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Abstract Understanding the spatial structure of daily streamflow is essential for managing freshwater
resources, especially in poorly gaged regions. Spatial scaling assumptions are common in flood frequency
prediction (e.g., index-flood method) and the prediction of continuous streamflow at ungaged sites (e.g.
drainage-area ratio), with simple scaling by drainage area being the most common assumption. In this
study, scaling analyses of daily streamflow from 173 streamgages in the southeastern United States
resulted in three important findings. First, the use of only positive integer moment orders, as has been
done in most previous studies, captures only the probabilistic and spatial scaling behavior of flows above
an exceedance probability near the median; negative moment orders (inverse moments) are needed for
lower streamflows. Second, assessing scaling by using drainage area alone is shown to result in a high
degree of omitted-variable bias, masking the true spatial scaling behavior. Multiple regression is shown to
mitigate this bias, controlling for regional heterogeneity of basin attributes, especially those correlated
with drainage area. Previous univariate scaling analyses have neglected the scaling of low-flow events
and may have produced biased estimates of the spatial scaling exponent. Third, the multiple regression
results show that mean flows scale with an exponent of one, low flows scale with spatial scaling expo-
nents greater than one, and high flows scale with exponents less than one. The relationship between scal-
ing exponents and exceedance probabilities may be a fundamental signature of regional streamflow. This
signature may improve our understanding of the physical processes generating streamflow at different
exceedance probabilities.

1. Introduction

Since rivers and streams are the main sources of freshwater for human use, the responsible development
and management of these resources relies on a sound understanding of their behavior in space and time.
An understanding of streamflow behavior is essential to a wide range of projects, from water supply plan-
ning and flood management to hydropower development and irrigation scheduling. One of the key attrib-
utes of regional streamflow is its spatial scaling behavior, which arises from the relationship between
climatic inputs and watershed-integrated streamflow as mediated by the properties of the region’s water-
sheds. Understanding, evaluating and interpreting spatial scaling behavior is the focus of this study; in
doing so we have identified some important impacts of methodology on the results of scaling analysis, and
once corrected, identified a fundamental scaling behavior.

The spatial scaling behavior of streamflow captures the relationship between river discharge and the inter-
actions of streamflow-generating process in the contributing upstream area. This behavior is often charac-
terized by a scale-transformation function h(. . .). The scale-transformation function transforms streamflow
at two sites, i and j, such that they exhibit distributional equality:

Qi 5
d

hð. . .ÞQj (1)

where Qi and Qj represent the contemporaneous streamflows at the two sites and h(. . .) is the scale-
transformation function. In the consideration of spatial scaling, h(. . .) is assumed to be a simple function of
the respective drainage areas, Ai and Aj (as in Vogel and Sankarasubramanian [2000], as well as numerous
other researchers).
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The definition of spatial scaling further distinguishes between regions or networks that exhibit ‘‘simple-
scaling’’ and ‘‘multiscaling’’ processes. In both cases, the scale-transformation function takes the form of

h . . .ð Þ5h Ai; Aj
� �

5
Ai

Aj

� �b

(2)

where b is commonly referred to as the spatial scaling exponent. Under simple-scaling processes, the spatial
scaling exponent b is constant across the distribution of streamflow for a given region or network of
streams [Gupta and Waymire, 1990; Smith, 1992]. In the case of multiscaling, this exponent varies with the
exceedance probability of the streamflows of interest. In other words, in the case of multiscaling, stream-
flows with different exceedance probabilities have different scaling exponents.

In one of the most common applications of spatial scaling, upstream contributing drainage area is used to
transfer streamflow information from a set of gaged sites to an ungaged site of interest. This technique is
referred to as the ‘‘drainage-area ratio’’ (DAR) method for prediction in ungaged basins as in Farmer and
Vogel [2013]. The DAR method assumes that the discharge per unit area (specific discharge) is constant
across both a geographic region of interest and the distribution of streamflows and thus is, in terms of
probability distributions, equivalent to simple scaling with a unit exponent. Such an assumption implies
that the specific discharge across two sites is equivalent.

The drainage area is often the basin characteristic that has the widest range of values in a given region, cov-
ering three or more orders of magnitude. Therefore, variations in drainage area exponent, especially devia-
tions from one, can cause substantial differences in estimated discharges. We argue in this paper that
scaling exponents for high flows are significantly less than one and those for low flows are significantly
greater than one in our study region and similar hydroclimatic regions. Consider a numerical example
where the ratio of the drainage area of two basins in a given region is 10. Now, if the high-flow scaling
exponent, say at the 0.01 exceedance probability, is 0.7, then the ratio of quantiles is 100.7 5 5.00 rather
than 10, as would be obtained from a straight drainage-area ratio (DAR) approach. At the same time if the
low-flow exponent, say at an exceedance probability of 0.99, is 1.5, then the ratio of quantiles is
101.5 5 31.6. In such a case, the larger basin would have small high-flow quantiles, relative to the DAR, but
large low-flow quantiles. Furthermore, on the basis of flow-per-unit-area, the larger basin would have a
thinner-tailed probability distribution of streamflows and a less flashy hydrograph, with lower peaks and
longer recessions, as would be expected. We also want to establish what scaling behavior is observed in the
study region as a basis for developing hypotheses regarding the underlying hydrological processes and for
other possible uses such as evaluating hydrological model output across a range of scales.

Spatial scaling behavior also underlies the assumptions of hydrologic homogeneity associated with the index-
flood method [Dalrymple, 1960]. This method assumes a common regional probability distribution of floods,
after rescaling with an ‘‘index flood.’’ The index flood is usually taken to be the mean annual flood and is tradi-
tionally estimated based on basin characteristics, such as the drainage area and precipitation. The assumption
of a common regional probability distribution after rescaling implies a constant regional coefficient of varia-
tion (CV). As others have shown, a constant regional CV is also implied by the presence of simple scaling
when the flood distribution depends on drainage area alone [Gupta and Waymire, 1990; Smith, 1992; Gupta
et al., 1994; Vogel and Sankarasubramanian 2000; Yue and Wang, 2004; Yue and Gang, 2009]. While the pres-
ence of simple scaling can be used to assess the presence of this regional probability distribution, Dalrymple
[1960] introduces a separate metric to assess the regional homogeneity of the index flood.

Previous investigators have sought to identify well-behaved, homogenous regions suitable for the applica-
tion of techniques like the index-flood method [Skaugen and Vaeringstad, 2005]. Because of the practical
importance of the problem, most research on spatial scaling has focused on flood flows [Gupta and Way-
mire, 1990; Smith, 1992; Gupta et al., 1994, 1996; Dawdy and Gupta, 1995; Gupta and Dawdy, 1995; Pandey,
1998; Eaton et al., 2002; Yue and Gan, 2009; Ishak et al., 2011]. Additionally, some studies have examined the
scaling behavior of mean annual flows: Vogel and Sankarasubramanian [2000] found that U.S. mean annual
flows exhibited simple scaling while Yue and Gan [2004] and Buttle and Eimers [2009] reached similar con-
clusions with respect to flows in Canada. Vogel and Kroll [1990, 1992], Furey and Gupta [2000], Yue and
Wang [2004], and Modarres [2010] explored the spatial scaling of low flows. While most research focuses on
the spatial scaling of a particular range of flow statistics, we consider the full range of daily streamflows.
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In general, there are two types of methods for assessing the spatial scaling behavior of streamflow: (1) using
product or probability weighted moments [Pandey, 1998; Yue and Gan, 2004] and (2) using quantiles [Singh,
1971; Gupta et al., 1994; Gupta and Dawdy, 1995; Over et al., 2014]. These methods are typically executed
with a regression analysis relating each moment or quantile to drainage area. Additionally, breaking regions
into smaller or more-homogeneous areas leads to an improved goodness of fit for the spatial scaling behav-
ior of flows [Yue and Gan, 2009]; the definition of such regions can dramatically affect the interpretation of
scaling behavior. In such cases, differences in scaling behavior are explained by variations in climate or
other basin characteristics not explicitly considered [Yue and Wang, 2004; Glaster, 2007; Yue and Gan, 2009].
For high flows, the majority of studies reviewed here found drainage-area scaling exponents ranging from
0.7 to 0.8 or even lower.

We are unaware of any previous research on the spatial scaling of streamflows that has considered the scal-
ing of moments with negative moment orders. Such moments, representing the positive-order moments of
the inverse of the data set, are known as inverse moments. The consideration of negative moment orders is
standard in the nonlinear physics literature [e.g., Halsey et al., 1986], and negative moments have been con-
sidered in principle in the analysis of river flow time series in a multifractal framework [e.g., Tessier et al.,
1996]. We will show that the consideration of inverse moments is essential to capturing the full range of
scaling behavior.

Typical of the wider literature, the studies reviewed for this work almost exclusively considered drainage
area alone when examining scaling behavior [Yue and Gan, 2004; Yue and Wang, 2004, among others],
though some studies consider, at most, one or two other explanatory variables, including precipitation
[Modarres, 2010] and rainfall intensities and stream density [Ishak et al., 2011]. Ishak et al. [2011] considered
other variables, but found them to be insignificant. Even if the goal is to understand how streamflow scales
with drainage area, excluding other variables in regression analyses can lead to significant confusion or mis-
interpretation. Multiple regression can be used to capture the variations in basin characteristics that drive
scaling behavior. The omission of relevant variables, if correlated with drainage area, results in biased and
inconsistent estimates of scaling exponents.

Spatial scaling behavior is closely linked with the development of regional hydrologic models for the predic-
tion of various streamflow statistics. In the field of hydrology, there is a long and rich history of the develop-
ment of regional hydrologic models quantifying the relationship between basin characteristics and
streamflows statistics in a multiple regression framework. Such regressions typically rely heavily on the
explanatory power of the drainage area ratio and can be interpreted as an application of spatial scaling
behavior. One example of this is the U.S. Geological Survey’s National Streamflow Statistics Program, which
has developed regional regression relationships for the prediction of a wide range of streamflow statistics.
These regional regressions exist for all regions of the U.S. and rely on watershed characteristics [see Ries III,
2007]. The work presented here has direct applicability to the development and improvement of such mul-
tivariate regional hydrologic models.

