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Understanding the variability of water supply reservoir yields is central for planning purposes. The basis
of this study is an empirical global relationship between reservoir storage capacity, water supply yield
and reliability based on a global database of 729 rivers. Monte Carlo simulations reveal that the coeffi-
cient of variation of estimates of water supply reservoir yields depend only on the length of streamflows
record and the coefficient of variation of the streamflows used to estimate the yield. We compare the
results of those Monte Carlo experiments with an analytical uncertainty method First Order Variance
Approximation (FOVA). FOVA is shown to produce a general, accurate and useful expression for estimat-
ing the coefficient of variation of water supply reservoir yield estimates. We also document how the
FOVA analytical model can be used to determine the minimum length of streamflow record required dur-
ing the design of water supply reservoirs so as to ensure that the yield delivered from reservoir falls
within a prespecified margin of error.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

In the design of water supply reservoirs, the Storage–Reliability–
Yield (SRY) relationship is the tool that has traditionally been used to
determine the reservoir storage capacity required for delivery of a
water supply yield with a specified reliability or alternatively, the
water supply yield that can be supplied from a reservoir with known
storage capacity. Here reliability is the steady-state time based value
that indicates the probability that the reservoir yields are met.
Methods available for determining the SRY relationship from a
streamflow record may be broadly classified into (1) sequential,
and (2) nonsequential procedures. Using sequential procedures to
determine the appropriate storage capacity for meeting a prespeci-
fied yield requires routing of the complete streamflow record (or
synthetic traces based thereupon) through the reservoir system
while accounting for the necessary outflows which may include:
water supply, evaporation, seepage losses, downstream releases to
maintain ecological flow regimes and other operations. The two
main sequential procedures that have seen wide application are
Rippl’s mass curve (Rippl, 1883) or its automated Sequent Peak
Algorithm (SPA) (Thomas and Burden, 1963) and behavior analysis
(BA) (see McMahon and Adeloye, 2005) respectively. The main dif-
ference between these two sequential procedures is that SPA
assumes no water supply failures occur over the planning period
while BA is based on a prespecified reliability thus water supply fail-
ures are allowed. Here reliability is defined as the steady-state prob-
ability that the reservoir yields are met.

Use of simulation procedures to derive the steady-state SRY
relationship of reservoirs is computationally intensive because a
stochastic streamflow model and a reservoir simulation model
must be combined and implemented repeatedly, using thousands
of Monte-Carlo experiments, corresponding to nearly all possible
reservoir systems. Attempts have been made to develop general-
ized SRY relations based on a nonsequential model of reservoir
behavior such as those summarized by McMahon et al. (2007a)
and others cited therein. We do not consider such nonsequential
SRY models here, because the sequential character of flow series
is critical to understanding the SRY relationship.

Several studies have developed generalized SRY for reservoirs
either fed by actual streamflows (Adeloye et al., 2003; Adeloye,
2009a,b; Silva and Portela, 2012; McMahon et al., 2007b; Kuria
and Vogel, 2014a) or inflows generated from stochastic streamflow
models (Pegram, 1980; Bayazit and Bulu, 1991; Bayazit and Önöz,
2000; Bayazit, 1982; McMahon and Mein, 1986; McMahon and
Adeloye, 2005; Gould, 1964; Vogel and Stedinger, 1987; Phien,
1993). A recent detailed review of generalized SRY relationships
based on a sequential analysis is provided in Kuria and Vogel
(2014a). Here we use the generalized empirical SRY model devel-
oped by Kuria and Vogel (2014a) because it enables us to docu-
ment the variability of water supply reservoir yields of an
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extremely wide range of reservoir systems. The SRY model devel-
oped by Kuria and Vogel (2014a) is an adaptation of the SRY model
introduced by McMahon et al. (2007b) both of which were based
on a global database of monthly streamflow series from 729 rivers.

In the design of reservoirs using generalized SRY relations the
yield Y, is often assumed constant. The SRY relationship is based
on Monte-Carlo simulations which attempt to represent the
impact of natural variations in streamflow on the reliability of
water supply yields from a reservoir system. However, such yield
estimates are in of themselves random variables, because they
are estimated on the basis of short and often quite variable stream-
flow records. Therefore due to natural variability and the limited
lengths of streamflow sequences, the estimated yields and/or the
storage capacity requirements are random variables because both
are estimated on the basis of a limited dataset. Thus variability
in water supply yield estimates arises from two primary sources,
natural variability inherent in streamflow sequences and sampling
variability resulting from the limited lengths of streamflow
records. Thus one can expect that estimates of storage, yield and/or
reliability are all random variables which can be subject to consid-
erable variability due to our limited knowledge of future hydro-
logic and climatic conditions which govern the SRY relationship.

