comparison  48.0 46.8 47.9 46.8 
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Figure 4: Percentage of students at the Advanced and Proficient levels in the MCAS test, from 

2011 to 2014, in the State, Target, and Comparison Districts. 

Results by District, Grade, and Percent of Teachers in the Program 

Results for each grade level in each target district were compared to the average for the same 

grade level in each group of five corresponding comparison districts. This resulted in 20 data pairs 

(four grade levels for each of the five districts). Table 9 shows the differences between the target 

and comparison districts, along with the corresponding percentage of teachers who had taken the 

three courses.  
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Table 9.  Percentage of teachers in the program and corresponding change, from 2011 to 2014, in 

the percentage of students at the advanced and proficient levels, for each grade, in each district. 

District and 
Grade Level 

Percentage of 
Teachers in 

Target Districts 

Difference (Target - 
Comparison) in % of 
Change 2011 to 2014 

A - Grade 5 0.25 10.0 
A - Grade 6 0.43 6.0 
A - Grade 7 0.50 8.6 
A - Grade 8 0.00 -0.4 
B - Grade 5 0.29 8.2 
B - Grade 6 0.33 3.4 
B - Grade 7 0.14 -3.8 
B - Grade 8 0.17 3.2 
C - Grade 5 0.13 -1.4 
C - Grade 6 0.25 -1.4 
C - Grade 7 0.25 -4.2 
C - Grade 8 0.00 2.0 
D - Grade 5 0.25 11.5 
D - Grade 6 0.60 6.8 
D - Grade 7 0.75 9.0 
D - Grade 8 0.67 14.1 
E - Grade 5 0.14 7.6 
E - Grade 6 0.30 -9.4 
E - Grade 7 0.60 10.4 
E - Grade 8 0.56 11.4 

 

The relative performance of target to comparison districts is determined by subtracting the 

comparison district change from the target district change at the same grade level.  Note that in six 

cases, where the percentage of participating teachers was equal to 30% or lower, the differences 

were negative. Table 10 shows the frequency of negative and positive differences according to the 

percentage of teachers from the district who had enrolled in the teacher development program. The 

association between percentage of teachers and kind of difference (positive or negative) was 

significant (p = .024). 
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Table 10. Frequency of negative and positive differences in change by percentage of 

teachers in the program. 

Percent of Teachers in 

Target Districts 

Negative Difference in 

Change 

Positive  Difference in 

Change 

0 to 30% 6 6 

More than 30% 0 8 

   Fisher Exact Probability = .024 

The y axis in Figure 5 displays the relative achievement of target districts vis-à-vis 

comparison districts, at each grade level, for school years 2010-2011 to 2013-2014.  Each point 

corresponds to the percentage of teachers’ in that grade level taking part in the teacher development 

program and the relative gain/loss in student achievement. If there were no program effect on the 

students, one would expect the plotted points to be randomly distributed above and below the x-

axis. This is indeed what happens when the percentage of participating teachers is 30% or less (half 

of the 12 differences were positive and half were negative). When the teachers enrolled in the 

Institute comprised more than 30% of the teachers in a target district, student achievement in the 

target districts (as measured by the pre-post gains) invariably surpassed that of the comparison 

districts. Moreover, the greater the percentage of participating teachers in a district, the better the 

relative gains of the target district. This is reflected in the upward slant of the regression line and 

the significant Spearman correlation of r =.57, (p=.0045). 

 

 



 

  39 

Figure 5:  Relative achievement (target versus comparison district), for each grade level from 2011 

to 2014, as a function of the percentage of teachers who completed the program. 

Discussion 

We described a teacher development program that employs functions as a lens through 

which key topics in the middle and early high-school mathematics curriculum, from arithmetic to 

algebra, are reinterpreted, studied in depth, and interconnected. We also documented changes 

observed in classroom teaching and in student performance on a state mandated test.  

As we noted, functions officially enter the mathematics curriculum in the United States in 

Grade 8 and are a major feature of present-day high-school mathematics.  This is consistent with 
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the view that functions are essentially certain types of closed-form algebraic expressions, namely 

those expressions for which any given input from one or more variables is associated with a single 

output value. However, functions are not the same as algebraic expressions.  Different algebraic 

expressions can represent the same function, most functions cannot be represented by algebraic 

expressions, and there are many ways, besides algebraic expressions, that allow the representation 

of functions.  