The primary goal of this study is to improve our understanding of the spatial scaling behavior of daily
streamflow. We consider two important elements of scaling analysis: (1) ensuring that the full range of
streamflow scaling behavior is captured in an analysis of moments and (2) illuminating the consequences
of neglecting additional explanatory variables. We are less concerned with the distinction between simple
scaling and multiscaling and more concerned with improving our understanding of scaling behavior and
the insights it provides on streamflow-generating processes. In particular, we observe that, once additional
explanatory variables are added, low flows scale with exponents greater than one and high flows scale with
exponents less than one. In support of what would be expected, this finding implies that larger basins have
less variable streamflow than smaller basins. A better understanding of scaling behavior will lead to an
enhanced ability to estimate daily flow time series at ungaged sites and, subsequently, an improved ability
to manage water resources.

The next section of this paper presents a brief summary of scaling analysis and a description of the data
used in this study. This discussion is followed by an exploration of the relationship between streamflow
moments and quantiles, demonstrating the limitations in previous analyses of the scaling behavior of
moments. Through a series of regression analyses, we show that considering only the explanatory power of
drainage area can lead to biased and inconsistent estimates of scaling exponents, resulting in a
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misinterpretation of spatial scaling behavior. These analyses lead to an improved understanding of spatial
scaling behavior and its implications for understanding the spatial variability of streamflow and streamflow-
generating processes at different scales.

2. Methods and Background

2.1. Moment Analysis
The use of product moments of streamflow is a common technique for assessing the spatial scaling behav-
ior of streamflows; this approach is referred to herein as ‘‘moment analysis.’’ In moment analysis, the same
spatial scaling exponent from Eq. (1) and (2) is used to relate the rth product moment of the streamflows in
two basins:

E Qr
i

� �
5

Ai

Aj

� �rbr

E Qr
j

h i
(3)

where E Qr
i

� �
5
Ð1

0 Qr
i f Qið ÞdQi , with f Qið Þ being the probability density function (pdf) of daily flows at site i,

and br is the scaling exponent for the rth moment. Equation (3) can be simplified by considering site j to be
a reference site with a unit drainage area so that

E Qr
i

� �
5Arbr

i E Qr
�

� �
(4)

where E Qr
�

� �
is the rth moment of streamflow at the unit-area reference gage. Note that, having been

divided by a unit area, drainage area Ai is now unitless. Taking the logarithms of this simplification leads to
the linear function:

ln E Qr
i

� �� �
5ar1rbr ln Aið Þ (5)

where ar5lnðE Qr
�

� �
Þ. The constant ar and the slope rbr for each moment order r can then be estimated by

applying least-squares regression to the moments and drainage areas within a region. Each site in a region
may have a different length of record so that longer records may provide more accurate representations of
the moments. This heteroscedasticity can be accounted for, at least approximately, by using weighted
least-squares (WLS) regression with at-site record lengths weighting each observation. Under simple scaling,
the scaling exponent br will be constant across moment orders, so that the slope estimates are a linear
function of moment order, r. This linearity is assessed by evaluating the goodness-of-fit of the resulting lin-
ear model: br5rbr , for which most studies have only considered positive integer moment orders, though
there is no reason to limit r to that set.

Because of the simple scaling relationship br5rbr , evidence of significant curvature in the function br ,
whether concave or convex [Gupta and Waymire, 1990], is indicative of multiscaling, whereas a good linear
fit without significant curvature and a zero intercept is emblematic of simple scaling [see e.g., Vogel and
Sankarasubramanian, 2000]. Concave curvature in br indicates decreasing variability with increasing scale,
whereas convex curvature indicates increasing variability with scale [Gupta et al., 1994]. In most studies of
streamflow, when significant deviations from linearity in br are observed, they have been convex for posi-
tive moment orders [Gupta and Waymire, 1990], though the results of Smith [1992] for peak flows in Appala-
chia suggest the presence of increasing variability with scale for small drainage basins (less than 50 km2)
along with decreasing variability with scale for large drainage basins. Illustrative examples of the process of
moment analysis can be found in Pandey [1998] and Vogel and Sankarasubramanian [2000].

This product-moment-based approach to moment analysis is limited in that it does not estimate the scaling expo-
nent br directly. Instead, the quantity rbr is estimated; the scaling exponent br can then be assessed by dividing
the quantity by the moment order or by applying a linear regression to the slope estimates. Alternatively, br can
be directly estimated by considering power averages instead of power moments. Jensen [1998] provides back-
ground on the power means and averages, the latter being an estimator of the former. The power mean is the rth

root of the rth moment. Using power mean here is equivalent to taking the rth root of equation (4):

E Qr
i

� �� �1=r
5Abr

i E Qr
�

� �� �1=r
; (6)

which can be linearized by taking logarithms as
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ln E Qr
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5ar ’1br ln Aið Þ: (7)

Here a
0
r5ln E Qr
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� 	
represents the natural logarithm of the rth power mean for the reference basin

with a unit drainage area. The same process of WLS regression can then be applied to equation (7), provid-
ing a direct estimate of the scaling exponent br . Under certain assumptions described in Appendix A, the
quantity Abr

i can be formally thought of as the effective contributing drainage area ratio at the given
moment order. Abr

i indicates the ratio, at moment order r, of the effective contributing drainage area at scale
Ai to the effective contributing drainage area at the unit-area reference basin.

With sample data, the power mean can be approximated with the power average [Jensen, 1998]. For a site
with N days of observation, the rth product moment is estimated as

mr5
1
N

XN

i51

Qr
i : (8)

Using a similar formulation, the power mean can be estimated as the power average, ~mr . The power aver-
age is estimated as the rth root of the estimated product moment

~mr5
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Conveniently for calculation, it has been shown that the power average reduces to the geometric mean for
r 5 0 [Jensen, 1998]. (In addition, the power average reduces to the harmonic mean for r 5 21 and the arith-
metic mean when r 5 1, as shown in Jensen [1998].)

2.2. Quantile Analysis
Quantile analysis provides a similar assessment, but is conducted, when applied to continuous streamflow
measurements, using quantiles of the flow duration curve (FDC) rather than moments. Analogous to equa-
tions (4) and (5), for each exceedance probability, p, the site i can be compared against a reference site such
that

Qi;p5A
bp

i Q�;p (10)

which, as with moment analysis, can be linearized as

ln Qi;p
� �

5lnðQ�;pÞ1bpln Aið Þ: (11)

where p is the probability that a daily flow exceeds that streamflow quantile, Q�;p is the pth percentile of
streamflow at the unit-area reference gage, and bp is the scaling exponent for that exceedance probability.
Analogous to the moment-based effective contributing drainage area ratio Abr

i discussed previously, A
bp

i can
be thought of as the effective contributing drainage area ratio at the exceedance probability p. (See Appen-
dix A.) Under simple scaling, bp is constant and does not depend on p. Representation of theoretical multi-
scaling models in terms of quantiles is not straightforward, though Gupta et al. [1994] have given a first-
order approximation to the quantile representation of a class of multiscaling models. This first-order approx-
imation shows that the usual case of decreasing drainage area exponent b with decreasing p (larger floods)
corresponds to the concave case of br , indicating decreasing variability with increasing scale.

2.3. Connecting Moments and Quantiles
As discussed, the spatial scaling behavior of streamflow in a region can be evaluated by considering either
the moments or quantiles of streamflow. In practice, it is not clear how to assess the agreement between
these two methods because it is not clear how to map the exceedance probabilities of a flow series to their
moment. To our knowledge, the only general point of comparison between moments and quantiles is the
correspondence between the geometric mean (r 5 0) and the median (p 5 0.5) for any logarithmically sym-
metric distribution (e.g. lognormal).

In light of this situation, we employ the following approximate approach. We assume that an exceedance
probability and a moment order correspond if the quantile and moment agree in magnitude after reconcil-
ing units by using power averages. The power averages were computed for several moment orders in each
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basin. Within each basin, the moment order of each power average was assumed to correspond to the
exceedance probability of the quantile having a magnitude most similar to the power average.

2.4. Handling Omitted Variable Bias
Although an attractive theoretical approach is to define a hydrologically homogeneous region as one in
which the distribution of daily streamflow depends only on drainage area (as Gupta et al. [1994] did for
peak flow), to date no general method of finding such regions has been developed. Therefore, in practice
drainage area cannot be assumed to be the only variable affecting streamflow generation within a given
region, and it is incomplete to assess the scaling behavior of streamflow with only the explanatory power of
drainage area. In particular, using drainage area alone when assessing scaling may result in a statistical phe-
nomenon known as omitted-variable bias (OVB).

A common concern in econometrics and other applications of multivariate statistics, OVB arises when inde-
pendent variables not included in a multiple regression model are correlated with both the independent
variable of interest (here, drainage area) and with the dependent variable. OVB results in biased and incon-
sistent estimates of regression parameters. This implies that unless a region is known to be homogeneous
in the sense defined by Gupta et al. [1994], little faith can be placed in the regression estimates of stream-
flow scaling exponents generated from regression on drainage area alone. Appendix B provides a theoreti-
cal derivation of OVB and a discussion of its consequences in a simple case. The occurrence of OVB implies
that valuable information about the watersheds in the gaged network is ignored and such information
could impact the interpretation of the spatial scaling behavior of streamflow. We hypothesize that account-
ing for these confounding variables with a more rigorous multiple-regression framework may mitigate OVB
and provide a more effective approach for assessing the spatial scaling behavior of streamflow.