Considering the importance of water supply planning in the
context of surface water reservoirs, remarkably few studies have
attempted to document the sampling variability of estimates of
the storage, yield and/or reliability associated with surface water
supply systems. A few studies have documented the variability of
estimates of the reliability and the storage capacity of a surface
water reservoir, yet fewer studies have considered the variability
of yield estimates. Klemes (1979) examined the variability of esti-
mates of the reliability of reservoir with fixed capacity and draft
based on 25 year flow record for a single river with a coefficient
of variation Cv = 0.3 corresponding to the sequence of annual
streamflows. He found that the 95% confidence interval for reliabil-
ity was in the range 0.8–1 while the point estimate was 0.97. Using
first order uncertainty analysis, Phatarford (1977) derived approx-
imations for the bias and variance of estimates of storage capacities
for reservoirs fed by independent Gamma flows. His results indi-
cate extreme bias and variance associated with estimates of stor-
age capacities. For example, he found that with n = 100 years of
streamflow with inflow Cv = 2 and yield ratio Y/l = 0.9 (l corre-
sponds to mean annual streamflow), upward bias and root mean
square error were 196% and 131% respectively. Phatarford (1977)
findings led Vogel (1985) and Vogel and Stedinger (1988) to exam-
ine more generally, the sampling variability of estimates of the
reservoir storage capacity when inflows follow an autoregressive
lognormal (AR (1) LN) model. The only study we could locate
which derived a confidence interval for estimates of water supply
yield was a study by Vogel and Hellstrom (1988) which used
Monte-Carlo simulations to reveal the variability of estimates of
‘safe yield’ for a specific system – Boston water supply system in
Massachusetts, USA. Though the average ‘safe yield’ of the system
was reported as 300 million gallons per day (mgd), they found that
a 99% confidence interval of the ‘‘safe’’ yield was 232–370 mgd.
Thus previous studies have documented the instability of an esti-
mated storage–reliability–yield (SRY) relationship for specific sys-
tems. Kuria and Vogel (2014b) carried out a rigorous and general
evaluation of the sampling properties of water supply yield for a
wide range of reservoir systems subject to the type of hydrologic
variations and conditions which can be expected anywhere in
the world using Monte Carlo (MC) simulations. Our primary goal
is to develop a generalized analytical methods that can be used
to document the variability of yield estimates while avoiding the
numerous computations involved in MC simulations. Results from
an analytical uncertainty analysis methods will be compared with
the MC simulations results from Kuria and Vogel (2014b). Further,
we apply the analytical uncertainty method to illustrate how min-
imum streamflow record lengths can be determined so as to ensure
that reservoir yields fall within a specified range with prespecified
reliability during the actual performance of the reservoirs.
2. Uncertainty analysis methods

The probability density function (pdf) provides a complete
description of the probabilistic behavior of a random variable.
Unfortunately, in most practical problems such a pdf cannot easily
be derived especially when the random variable is a function of
several other correlated random variables as is the case here.
Other methods that can be used to describe the dispersion of a ran-
dom variable include confidence intervals and moments. In this
study we use the statistical properties of a pdf: variance and coef-
ficient of variation, Cv, to describe the uncertainty in surface water
reservoir yield estimates. We compare an analytical uncertainty
method for determining the Cv and variance of water supply yields
with the results based on Monte Carlo simulations presented in
Kuria and Vogel (2014b).

One attractive analytical uncertainty approach is the Mellin
Transform which was first introduced to the field of hydrology
and hydraulics by Tung (1990). It is one of the analytical methods
used to derive exact moments of any random variable if the follow-
ing conditions are met: (1) the random variable is a multiplicative
function of the uncertain variables and (2) the uncertain variables
are independent of one another as well in time (Tung, 1990; Tung
and Yen, 2005). The method is further limited for use with func-
tional relations whose input stochastic variables have pdfs with
known Mellin Transform. The method has seen limited application
in water resources studies perhaps due to the lack of independence
of random variables or because many models have stochastic vari-
ables with pdfs with no known Mellin Transform. Our yield equa-
tion meets the first condition for application of Mellin Transform.
The random variables needed to estimate water supply reservoir
yield are estimates of the mean, variance and skewness of the
annual streamflows. Since reservoir inflows are serially correlated
and their moments often exhibit cross correlation the second prop-
erty required for use of a Mellin Transform is violated thus we do
not summarize its use here. Interested readers are referred to Kuria
(2015) who did an attempt to apply the Mellin Transform to this
problem.