When one takes this to heart, it becomes clear that functions can be worked with and 

expressed before the arrival of algebraic notation, a theory of functions, and even a definition of the 

term function.  This happened historically.  And, we suggest, something similar can happen in 

mathematics education. Functions are already present throughout the early mathematics curriculum, 

arriving no later than the four basic operations of arithmetic.  However, they tend to remain 

underexploited until and unless students are given opportunities to handle problems involving 

generalized variables. In our approach, we brought the use of variables to a leading role in the 

presentation of the mathematical content. 

The evaluation model of the program rested on comparisons of (a) the teachers’ performance 

at the start and end of the program, and (b) the performance of all students in each target district 

versus similar districts. There remains the question of selection bias between the target and 

comparison districts. Could it be that the districts that joined the teacher development project were 

somehow more likely to have improved on their own? Two facts argue against the claim that 

somehow the project selected target districts more likely to show gains.  Firstly, comparison 

districts were closely matched to the target district in terms of prior performance on the state 

mathematics test, ethnic/racial breakdown, percentage of students enrolled in school lunch 

programs, average household income, and number of students in the district. Results showed that, at 

target districts grades where more than 30% of their teachers enrolled in the development program, 

students’ performance on state-mandated tests was significantly better than that of students from the 
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comparison districts.  Moreover, there was a significant, positive correlation between the 

percentage of teachers in the program and the mathematical performance of students in their 

districts. This correlation seems difficult to explain by appealing to extraneous factors. It would be 

interesting to compare the performance of students of program enrollees with the remaining 

students from the same district. However, state norms of confidentiality prevented us from 

obtaining data that would enable such a comparison.  

In order to conclude, with a minimum of doubt, that the teacher development program was 

responsible for the statistically significant results obtained, one would ideally employ an 

experimental design involving a random assignment of teachers, from the same schools, to the 

intervention and comparison groups. The present design was not experimental.  We originally 

undertook the project as an effort to improve mathematics teaching and learning in New England, 

based on experience we had gained as researchers and while collaborating with mathematicians and 

physicists.  Given the duration and intensity of the program (10-12 hours a week, extending over 18 

months) we decided that participation should be voluntary.  Had an experimental design been 

employed, teachers would not have a choice between treatment and control conditions. 

Possible Reasons for the Program’s Contribution 

Although there is evidence that both the teachers and their students derived benefits from the 

development program, identifying the specific features that could be responsible for the observed 

gains is a far more challenging task. A multi-faceted program such as the present one leaves 

considerable room for interpretation and requires theoretical analysis in addition to an examination 

of empirical data.  We recommend that the reader view the ensuing discussion as having the 

character of clinical judgment.  

The length and intensity of the program (three 15-week terms with a workload of 8-12 hours 

per week) and institutional and financial support may well have been critical for teachers to engage 

themselves deeply in what was, for many, a novel approach to K-12 mathematics. In the online 
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setting, teachers engaged regularly with colleagues from diverse districts and with course 

instructors. The teachers also met weekly with colleagues at their schools and monthly with staff 

from the program. In this way, teachers received a substantial amount of continuous feedback on 

their work and on their teaching projects that may have contributed significantly to their 

improvement. 

 The novelty of the program manifested itself not only through the mathematical content—

notably, the early introduction of functions in the curriculum—but also in the way in which 

functions were adopted as a lens through which standard fare of mathematics could be 

reinterpreted. Perhaps equally important was the variety of mathematics problems teachers 

encountered in their weekly online discussions.   The problems were directly related to the weekly 

readings, but teachers would not be able to simply find the answer in the text. Instead, they needed 

to struggle to make sense of the problems and frame them appropriately. This is likely to have 

contributed to their deeper understanding of mathematics content. 

The present results recall those described by Chazan (1999, 2000) and Huntley et al. (2000) 

regarding the contribution of a functions approach to teaching mathematics in high school. The 

notion that functions provide important means for uniting otherwise disparate topics in mathematics 

is not a minor feature of the approach, nor simply one of many “factors” that may or may not play a 

role.  Instead, as we have tried to show, this idea and a host of related ideas about mathematics 

underlay design decisions about the content of the courses and the sorts of activities and discussions 

to be engendered among teachers in the courses and in their own classrooms.  