To test for the presence of OVB, the moment and quantile analyses were conducted with regression on
drainage area alone. The same analysis was then conducted with a multiple-regression formulation of equa-
tion (5)

ln E Qr
i

� �� �1=r
� 	

5dr;01dr;1ln Aið Þ1dr;2ln X1;i
� �

1dr;3ln X2;i
� �

1 . . . (12)

where the Xs are additional watershed explanatory variables such as average precipitation, temperature,
soil composition, etc. For each moment or quantile, stepwise regression was used to select a subset of rele-
vant variables. Using an F-test, the model that resulted in the fewest parameters without causing us to
reject the null hypothesis (all other variables having coefficients of zero) was selected as the most parsimo-
nious model to avoid overfitting. It is shown that excluding these variables in heterogeneous regions results
in a biased and inconsistent estimate of the spatial scaling exponent.

3. Description of Data Sources

Daily streamflow and basin characteristics were derived from U.S. Geological Survey (USGS) streamgages in
the southeastern United States, mainly in Alabama and Georgia. Reference-quality gages from the USGS
database of Geospatial Attributes of Gages for Evaluating Streamflow, Version 2 (GAGES-II) [Falcone, 2011]
in the region were supplemented with gages from previous USGS studies of rural flood frequency. The sup-
plemental gages were screened by the responsible USGS Water Science Centers (WSCs) and found to be
free of major human impacts, especially in the case of flood flows. (Human impacts were defined as sub-
stantial withdrawals, discharges, and regulation. Further information can be obtained by referring to the
classification of reference-quality gages in the GAGES-II database [Falcone, 2011].) The resulting list of sites
was circulated through the WSCs to screen out any additional gages that were subject to substantial regula-
tion or substantial land-use changes. The result was a collection of 182 streamgages that contained reliable
records of natural streamflow for at least 10 years between 1 October 1980, and 30 September 2010. For
the present study, the collection of 182 gages was further refined to include only the 173 stations with no
zero-flow days to avoid complications in logarithmic operations. The removal of gages with zero-flow days
would undoubtedly result in bias if the results of this study were used for regional predictions, but that is
not its purpose here.

Daily streamflow data were downloaded from the USGS National Water Information System Web Interface
(NWIS Web: http://waterdata.usgs.gov/nwis). When available, basin characteristics for each site, including
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soil composition, drainage area, and average climate conditions, were extracted from the GAGES-II database
[Falcone, 2011]. For those sites that were not part of the GAGES-II database, basin characteristics were devel-
oped from the source data cited by GAGES-II. A full list of variables considered here is presented in Table 1.

4. The Connection Between Quantiles and Moment Orders

The relation between exceedance probabilities and moment orders for the study region was mapped for
each site by interpolating the power average, for each moment r, along the empirical, at-site, daily flow
duration curve to obtain the associated exceedance probability of that moment order. This process was
conducted for moment orders ranging from r 5 210 to 10; increments of 1 were used from 210 to 25 and
from 5 to 10 and increments of 0.05 were used from 25 to 5. Moments of a negative order are known as
inverse moments, representing the normal moments of the inverse of the data set. The median results of
this mapping, as well as the 5th and 95th percentiles of each moment order, across all sites are shown in
Figure 1.

From Figure 1, positive moment orders only capture the behavior of the streamflows above the median
(approximately), which corresponds to exceedance probabilities below 50%. The general correspondence
of positive moments to higher flows is expected because exponentiation of any data set to a power greater
than unity magnifies the effect of the larger values in the set; for any 0< r< 1, the effect of larger values rel-
ative to the smaller ones is less than when r 5 1, but it is still larger, whereas for r 5 0 (at which point the
power average corresponds to the geometric mean), all values have the same effect on the power mean in
the sense that a proportional change in one has the same effect as a change of the same proportion in any.
As noted above, an exact correspondence of the geometric mean and the median occurs for any distribu-
tion that is symmetric when transformed logarithmically, such as lognormal. Therefore, to the extent that
daily streamflow can be approximated by a lognormal or other exponentiated symmetric distribution, the
correspondence of the zeroth moment order to the median in Figure 1 is not surprising. In general, Figure 1
shows that basing a scaling analysis on positive integer moments considers only the scaling behavior of
flows greater than some moderate value probably near the median.

The full range of exceedance probabilities of the flows is only captured by considering both positive and
negative moment orders. Since the reciprocal of a data set exaggerates the magnitude of the smaller num-
bers, it is not surprising that the inverse moments capture the lower tail of the probability distribution. As
seen by the width of the 90% interval, the mapping of inverse moments is much more variable among the
different gage records than that of positive moments, a fact that may have practical implications for under-
standing low-flow scaling behavior. In addition, there is a degree of asymmetry in the mapping between
the positive and negative moment orders: for positive moment orders, the extremum of the high-flow
exceedance probabilities (the value 0) is reached at a much smaller absolute moment order than is the
extremum of the low-flow exceedance probabilities (i.e., the value 1). This result indicates that the positive
power averages become dominated by the largest data value at a relatively small absolute moment order,
whereas the negative power averages require a larger absolute moment order to become similarly domi-
nated. This results from the high-flow tail of the probability distributions of daily flows being fatter than the
low-flow tail. Further implications of the shape of this curve are being investigated.

The mapping between exceedance probabilities and moment orders will also prove useful in comparing
conclusions reached by quantile analysis to those reached by moment analysis; note that the mean (r5 1)
has a median exceedance probability of about 28%.

5. Moment Analysis

Weighted least squares (WLS) regression was used to estimate the parameters of the drainage area-only
power-mean scaling relation equation (7) for several moment orders (Table 2). We considered power aver-
ages with positive and negative moment orders that range in magnitude from |r| 5 0.1 through to |r| 5 5 at
a step of 0.1 and from |r| 5 5 to |r| 5 10 at an interval of 1. The geometric mean was used to compute the
power average when r 5 0. Observations were weighted by observed record length. The high values of R2,
all above 0.84, suggest a strong linear relationship between the rth power average and drainage area for all
positive integer moment orders. The R2 increases and the variability of residuals decreases as the moment
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Table 1. Summary of Basin Characteristics Considered in This Analysis, With Pearson Correlation Between the Logarithms of the Variable and the Drainage Area Noteda

Variable Name Description Units
Log-Space
Correlation

Significance of
Correlation

BDAVE Average bulk density of the soils in the basin. Grams per cubic
centimeter

20.0206 0.7876

CDL_CORN Fraction of the watershed covered by corn cropland. (Class 1 of the 2009 USDA
NASS Cropland Data Layer.)

Percent 0.1314 0.0998

CDL_SOYBEANS Fraction of the watershed covered by soybean cropland. (Class 5 of the 2009
USDA NASS Cropland Data Layer.)

Percent 20.0456 0.5851

CLAYAVE Average clay content of the soils in the basin. Percent 0.2272 0.0027
CONTACT Index of subsurface flow contact time. The subsurface contact time index esti-

mates the number of days that infiltrated water resides in the saturated subsur-
face zone of the basin before discharging into the stream.

Days 0.1735 0.0224

CORNSOYBEAN_index Total fraction of the watershed covered by corn or soybean cropland. Percent 0.1360 0.0874
DEVHINLCD06 Fraction of the watershed covered by high-intensity development. (Class 24 of the

2006 National Landcover Data set.)
Percent 0.0774 0.3873

DEVLOWMEDHI_index Fraction of the watershed covered by high-, medium-, and low-intensity develop-
ment. (Sum of classes 22, 23, and 24 of the 2006 National Landcover Data set.)

Percent 0.3062 0.0001

DEVLOWNLCD06 Fraction of the watershed covered by low-intensity development. (Class 22 of the
2006 National Landcover Data set.)

Percent 0.2518 0.0010

DEVMEDHI_index Fraction of the watershed covered by high- and medium-intensity development.
(Sum of classes 23 and 24 of the 2006 National Landcover Data set.)

Percent 0.3190 0.0000

DEVMEDNLCD06 Fraction of the watershed covered by medium-intensity development. (Class 23 of
the 2006 National Landcover Data set.)

Percent 0.3075 0.0001

DEVNLCD06 Fraction of the watershed classified as urban or developed land. (Sum of classes
21, 22, 23 and 24 of the 2006 National Landcover Data set.)

Percent 0.2402 0.0015

DRAIN_SQKM Watershed drainage area. Square kilometer 1.0000 0.0000
ELEV_MAX_M_BASIN Maximum watershed elevation. (100 m National Elevation Data set) Meters 0.0866 0.2570
ELEV_MEDIAN_M_BASIN Median watershed elevation. (100 m National Elevation Data set) Meters 20.0404 0.5976
ELEV_MIN_M_BASIN Minimum watershed elevation. (100 m National Elevation Data set) Meters 20.1429 0.0615
FROST_INDEX The difference between the Julian days of the first and last frost. Days 0.0667 0.3829
FST32F The average of the mean Julian day of the first freeze. (2 km PRISM, 30 year data set.) Day of year 0.0699 0.3609
KFACT_UP Average K-factor for the upper-most soil horizon in each soil component. The K-

factor is an erodibility factor which quantifies the susceptibility of soil particles
to detachment and movement by water. The K-factor is used in the Universal
Soil Loss Equation (USLE) to estimate soil loss by water. Higher values of K-
factor indicate greater potential for erosion.

Unitless 0.0138 0.8566

LSTF32 The average of the mean Julian day of the last freeze. (2 km PRISM, 30 year data
set.)

Day of year 20.0517 0.4995

OMAVE Average organic content of the soils in the basin. Percent 0.0782 0.3066
PASTURENLCD06 Fraction of the watershed covered by pastures or hay land. (Class 81 of the 2006

National Landcover Data set.)
Percent 0.2586 0.0007

PERMAVE Average permeability of the soils in the basin. Inches/h 20.0546 0.4757
PET Mean annual potential evapotranspiration (PET), estimated using the Hamon

[1961] equation.
mm/yr 0.0723 0.3448

PLANTNLCD06 Fraction of the watershed covered by agricultural land. (Sum of classes 81 and 82
of the 2006 National Landcover Data set.)

Percent 0.2396 0.0018

PPT_INDEX Difference between March and October precipitation as a fraction of the average
basin precipitation.

Unitless 0.0516 0.4999

PPTAVG_BASIN Mean annual precipitation for the watershed. (800m PRISM data, 30 year data set.) centimeter 20.3050 0.0000
RFACT Rainfall and Runoff factor ("R factor" of Universal Soil Loss Equation); average

annual value for period 1971–2000.
100s ft-ton in/h/ac/yr 20.1316 0.0844

RH_BASIN Average relative humidity across the basin. (2km PRISM, 30-year data set.) Percent 20.0164 0.8307
ROCKDEPAVE Average thickness of soil samples examined in the basin. Inches 2-0.0549 0.4731
RRMEDIAN Dimensionless elevation-relief ratio, calculated as (ELEV_MEDIAN - ELEV_MIN)/

(ELEV_MAX - ELEV_MIN).
Unitless 20.2082 0.0060

SANDAVE Average sand content of the soils in the basin. Percent 20.0400 0.6009
SILTAVE Average silt content of the soils in the basin. Percent 20.0288 0.7066
SLOPE_PCT Mean watershed slope, percent. (100 m National Elevation Data set) Percent 20.1126 0.1401
T_AVE_BASIN Average annual air temperature for the watershed. (2 km PRISM, 30 year data set.) Kelvin

(originally degrees C)
0.0657 0.3905

T_INDEX Difference between the average annual temperature and the difference between
the January and July temperatures.

Kelvin
(originally degrees C)

20.0995 0.2372

T_MAX_BASIN Average of maximum monthly air temperature in the watershed. (800 m PRISM
data, 30 year data set.)

Kelvin
(originally degrees C)

0.0913 0.2322

TEMP_MIN Average of minimum monthly air temperature in the watershed. (800 m PRISM
data, 30 year data set.)

Kelvin
(originally degrees C)

0.0602 0.4318

TOPWET Topographic wetness index, ln(a/S); where "ln" is the natural log, "a" is the upslope
area per unit contour length and "S" is the slope at that point. See http://ks.
water.usgs.gov/Kansas/pubs/reports/wrir.99–4242.html and Wolock and
McCabe [1995] for more detail.

ln(m) 0.1901 0.0122
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order increases from r 5 210 to r 5 2, increasing most rapidly between r 5 22 and r 5 2. The goodness-of-
fit peaks around the first and second moments. The low R2 values associated with the lower flows indicate
that drainage area alone was unable to capture the behavior of low flows.

Because equation (7) estimates the scaling exponent br directly, it can be graphed with confidence intervals
against the moment orders and its behavior observed directly. This result is shown in Figure 2; this curve
represents the moment scaling function or signature of the region from the analysis of drainage area alone.
The scaling exponent has a maximum at a moment order of r5 1 (the mean flow), with b15 0:91560:035.
The exponents decrease moving away from the mean until, at the extremes the moments scale similarly,
with mean exponents between 0.8 and 0.75, though the exponents associated with large magnitude nega-
tive moment orders have a larger uncertainty.

For high flows, moving away from the mean, the declines in scaling exponents indicate decreasing variabili-
ty (i.e., a thinner-tailed distribution) with increasing scale. This agrees with most results for the scaling of
flood flows [Gupta et al., 1994]. For low flow, the decline moving away from the mean indicates increasing
variability (i.e., a fatter-tailed distribution) with scale. This result is counterintuitive: it would suggest base
flow recessions, for example, are more extended for small basins than for large ones. At the same time,
these decreasing exponents suggest that the effective contributing drainage area (Abr) shrinks as the
moment order departs from one, suggesting, in this case, that a smaller fraction of the drainage area con-
tributes to both high and low flows as compared to mean flows. Another interpretable property of such
curves is the scaling of the arithmetic mean (r5 1), which is an indicator of mass conservation. As noted,
for this drainage area-only analysis, this exponent is 0:91560:035, indicating a systematic decrease of flow
per unit area as drainage area increases. Such a result is not hydrologically impossible, but it is surprising for
a humid region [Glymph and Holtan, 1969, Figure 19; Wolman and Gerson, 1978, Figure 1].

In light of these apparently anom-
alous results from the drainage
area-only analysis, an investiga-
tion of the possible effect of OVB
on the drainage area scaling is
indicated. As discussed, neglect-
ing variables that are both signifi-
cant to the model and
significantly correlated with drain-
age area can affect the estimate
of the spatial scaling exponent.
Physically, as the drainage area is
not the only characteristic driving
flow, it seems inherently flawed
to consider its explanatory power
in isolation. For this reason, addi-
tional explanatory variables
should be brought into the model
in order to more accurately repre-
sent the scaling exponent and
address OVB.

Table 1. (continued)

Variable Name Description Units
Log-Space
Correlation

Significance of
Correlation

WATERNLCD06 Fraction of the watershed covered by open water. (Class 11 of the 2006 National
Landcover Data set.)

Percent 0.3192 0.0000

WOODYWETNLCD06 Fraction of the watershed covered by woody wetlands. (Class 90 of the 2006
National Landcover Data set.)

Percent 0.0956 0.2151

WTDEPAVE Average depth to the seasonally high water table in the watershed. Feet 20.0993 0.1937

aBolded correlations are significant at the 10% level.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Mapping of Moment Order to Exceedance Probability

Moment Order

E
xc

ee
da

nc
e 

P
ro

ba
bi

lit
y

 

 
Median
90% Interval
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means and quantiles for moment orders between 210 and 10. The 90% interval shown
ranges from the 5th to the 95th percentile across sites at each moment order.

Water Resources Research 10.1002/2014WR015924

FARMER ET AL. VC 2015. American Geophysical Union. All Rights Reserved. 9



In order to assess the impacts of OVB, the variables in Table 1 were incorporated into the scaling analysis to
estimate the multivariate power average regression model (equation (12)) for each moment order. For refer-
ence, the correlations between the drainage area and each explanatory variable are included in the table,
with the significant (a 5 10%) correlations indicated. Variable selection for these regressions was carried out
by stepwise regression. The resulting models are summarized in Table 3 for the integer moment orders. The
adjusted R2 of these models is greater than the R2 for the drainage area-only models. The increase is most
dramatic for negative moment orders, reinforcing the conclusion that drainage area alone did not capture
the behavior of the inverse moments. In addition, this shows that additional variables can significantly
increase the explanatory power of the regressions. Among the integer-order moments in Table 3, the
adjusted R2 peaks at the arithmetic mean (r5 1), which is near where the scaling exponent crosses one.
(Numerous variables were included in each regression. Because the sample size is large, the true model is
unknown and interest lies only in the unbiased estimate of the scaling exponent, the results of Kroll and
Song [2013] suggest that multicollinearity should not be a primary concern.)

The moment scaling signature
in Figure 3 shows a different
picture than was seen before
in the drainage-area only
results. Previously, all scaling
exponents were less than one;
here the scaling exponent is
broadly monotonically
decreasing and crosses from
greater than to less than one
between moment orders r5
0:5 and r5 1:1, where the
adjusted R2 peaks. (Local fluc-
tuations in the scaling expo-
nent arise at least in part from
changes in the selected
explanatory variables in the
regressions, which are done
independently among moment
orders.) The scaling exponent

Table 2. Summary of Regression Results for Integer Moment Orders When Drainage Area (DRAIN_SQKM) Is the Only Explanatory
Variable

Moment Order Intercept T-Stat (Intercept) Scaling Exponent T-Stat (Scaling Exponent) Residual SD R2

210 22.5824 23.8654 0.7750 8.4892 1.6129 0.2788
29 22.5398 23.8289 0.7786 8.5890 1.6012 0.2835
28 22.4917 23.7935 0.7831 8.7240 1.5855 0.2897
27 22.4373 23.7625 0.7890 8.9121 1.5638 0.2984
26 22.3749 23.7408 0.7967 9.1834 1.5330 0.3106
25 22.3014 23.7365 0.8072 9.5899 1.4883 0.3286
24 22.2136 23.7659 0.8217 10.2292 1.4215 0.3566
23 22.1032 23.8556 0.8414 11.2873 1.3193 0.4022
22 21.9207 24.0202 0.8614 13.1928 1.1535 0.4810
21 21.6070 24.3279 0.8762 17.2673 0.8856 0.6239
0 21.2287 25.3807 0.8980 28.7756 0.5286 0.8332
1 20.7564 25.7663 0.9146 51.0246 0.3089 0.9389
2 0.0608 0.5232 0.8874 55.8872 0.2896 0.9441
3 0.9665 7.0118 0.8430 44.7574 0.3447 0.9155
4 1.6195 10.3670 0.8164 38.2426 0.3889 0.8893
5 2.0505 12.2147 0.8037 35.0343 0.4169 0.8718
6 2.3446 13.3672 0.7978 33.2833 0.4351 0.8604
7 2.5555 14.1571 0.7950 32.2278 0.4476 0.8526
8 2.7139 14.7381 0.7937 31.5418 0.4566 0.8472
9 2.8372 15.1879 0.7932 31.0695 0.4634 0.8432
10 2.9361 15.5493 0.7929 30.7294 0.4686 0.8401
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Figure 2. Moment scaling signature for univariate moment analysis relying on drainage
area (DRAIN_SQKM) alone.
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for the arithmetic mean is b15 0:99660:013, which encompasses a unit exponent. As the unit exponent
for the arithmetic mean indicates conservation of mass, this result is more intuitive in this humid area than
the drainage-area-only estimate of the scaling exponent of the mean, which was less than one. The broadly
monotonically decreasing scaling exponent shows that variability decreases with scale for high and low
flows and the effective contributing drainage area ratio decreases, relative to its nominal value. In this way,
accounting for OVB significantly alters the estimate and interpretation of the scaling exponent.