The belief that teachers need to take students’ mathematical reasoning into account is 

uncontroversial. However, implementing this view in classrooms requires that teachers learn to 

closely listen to students and engage them in productive discussions about multiple mathematical 

topics.  Teachers need to be sufficiently attentive to students’ thinking so that they can respond, in 
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their lesson planning and in real-time, to the variety of responses, interpretations, and questions that 

arise concerning any given topic.   

Two resources, in particular, were employed to help teachers develop the ability to listen and 

respond constructively to students’ thinking.  Teachers either interviewed small numbers of their 

own students about selected topics or studied videotaped classroom episodes showing elementary 

and middle school students reasoning about problems entailing functions and algebraic thinking. 

They then analyzed, discussed with colleagues, and reported on their findings, examining the 

reasoning of students at a much slower pace than is typically available in a classroom. In the 

planning of classroom activities, teachers were encouraged to hold open-ended discussions with 

students, taking into account students’ own ideas and ways of representing the mathematical 

problems.  

The systematic classroom observations of cohort 1 teachers in nine participating school 

districts revealed that teachers increasingly encouraged students to use the multiple representations 

promoted by the program to solve mathematics problems. According to ratings by external 

evaluators, the teachers also listened more carefully to students, gave them more time to respond to 

questions, and more often addressed the thinking advanced by their students. This may have led 

students to participate more and demonstrate more interest during the lessons. As students became 

confident in examining and representing contextualized problems, they may have been more likely 

to solve standard test problems.  

These changes are consistent with the open-ended nature of problems entertained (including 

both problems for teachers and problems designed for students), the pedagogical assignments, and 

the feedback by instructors. These features matched general recommendations for successful 

teacher development programs, such as merging content and pedagogical knowledge, collaboration 

among teachers, attention to student reasoning, and institutional support (see, for example, Hill; 

2007; Bautista and Ortega-Ruiz, 2015; Desimone, 2009). 
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Closing Thoughts 

It is difficult to determine, on the basis of the current results, which sorts of engagement 

were most important for teachers to improve their teaching and make a difference in their students’ 

achievement on standard tests.  We would hope that the particular approach through functions and 

their representations in the teaching of mathematics, which aimed at a deeper understanding of 

mathematics and closely intertwined content and pedagogical aspects, played a fundamental role in 

the changes we observed.  In order to firmly establish such a conclusion, it would be important to 

know more about the advances in mathematical proficiency of both students and teachers.   

Likewise, our teacher observations mostly concern matters of pedagogy.  It still remains to 

be seen whether and how teachers and students alike have benefited from the particular approach to 

functions advocated by the program.  And it would be useful to have measures of their reasoning 

about relations among variables. 

Experimental studies of specific aspects of the program could contribute to clearer findings 

of the impact of our approach.  For instance, smaller scale studies with experimental and control 

groups within the same schools, on topics such as fractions, ratios, and proportion, would identify 

how teaching these topics through the lens of functions may lead to particular results. Studies 

should also explore whether and how the introduction of functions in elementary and middle 

schools facilitates the future learning of algebra in high-school.  

Another area to explore concerns the impact different resources had on teachers or students’ 

progress. We believe that institutional and financial support contributed to the high completion rate 

among participants. Programs that provide no financial reward, do not fulfill state or district 

requirements, nor contribute to career advancement are likely to garner more limited participation. 

Further studies are needed to quantify how incentives play a role in a program’s success. 

We do not claim that our approach is the only one that will translate into students long–time 

gains. We also feel that many features of our program could be improved. Perhaps better 
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preparation of pre-service mathematics teachers would make this kind of in-service development 

program unnecessary. We hope that the encouraging results we achieved with this rather long and 

intense program will help others, as well as ourselves, to further explore, in new studies, ways to 

improve the preparation and development of mathematics teachers and to consider curriculum 

changes and classroom activities that would address the challenges of promoting students’ deep 

understanding of mathematics. 
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