The effects of OVB can be more readily seen by comparing the separate moment scaling signatures on the
same axes, as shown in Figure 4. The horizontal line indicates what simple scaling would look like under the
assumption of mass conservation. With just drainage area, the scaling is arguably ‘‘simpler’’ in that the scal-
ing exponent is roughly symmetric around r5 1, and moments with orders equally far away from one dem-
onstrate similar scaling exponents. When additional variables are considered, lower-order moments scale in
a markedly different fashion than the high moments. Most obviously, the br estimates for negative moment
orders are greater than one rather than less, and the overall tendency is for br to decrease with r, with b1

� 1 indicating mass conservation, as discussed previously.

In addition to the scaling exponent values, there are a couple of other ways in which negative moments dif-
fer from the positive moments once additional variables are included. First, different sets of variables are

Table 3. Summary of Regression Results for Integer Moment Orders When Regression Is Applied With Consideration of All Variables Availablea

Moment
Order

Scaling
Exponent Max VIF

Residual
SD AdjR2

Number of Coefficients
(Including Intercept) Variables

210 1.1064 16.7119 1.0542 0.6704 14 Intercept, PPTAVG_BASIN, SLOPE_PCT, OMAVE, ROCKDEPAVE, WTDEPAVE,
BDAVE, RFACT, TEMP_MIN, WATERNLCD06, PASTURENLCD06, T_INDEX,
DEVHINLCD06

29 1.1080 16.7119 1.0435 0.6746 14 Intercept, PPTAVG_BASIN, SLOPE_PCT, OMAVE, ROCKDEPAVE, WTDEPAVE,
BDAVE, RFACT, TEMP_MIN, WATERNLCD06, PASTURENLCD06, T_INDEX,
DEVHINLCD06

28 1.1097 16.7119 1.0296 0.6800 14 Intercept, PPTAVG_BASIN, SLOPE_PCT, OMAVE, ROCKDEPAVE, WTDEPAVE,
BDAVE, RFACT, TEMP_MIN, WATERNLCD06, PASTURENLCD06, T_INDEX,
DEVHINLCD06

27 1.1117 16.7119 1.0110 0.6869 14 Intercept, PPTAVG_BASIN, SLOPE_PCT, OMAVE, ROCKDEPAVE, WTDEPAVE,
BDAVE, RFACT, TEMP_MIN, WATERNLCD06, PASTURENLCD06, T_INDEX,
DEVHINLCD06

26 1.1537 42.7104 0.9768 0.7014 14 Intercept, PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE, WTDE-
PAVE, BDAVE, TEMP_MIN, WATERNLCD06, PASTURENLCD06, PET,
DEVHINLCD06

25 1.1553 42.7104 0.9408 0.7141 14 Intercept, PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE, WTDE-
PAVE, BDAVE, TEMP_MIN, WATERNLCD06, PASTURENLCD06, PET,
DEVHINLCD06

24 1.1634 6.2652 0.9140 0.7222 11 PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE, WTDEPAVE, BDAVE,
WATERNLCD06, PASTURENLCD06, DEVHINLCD06

23 1.1432 6.1984 0.8284 0.7528 12 Intercept, PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE, WTDE-
PAVE, BDAVE, WATERNLCD06, PASTURENLCD06, DEVHINLCD06

22 1.1277 2.8709 0.7249 0.7879 10 Intercept, PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE,
PLANTNLCD06, WATERNLCD06, DEVHINLCD06

21 1.0951 3.8736 0.4976 0.8759 12 Intercept, PPTAVG_BASIN, SLOPE_PCT, CLAYAVE, SILTAVE, OMAVE, ROCKDE-
PAVE, WATERNLCD06, PASTURENLCD06, RRMEDIAN, DEVHINLCD06

0 1.0304 4.9873 0.2485 0.9620 11 Intercept, PPTAVG_BASIN, SLOPE_PCT, ELEV_MAX_M, CLAYAVE, SILTAVE,
OMAVE, ROCKDEPAVE, PASTURENLCD06, DEVHINLCD06

1 0.9956 16.7398 0.1206 0.9906 8 Intercept, PPTAVG_BASIN, SILTAVE, WTDEPAVE, T_MAX_BASIN, T_INDEX,
DEVHINLCD06

2 0.9335 48.7036 0.1754 0.9784 10 Intercept, PPTAVG_BASIN, ELEV_MAX_M, SILTAVE, ROCKDEPAVE, RFACT, TEMP_-
MIN, PET, T_INDEX

3 0.8562 5.7430 0.2457 0.9547 10 Intercept, ELEV_MAX_M, CLAYAVE, OMAVE, ROCKDEPAVE, RFACT,
PLANTNLCD06, CDL_SOYBEA, T_INDEX

4 0.8821 9.5494 0.3007 0.9304 10 Intercept, PPTAVG_BASIN, ELEV_MAX_M, ELEV_MIN_M, SILTAVE, ROCKDEPAVE,
RH_BASIN, PLANTNLCD06, CDL_SOYBEAN

5 0.8259 1.7764 0.3504 0.9066 6 Intercept, SILTAVE, ROCKDEPAVE, RFACT, CDL_SOYBEAN
6 0.8200 1.7764 0.3721 0.8947 6 Intercept, SILTAVE, ROCKDEPAVE, RFACT, CDL_SOYBEAN
7 0.8171 1.7764 0.3870 0.8864 6 Intercept, SILTAVE, ROCKDEPAVE, RFACT, CDL_SOYBEAN
8 0.8157 1.7764 0.3978 0.8804 6 Intercept, SILTAVE, ROCKDEPAVE, RFACT, CDL_SOYBEAN
9 0.8150 1.7764 0.4058 0.8759 6 Intercept, SILTAVE, ROCKDEPAVE, RFACT, CDL_SOYBEAN
10 0.8147 1.7764 0.4119 0.8725 6 Intercept, SILTAVE, ROCKDEPAVE, RFACT, CDL_SOYBEAN

aVariables that showed a significant correlation with drainage area are included in bold.
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significant in explaining the inverse
and positive moments. The slope of
the basin (SLOPE_PCT) (positive
coefficients), organic content of the
soil (OMAVE) (negative coefficients),
depth to the water table (WTDE-
PAVE) (negative coefficients), per-
cent of open water (WATERNLCD06)
(positive coefficients), extent of pas-
ture land (PASTURENLCD06) (nega-
tive coefficients), and the amount of
high-density development (DEV-
HINLCD06) (negative coefficients)
commonly play a role in predicting
the inverse moments. Positive-order
moments are driven significantly by
the extent of soybean crops
(CDL_SOYBEAN) (negative coeffi-
cients). Most moments were
affected by the depth to rock in the

soil (ROCKDEPAVE) (positive coefficients for negative-order moments, negative coefficients for positive-order
moments) and the silt content of the soils (SILT_AVE) (negative coefficients for negative-order moments, positive
coefficients for positive-order moments). Basin precipitation (PPTAVG_BASIN) appears in the equations for
inverse and small positive order moments with large positive coefficients, which decrease as the moment orders
increase. The R (rainfall erosivity) factor of the Universal Soil Loss Equation (RFACT), a precipitation measure that
is sensitive to intense precipitation [D’Odorico et al., 2001; Hollinger et al., 2002], appears in both negative and
positive order moments but is more common and more significant in high positive order moment equations;
RFACT appears in those equations with a positive coefficient when PPTAVG_BASIN disappears.

These results indicate some physically reasonable relationships: SLOPE_PCT, with its positive coefficients for
negative-order moments, indicates the importance of gravity in maintaining streamflow during relatively
low-water periods. Similarly, ROCKDEPAVE, an indicator of soil depth, with its positive coefficients for
negative-order moments and negative coefficients for positive-order moments, shows that deep soils tend
to increase streamflow during low-water periods but reduce it during high-water periods. The switch in pre-
cipitation variables from PPTAVG_BASIN to RFACT, the latter being more indicative of precipitation intensity,
at high positive-order moments also makes physical sense.

In addition to the differences in
explanatory variables, all methods
showed that the regression rela-
tionships were weaker for the
inverse moments, as indicated by
their substantially lower adjusted
R2 values. This shows that the
explanatory variables available in
this study only partially captured
the behavior of low flows. Possible
causes of this phenomenon are
considered in the Discussion sec-
tion below.

6. Quantile Analysis

Moment scaling analysis can be
somewhat inaccessible because it
is difficult to interpret the physical
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meaning of moment orders other than r 5 1 (the mean). For this reason, quantile scaling is an attrac-
tive alternative method to evaluate the behavior of the spatial scaling exponent bp. Again, because all
quantiles are in units of streamflow, the regression slope estimate of the linearized form of Eq. (11) at
each exceedance probability provides a direct, though approximate, estimate of bp. Furthermore,
quantile analysis is directly linked to the flow-duration curve, making the relation between scaling
factors and flow regimes much more intuitive for interpretation and useful in applications [Vogel and
Fennessey, 1995]. As will be shown, quantile and moment analysis often, though not always, lead to
similar conclusions.

We first applied quantile analysis with WLS regression on drainage area alone; results are summarized in
Table 4. The regressions have high goodness-of-fit for exceedance probabilities less than 0.4 (R2 > 0.88), but
drop quickly for low flows (higher exceedance probabilities). As in the moment analysis, here drainage area

alone explains the variability of
high flows well, but is less
explanatory for low flows. As
can be seen more clearly in the
quantile scaling signature of
Figure 5, the scaling exponent
is not constant across the flow
duration curve, leading to the
conclusion that flows in this
region do not exhibit simple
scaling. The spatial scaling
exponent is greatest for mod-
erately high flows (near an
exceedance probability of 0.1)
and reduces rapidly for both
extreme high and low flows;
the decline is much more grad-
ual toward higher exceedance
probabilities (lower flows). This
finding indicates that the effec-
tive contributing drainage area

Table 4. Summary of Regression Results for Quantile Analysis With Drainage Area (DRAIN_SQKM) as the Only Explanatory Variable

Exceedance Probability Intercept T2Stat (Intercept) Scaling Exponent T2Stat (Scaling Exponent) Residual SD R2

0.0005 3.0091 19.3737 0.8179 38.5350 0.3905 0.8900
0.0050 1.7342 12.2964 0.8808 45.6995 0.3515 0.9193
0.0100 1.2666 9.6003 0.9026 50.0613 0.3289 0.9317
0.0250 0.6096 5.0250 0.9302 56.1116 0.2979 0.9461
0.0500 0.1334 1.1437 0.9441 59.2420 0.2825 0.9524
0.1000 20.2914 22.4057 0.9475 57.2429 0.2924 0.9490
0.1500 20.4937 23.8310 0.9409 53.4285 0.3095 0.9421
0.2000 20.6404 24.6124 0.9346 49.2561 0.3306 0.9335
0.2500 20.7564 25.0631 0.9282 45.4650 0.3527 0.9238
0.3000 20.8528 25.2837 0.9211 41.7615 0.3778 0.9123
0.4000 21.0224 25.4028 0.9063 35.0493 0.4366 0.8827
0.5000 21.2156 25.4320 0.8948 29.2583 0.5143 0.8408
0.6000 21.4175 25.2968 0.8823 24.1268 0.6130 0.7823
0.7000 21.6480 25.2322 0.8730 20.2819 0.7275 0.7116
0.7500 21.7782 25.2511 0.8699 18.7972 0.7866 0.6760
0.8000 21.9167 25.2715 0.8668 17.4451 0.8491 0.6388
0.8500 22.0890 25.3681 0.8661 16.2862 0.9132 0.6032
0.9000 22.2914 25.4842 0.8653 15.1544 0.9853 0.5643
0.9500 22.5622 25.5964 0.8630 13.7935 1.0897 0.5117
0.9750 22.7722 25.6569 0.8594 12.8331 1.1773 0.4701
0.9900 22.9811 25.6357 0.8520 11.7861 1.2791 0.4226
0.9950 23.1230 25.6030 0.8473 11.1237 1.3517 0.3932
0.9995 23.2286 24.9728 0.7988 9.0032 1.5751 0.2996
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Figure 5. Quantile scaling signature for univariate quantile analysis relying on drainage area
(DRAIN_SQKM) alone. The 95% confidence interval is included.
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ratio decreases toward the tails of the distribution. Agreeing with most results on flood flows [Gupta et al.,
1994], high flows have decreasing variability with scale, while the variability of low flows increases with
scale. Further, the maximum scaling exponent is less than one throughout, suggesting that there is no
quantile where mass conservation holds, another surprising (or anomalous) result.

As in the moment analysis with drainage area alone, these surprising interpretations lead to the suspicion
that OVB is occurring. The impact of OVB was again assessed by applying a multiple-regression framework
that allows for the impacts of additional variables, especially those correlated with drainage area. These
results are displayed in Table 5, and the resultant quantile scaling signature is shown in Figure 6. Including
the additional variables produced a marked improvement in adjusted R2, indicating a better model and
therefore a better estimate of the scaling exponent at each quantile. As with the moment scaling analysis,
the improvements are most dramatic in the low flows (high exceedance probabilities), showing that omit-
ted variables are most needed in predicting low flows. The importance of the omitted variables at low flows
is reinforced in the quantile scaling signature, where the scaling exponent at an exceedance probability of
0.1, which had the maximum exponent for the drainage-area only results, is now near one and the decline
toward low flows has become a steady increase with a sharp upward tail. This change in low-flow scaling

Table 5. Summary of Regression Results for Quantile Analysis When Regression Is Applied With Consideration of All Variables Availablea

Exceedance
Probability

Drainage
Area Max VIF

Residual
SD AdjR2

Number of Coefficients
(Including Intercept) Variables

0.0005 0.8436 9.8127 0.2957 0.9338 9 Intercept, ELEV_MAX_M, SILTAVE, ROCKDEPAVE, RFACT, PLANTNLCD06, CDL_SOY-
BEAN, T_INDEX

0.0050 0.8988 9.1620 0.2184 0.9675 8 CLAYAVE, OMAVE, ROCKDEPAVE, RFACT, TEMP_MIN, WOODYWETNLCD06, T_INDEX
0.0100 0.9273 16.2598 0.1985 0.9739 9 Intercept, SILTAVE, OMAVE, ROCKDEPAVE, RFACT, TEMP_MIN, WOODYWETNLCD06,

T_INDEX
0.0250 0.9608 11.9238 0.1708 0.9814 10 Intercept, PPTAVG_BASIN, ELEV_MAX_M, CLAYAVE, OMAVE, ROCKDEPAVE, RFACT,

TEMP_MIN, T_INDEX
0.0500 0.9895 11.1788 0.1441 0.9872 9 Intercept, PPTAVG_BASIN, OMAVE, ROCKDEPAVE, RFACT, TEMP_MIN, WOODY-

WETNLCD06, T_INDEX
0.1000 1.0048 25.6115 0.1336 0.9891 9 Intercept, PPTAVG_BASIN, ELEV_MAX_M, OMAVE, ROCKDEPAVE, FST32F, TEMP_MIN,

T_MAX_BASIN
0.1500 1.0167 4.6964 0.1333 0.9891 8 Intercept, PPTAVG_BASIN, CLAYAVE, SILTAVE, ROCKDEPAVE, T_MAX_BASIN,

PERMAVE
0.2000 1.0209 5.5590 0.1345 0.9889 8 Intercept, PPTAVG_BASIN, TOPWET, SILTAVE, ROCKDEPAVE, T_INDEX, DEVHINLCD06
0.2500 1.0190 230.1006 0.1384 0.9881 9 Intercept, PPTAVG_BASIN, T_AVE_BASIN, TOPWET, SILTAVE, WTDEPAVE, PET,

DEVHINLCD06
0.3000 1.0133 1.8489 0.1534 0.9855 7 Intercept, PPTAVG_BASIN, SILTAVE, WTDEPAVE, PET, DEVHINLCD06
0.4000 1.0310 11.9449 0.1703 0.9814 13 Intercept, PPTAVG_BASIN, TOPWET, CLAYAVE, SILTAVE, OMAVE, WTDEPAVE, TEMP_-

MIN, PLANTNLCD06, PASTURENLCD06, ELEV_MEDIAN_M_BASIN, DEVHINLCD06
0.5000 1.0285 12.3730 0.2111 0.9720 13 Intercept, PPTAVG_BASIN, SLOPE_PCT, ELEV_MAX_M, CLAYAVE, SILTAVE, OMAVE,

ROCKDEPAVE, WTDEPAVE, RFACT, PASTURENLCD06, DEVHINLCD06
0.6000 1.0385 12.9574 0.2776 0.9532 13 Intercept, PPTAVG_BASIN, SLOPE_PCT, ELEV_MAX_M, CLAYAVE, SILTAVE, OMAVE,

ROCKDEPAVE, WTDEPAVE, TEMP_MIN, PASTURENLCD06, DEVHINLCD06
0.7000 1.0494 4.9873 0.3676 0.9235 11 Intercept, PPTAVG_BASIN, SLOPE_PCT, ELEV_MAX_M, CLAYAVE, SILTAVE, OMAVE,

ROCKDEPAVE, PASTURENLCD06, DEVHINLCD06
0.7500 1.0665 20.0420 0.4041 0.9099 13 Intercept, PPTAVG_BASIN, SLOPE_PCT, CLAYAVE, SILTAVE, OMAVE, ROCKDEPAVE,

RFACT, TEMP_MIN, PASTURENLCD06, T_INDEX, DEVHINLCD06
0.8000 1.0820 3.6291 0.4692 0.8858 10 Intercept, PPTAVG_BASIN, SLOPE_PCT, CLAYAVE, SILTAVE, OMAVE, ROCKDEPAVE,

PASTURENLCD06, DEVHINLCD06
0.8500 1.0873 3.8736 0.5107 0.8698 12 Intercept, PPTAVG_BASIN, SLOPE_PCT, CLAYAVE, SILTAVE, OMAVE, ROCKDEPAVE,

WATERNLCD06, PASTURENLCD06, RRMEDIAN, DEVHINLCD06
0.9000 1.1021 3.8736 0.5651 0.8496 12 Intercept, PPTAVG_BASIN, SLOPE_PCT, CLAYAVE, SILTAVE, OMAVE, ROCKDEPAVE,

WATERNLCD06, PASTURENLCD06, RRMEDIAN, DEVHINLCD06
0.9500 1.1223 3.8736 0.6470 0.8196 12 Intercept, PPTAVG_BASIN, SLOPE_PCT, CLAYAVE, SILTAVE, OMAVE, ROCKDEPAVE,

WATERNLCD06, PASTURENLCD06, RRMEDIAN, DEVHINLCD06
0.9750 1.1233 2.8034 0.7241 0.7925 10 PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE, WATERNLCD06, PAS-

TURENLCD06, RRMEDIAN, DEVHINLCD06
0.9900 1.1461 2.8709 0.8188 0.7552 10 Intercept, PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE,

PLANTNLCD06, WATERNLCD06, DEVHINLCD06
0.9950 1.1769 10.7891 0.8593 0.7433 12 Intercept, PPTAVG_BASIN, SLOPE_PCT, SILTAVE, OMAVE, ROCKDEPAVE, TEMP_MIN,

PLANTNLCD06, WATERNLCD06, ELEV_MEDIAN_M_BASIN, DEVHINLCD06
0.9995 1.1311 2.8152 1.0829 0.6582 9 PPTAVG_BASIN, SLOPE_PCT, SILTAVE, ROCKDEPAVE, BDAVE, WATERNLCD06, PAS-

TURENLCD06, DEVHINLCD06

aVariables that showed a significant correlation with drainage area are included in bold.
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indicates that there are varia-
bles other than drainage area
that are affecting the genera-
tion of low flows particularly.
This finding shows that the
nonconservation of mass and
apparent increasing variability
with scale that appeared in the
drainage area-only quantile
analysis resulted from the fail-
ure to account for these other
variables.

Examination of the explanatory
variables used in the multiple
regressions for the quantile
scaling analysis (Table 5) shows
similar results as appear in
Table 3 for the multiple regres-
sions for the moment scaling
analysis. For example,

PPTAVG_BASIN (again having positive coefficients) is used except at the extreme high flow end, where
RFACT appears to substitute for it. Similarly SLOPE_PCT (again with positive coefficients) appears in the
lower flow half of the equations. ROCKDPEAVE appears for most low-flow equations, and its coefficients
switch from positive to negative when moving from low to high flows. PASTURENLCD06 and DEVHINLCD06
both appear with negative coefficients in most of the lower flow equations.

The two quantile scaling signatures derived are redisplayed in Figure 7. This presentation further highlights
the effect of OVB on the interpretation of scaling. A multiple-regression framework provides a different view
of the scaling relationship. This difference is most apparent in the scaling exponents associated with low flows
(high exceedance probabilities). When regressing against drainage area alone, the scaling signature is
smoother. Occurring at an exceedance probability near 0.1, the maximum exponent is 0.95. From this peak,
the exponent steeply declines for high and low extremes. The signature from the multiple regressions shares
the steep decline at the extreme high flow but then crosses a value of one at an exceedance probability of
about 0.1 and rises slowly across the moderate and low flows to a maximum of about 1.15. From this figure,
mitigating the effect of OVB results in a more interpretable (and possibly less anomalous) scaling relationship.

7. Discussion

The conclusions pertaining to
scaling behavior based on
moment and quantile analysis
can be compared with the use of
the median of the power mean-
based mapping of moment
orders to exceedance probabil-
ities presented above (Figure 1).
The scaling signatures resulting
from the regressions making use
of all available variables are
shown in Figure 8 (top); the Fig-
ure 8 (bottom) shows the corre-
sponding adjusted R2 values.

Despite being derived from dif-
ferent modes of analysis, these
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Figure 6. Quantile scaling signature for multivariate quantile analysis relying on multiple
regressions considering all available variables.
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Figure 7. Quantile scaling signatures for univariate and multivariate quantile analysis.
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scaling signatures show broadly similar spatial scaling behavior. Both signatures are marked by three dis-
tinct regions along the axis of exceedance probabilities. There is a significant decline in scaling factors for
high flows, i.e., flows with exceedance probabilities less than about 15%, though this decline is steeper and
occurs at a lower exceedance probability in the quantile-derived signature. Between exceedance probabil-
ities of 15% and 70%, the scaling exponents slope upward as the exceedance probabilities increase (i.e., as
flows get lower). In this region, the scaling factors are close to one or just above one. Beyond exceedance
probabilities of 70%, the moment-based scaling function levels off while the quantile-based function con-
tinues it gentle upward rise. As both spatial scaling signatures broadly increase with exceedance probability
and cross a value of one, the expected phenomena of decreasing variability with increasing flows and mass
conservation at some exceedance probability near 0.1 for the quantile scaling analysis and near the mean
(0.28) for the moment scaling analysis are indicated.

Overall, the moment analysis indicates scaling exponents less than those estimated from quantile analysis
for flows below the median, and greater than those from quantile analysis for flows above the median,
while agreeing at the median and at the low and high extremes (Figure 8, top). The differences in scaling
exponents between the two types of analyses appear to indicate deficiencies in the mapping between
moment order and exceedance probability. Additionally, it may also be affected by statistical factors such
as the sensitivity of high-order moments, whether normal or inverse, to extreme values. The importance of
statistical factors in the moment analysis is suggested by the lower adjusted-R2 values for the moment anal-
ysis as compared to the quantile analysis (Figure 8, bottom).

The same general scaling signature that was identified here in the multiple regression results can also be
seen in the quantile-based results of Over et al. [2014] in Indiana and Illinois—which echo the results of
Singh [1971] in Illinois—though they take a different approach to the problem of heterogeneity of basin
characteristics. A multiple-regression spatial scaling signature for three regions each in Illinois and in Indiana
is shown in Figure 9 [see Over et al., 2014 for further information]. These results exhibit the same general
signature with a midrange plateau, a downturn in the high flows and a gentle upward curvature in the low
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Figure 8. (top) Spatial scaling signatures derived from multivariate moment and quantile analyses. (bottom) Adjusted R2 of multivariate
moment and quantile analyses across exceedance probabilities.
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flows. Although the magni-
tudes of the low-flow scaling
factors are much greater, prob-
ably because the large number
of stations having large num-
bers of censored (zero) flows
are present in the region and
were retained in the analysis,
the overall signature is quite
similar. Interestingly, Over et al.
[2014] did not find much
change in scaling relations
resulting from use of multiple
regression: they found nearly
identical signatures with
regressions based on drainage
area alone. In their study, the
need for multiple regression to
get the correct scaling expo-
nent was probably circum-

vented by classifying the larger region into homogeneous subregions prior to the application of regional
regression. This accomplishes the same goal of multiple regression: controlling for regional heterogeneity,
especially in basin characteristics that are correlated with both drainage area and the streamflow statistics
of interest, in this case.

We hypothesize that the spatial scaling signature exhibited in the study region is a generalizable example
of the spatial scaling behavior of streamflow in a given region. As such, the spatial scaling signatures of daily
streamflow provide fundamental information as to how streamflow is generated in a specific region. Con-
sider first high flows (floods). When they are rainfall-driven, floods result from the quick response of a basin
to extreme storm conditions. The short duration of the flood response and the branching properties of the
river network, along with the scale-dependent spatial variability of the precipitation itself [Gupta and Way-
mire, 1993; Over and Gupta, 1996], combine to cause a decreasing fraction of the basin to be contributing to
the streamflow at a given point and time, as also suggested by the decreasing effective contributing drain-
age area ratio discussed here. These effects result in a scaling exponent less than one, as shown by the sim-
ple model of Gupta et al. [1996]. In particular, in both this study region and the results from Indiana and
Illinois [Over et al., 2014], the high-flow scaling exponent was seen to decrease with decreasing exceedance
probability, as has been observed for annual flood peaks in regions including parts of the one considered in
this study, with primarily rainfall-generated floods [Gupta et al., 1994; Gupta and Dawdy, 1995; Smith, 1992].

Similar logic can be applied to propose a physical mechanism for the observed scaling properties for low
flows. Under conditions when the basin response is changing slowly, low flows result from groundwater
outflow. By themselves, such conditions would suggest a scaling exponent of one, since the scale-
dependent variability and quick response aspects of high flows have dissipated. However, groundwater
flows have their own scale-dependent structure. As originally proposed by T�oth [1963] and extended by
Freeze and Witherspoon [1967], Ophori and T�oth [1990], Cardenas [2007], and W€orman et al. [2007] (see also
Dingman [2002], chapter 8), the nested structure of a river basin’s topography tends to induce a similarly
nested set of groundwater flow systems, with important implications for basin response. The discharge
from this hierarchy of groundwater flow systems results in increasing fractions of the upstream recharge
contributing to base flow as the basin scale gets larger, thus implying a scaling exponent exceeding one,
and agreeing with the increased effective contributing drainage area ratio proposed here. In addition,
because the larger, deeper systems have longer time scales to depletion, they will increasingly dominate
the flow as the exceedance probability increases, causing the scaling exponent to increase with the exceed-
ance probability. Interregional differences in the low-flow scaling were observed: the scaling exponent at
extreme low flows in this study region was seen to rise to about 1.2; whereas in Illinois and Indiana, albeit
with censored data included, the scaling exponent rose to a value between 1.4 and 3, depending on the
subregion [Over et al., 2014].
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Figure 9. Quantile scaling signatures from multiple regression analysis in Indiana and Illinois
[Over et al., 2014].
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Finally, the midrange of flows on the exceedance probability axis may be characterized as normal or equilib-
rium conditions. Flows in this region are characterized by scaling factors around one (or slightly above one
if there is a significant impact of the hierarchy of groundwater systems on average flows). The assertion of
the unit scaling exponent for average flows can be seen by considering a set of streamgages along a single
river network with perfectly homogeneous climate, land use, and all basin characteristics. In such a case,
the long-term average flow per unit area, in order to conserve mass, should be constant, implying a scaling
factor of one.

We suggest that the spatial scaling signatures of daily streamflow constitute a powerful tool for the charac-
terization of streamflow regimes in varied regions. The magnitude and interplay of the three characteristic
regions of the spatial scaling signature may provide insight on the behavior of streamflow in a given region,
providing insights as to the main drivers of streamflow and allowing recognition of significant changes in
the streamflow regime. As has been shown here, multiple regression or another means can be used to iso-
late these varied effects and reveal a more accurate spatial scaling signature, which in turn provides a better
understanding of regional streamflow behavior.

8. Summary and Conclusions

This work has sought to improve our understanding of the spatial scaling behavior of daily streamflow. Scal-
ing behavior has long been interpreted by distinguishing between simple scaling and multiscaling. These
notions form the basis of many regional hydrologic methods, including the index-flood method [Dalrymple,
1960], regional hydrologic regression [Tasker and Stedinger, 1987; Reis III, 2007], and the drainage-area ratio
transfer method used for prediction in ungaged basins (as in Farmer and Vogel [2013]). Assessments of spa-
tial scaling behavior were conducted by examining the relationship between scaling factors and either
streamflow moments (moment analysis) or quantiles (quantile analysis). Both analyses estimate scaling
exponents using methods of regression. We document a significant deficiency in traditional univariate scal-
ing analysis and advocate a multivariate technique for improving the interpretation of scaling behavior.

Our analyses led to two important sets of findings, one set methodological and another empirical. The
methodological findings were twofold. First it was shown that the entire scaling behavior of streamflow
moments can be captured only by including inverse moments in the analysis. This was demonstrated by
means of an approximate mapping of moment orders to exceedance probabilities, which showed that posi-
tive moment orders mapped only to flows above the median, whereas inverse moments mapped to flows
below the median. Traditional scaling analysis of flow moments using only positive moments is thus prob-
lematic because low flows were demonstrated to scale differently than high flows with respect to drainage
area. It was then demonstrated that omitted-variable bias (OVB) can have a significant impact on the assess-
ment of scaling behavior and lead to physically implausible results. OVB resulted from univariate scaling
analyses based on drainage area alone. We document that the impact of this bias can be mitigated by the
use of multiple regression. When OVB was accounted for with multiple regression, the scaling signatures
were distinctly different from those determined using a univariate scaling analysis, and took on forms that
were physically plausible and interpretable in terms of the streamflow generating processes for high, mid-
range, and low flows.

The empirical findings consist of the general form of the OVB-corrected (multiple regression-based) scaling
signature in this region. Based on its agreement with results of Over et al. [2014] for Illinois and Indiana, we
hypothesize that this signature is generally applicable for humid temperate regions. The mean flow was
found to scale with a unit exponent, indicating mass conservation. High and low flows were found to have
scaling exponents less than and greater than one, respectively. The high flow exponents suggest a decreas-
ing fraction of contributing area with increasing scale and agree with corresponding peak flow analyses,
whereas the low-flow exponents suggest an increasing fraction of contributing area with increasing scale.
The overall form of the OVB-corrected scaling signature also indicates decreasing variability (thinner tails) of
the distribution of flows with increasing scale for both high and low flows.

To our knowledge, no previous analysis of scaling behavior has assessed the impact of OVB nor considered
the scaling of inverse streamflow moments. As this study only considered streamflow behavior in the South-
east United States, along with a brief analysis of results from Illinois and Indiana, further research needs to
consider the scaling signatures of other regions. Furthermore, future consideration of this topic needs to
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examine scaling behavior in a theoretical framework such as that developed by Gupta et al. [1996] for floods
and seek greater understanding of the physical processes behind these scaling signatures. Special attention
needs to be paid to low flows, which, from a scaling perspective, have not received the same degree of
attention as high flows. It is our hope that this work and future work will advance our understanding of the
characteristics of spatial scaling signatures and how they relate to streamflow-generating processes in a
region. Such an understanding will provide advantages for prediction in ungaged basins and the develop-
ment of water resources in both gaged and ungaged basins.

Appendix A: Effective Contributing Drainage Area Ratio

In interpreting our results, it will be useful to examine equations (6) and (7) more carefully. As defined in
equation (4), E Qr

�
� �

designates the rth moment of the streamflow in the unit-area reference watershed. As
suggested by previous scaling analyses of peak flow, in particular the toy model of Gupta et al. [1996], and
also the partial area concept of runoff generation [e.g., Betson, 1964; Dunne and Black, 1970], it is useful to
think of the reference streamflow, Q�, as consisting of the product of effective contributing drainage area,
Ac , and an effective runoff intensity over that contributing area, Qeff , so that Q�5AcQeff . According to this
model, these quantities, as a product, determine the intercept of our scaling models but cannot be
obtained separately by the methods employed in this study.

Then at a basin of drainage area Ai , according to Eq. (6), the rth power mean of discharge from that basin

E Qr
i

� �� �1=r
5 E Ac;i Qeff ;i

� �r� �� �1=r
(A1)

is given by

Abr
i E Qr

�
� �� �1=r

5Abr
i E AcQeffð Þr½ �ð Þ1=r (A2)

That is, the reference basin behavior is simply rescaled by multiplying by Abr
i . (Recall that, having been

divided by a unit area, Ai is now unitless.) Expanding this expression in terms of the effective contributing
drainage area and effective runoff intensity we have

E Qr
i

� �� �1=r
5 E Ac;iQeff ;i

� �r� �� �1=r
5Abr

i E AcQeffð Þr½ �ð Þ1=r (A3)

Similar to the inability to separate the effective contributing drainage area and runoff intensity at the refer-
ence basin by using the intercept, how the effective contributing drainage area and runoff intensity sepa-
rately scale up to drainage area Ai is not available from the analysis presented in this paper.

For purposes of discussion and interpretation, however, assume that the effective runoff intensity is inde-
pendent of scale, though still depending on moment order, r. In that case, all the rescaling comes from
changes in the effective contributing drainage area, Ac , and equation (A3) reduces to

E Ac;i
� �r� �� �1=r

5Abr
i E Acð Þr½ �ð Þ1=r (A4)

so that

Abr
i 5

E Ac;i
� �r� �

E Acð Þr½ �

 !1=r

: (A5)

For simplicity, we can rewrite E Ac;i
� �r� �� �1=r

as Ac;i rð Þ and E Acð Þr½ �ð Þ1=r as Ac rð Þ. These quantities can be inter-
preted as the contributing areas of the basin i and the reference basin, respectively, at moment order r.
Equation (A5) can then be rewritten as

Abr
i 5

Ac;i rð Þ
Ac rð Þ : (A6)

This expression shows that Abr
i can be interpreted as the ratio of the effective contributing drainage area at

the scale of basin i, namely Ai , and moment order r to the effective contributing drainage area of the unit-
area reference basin at moment order r. More simply, this term represents the ‘‘effective contributing drain-
age area ratio’’ at scale Ai and moment order r.
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Further, if we divide Abr
i by the total drainage areas Ai , then we have

Abr
i

Ai
5Abr 21

i 5
Ac;i rð Þ

Ai Ac rð Þ ; (A7)

This set of equalities shows that Abr 21
i can be interpreted as the fractional effective contributing area at

scale Ai and moment order r. Therefore when the scaling exponent is less than one, the fractional effective
contributing area ratio decreases with increasing scale; when the scaling exponent is greater than one, it
increases.

An analogous analysis of the quantile representation of the scaling leads to the expression

A
bp

i 5
Ac;i pð Þ
Ac pð Þ ; (A8)

which can be interpreted as the effective contributing drainage area ratio at scale Ai and exceedance proba-
bility p, and to

A
bp

i

Ai
5A

bp21
i 5

Ac;i pð Þ
Ai Ac pð Þ ; (A9)

The fractional effective contributing drainage area ratio at scale Ai and exceedance probability p.

Note also that when viewed from the perspective of dependence on moment order (r) or exceedance prob-
ability (p), this analysis allows for changes in effective contributing drainage area in line with the partial area
concept, e.g., as the flows get larger (r gets bigger or p gets smaller), then the effective contributing drain-
age area Ac and runoff intensity Qeff at the reference scale can also increase. Indeed this increase is given
empirically by the intercept terms: lnðE Qr

�
� �
Þ in the case of moment analysis, and lnðQ�;pÞ in the case of the

quantile analysis.

Appendix B: Omitted Variable Bias

Omitted Variable Bias (OVB) is discussed in most textbooks that address multivariate regression in some
detail (as in Wooldridge [2009]). A brief outline is provided here. The goal of linear regression is to provide
estimates of the coefficients in the following relationship:

Y5b01b1X11u (B1)

where Y is the dependent variable of interest, X is the independent predictor, and u is a normally distributed
random error with a mean of zero and a fixed standard deviation. In practice, the slope parameter, b1, is
estimated as

b̂15

Xn

i51
X1;i2�X 1
� �

YiXn

i51
X1;i2�X 1
� �2 (B2)

where �X is the mean value of X, with n paired observations of (X, Y). It can be shown that b̂1 is an

unbiased estimator of b1, so that E b̂1

h i
5b1. This is done by plugging equation (B1) into equation (B2),

simplifying and taking the expectation, recognizing that the covariance of X and u must be zero.

OVB appears when equation (B1) is not valid. Instead, the true relationship may be something like:

Y5b01b1X11b2X21u (B3)

where X2 is an additional independent variable. Taking the expectation of b̂1 with this new knowledge
uncovers a systematic bias. Combine equation (B3) into equation (B2) and simplify:

~b15

Xn

i51
X1;i2�X 1
� �

b01b1X1;i1b2X2;i1ui
� �

Xn

i51
X1;i2�X 1
� �2 (B4)
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~b15b0

Xn

i51
X1;i2�X 1
� �

Xn

i51
X1;i2�X 1
� �2 1b1

Xn

i51
X1;i2�X 1
� �

X1;i
� �

Xn

i51
X1;i2�X 1
� �2 1b2

Xn

i51
X1;i2�X 1
� �

X2;i
� �

Xn

i51
X1;i2�X 1
� �2 1

Xn

i51
X1;i2�X 1
� �

uið ÞXn

i51
X1;i2�X 1
� �2 (B5)

~b15b11b2

Xn

i51
X1;i2�X 1
� �

X2;i
� �

Xn

i51
X1;i2�X 1
� �2 1

Xn

i51
X1;i2�X 1
� �

uið ÞXn

i51
X1;i2�X 1
� �2 (B6)

because
Xn

i51
X1;i2�X 1
� �

50 and
Xn

i51
X1;i2�X 1
� �

X1;i
� �

5
Xn

i51
X1;i2�X 1
� �2

. The expectation of equation (B6)
is then

E ~b1

h i
5b11b2E

Xn

i51
X1;i2�X 1
� �

X2;i
� �

Xn

i51
X1;i2�X 1
� �2

2
4

3
51E

Xn

i51
X1;i2�X 1
� �

uið ÞXn

i51
X1;i2�X 1
� �2

2
4

3
5 (B7)

E ~b1

h i
5b11b2

Cov X1; X2ð Þ
Var X1ð Þ

1
Cov X1; uð Þ

Var X1ð Þ
(B8)

E ~b1

h i
5b11b2

Cov X1; X2ð Þ
Var X1ð Þ

6¼ b1 (B9)

because Cov X1; uð Þ50. So by excluding significant variables that show some correlation with the included
variables (Cov X1; X2ð Þ 6¼ 0), bias given by b2

Cov X1;X2ð Þ
Var X1ð Þ is introduced into the estimator.
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