First Order Variance Approximation FOVA is an approximate
analytical method that is widely used to derive estimates of
the mean and variance for any given random variable which is
a function of several other random variables. The method is
based on first order Taylor series approximation of the random
variable about the mean of the stochastic variables. Benjamin
and Cornell (1970) and Tung and Yen (2005) provide a detailed
description of how FOVA is carried out. For completeness we
present the details here. Consider a model output Y, related to
n random variables as:

Y ¼ f ðX1;X2; . . . ;XnÞ ð1Þ

Given lxi is the mean of each random variable Xi, i = 1,2,. . .,n, by
the first order approximation of the Taylor series expansion about
the mean of each random variable, the expectations and variance
of Y can be approximated by:

E½Y� ¼ E½f ðXÞ� ffi f ðE½X�Þ ¼ f ðlxÞ ð2Þ

Var½Y� ffi
Xn

i¼1

Xn

j¼1

@Y
@Xi

����
lxi

@Y
@Xj

����
lxj

CovðXi;XjÞ ð3Þ

For bivariate input random variables Eq. (3) reduces to
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þ 2
@Y
@X1

����
lx1

@Y
@X2
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lx2
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The assumptions often cited for the FOVA method to yield good
results are (1) near linearity in functional relations, (2) the random
variables of the equation should follow a nearly normal distribu-
tion, and (3) the variability of the random input variables should
be small (Benjamin and Cornell, 1970; Cornell, 1972; Melching,
1995). According to Moore and Clarke (1981) ‘‘FOVA is rarely likely
to be justifiable with models containing nine or twelve parame-
ters’’. Note that FOVA requires covariance terms which are often
neglected, which is probably why Moore and Clarke (1981) came
to that the above referenced conclusion. Several studies for exam-
ple Garen and Burges (1981), Walker (1982), Burges (1979), Scavia
et al. (1981), Gardner et al. (1981), Gardner and O’Neill (1983),
Smith and Charbeneau (1990), Burges and Lettenmaier (1975),
Melching (1995), Gardner et al. (1981), and Gardner and O’Neill
(1983) have attempted to evaluate the accuracy of variance esti-
mates derived using FOVA with contradictory results. Despite
these conceptual limitations the method is perhaps the most
widely used method for uncertainty analysis and has successfully
been used for uncertainty analysis studies in hydrologic design
(Tang and Yen, 1972; Yen et al., 1980; Tung and Mays, 1980), water
quality modeling (Burges and Lettenmaier, 1975; Scavia et al.,
1981; Chadderton et al., 1982; Melching and Anmangandla,
1992), watershed modeling (Garen and Burges, 1981; Bates and
Townley, 1988) and subsurface flow and contaminant transport
(Sagar, 1978; Dettinger and Wilson, 1981; Devary and Doctor,
1982; Townley and Wilson, 1985) among others.

Though several studies have been carried out with the objective
of attempting to verify the assumptions of the FOVA, it appears
that no general conclusions can be drawn from the comparisons
of FOVA and MC simulations. When Gamma distribution is the
assumed model of streamflows, using the central limit theorem
(CLT), estimates of the mean and standard deviation of the inflows
may be assumed to follow a normal distribution. Here the CLT
applies approximately because estimates of the mean and variance
of annual streamflows are made up of the sum of many individual
streamflows. We show that when normal distributions are
assumed in the MC simulations, the results of output uncertainty
analysis are in agreement with the FOVA. Burges (1979) found
accurate agreement between FOVA and MC when the Cv of the
input variables was found to be about 0.2. However he also used
a non-normal distribution for the flood frequency: extreme value
type I. Thus it remains unclear if it is the effect of Cv or the
non-normal distribution.
3. Previous comparisons of FOVA with MC simulations

Previously MC simulation has been used to check the accuracy
of variance estimates from the more approximate FOVA. Studies
by Burges and Lettenmaier (1975), Garen and Burges (1981),
Walker (1982), Burges (1979) found that the two methods were
in agreement. In the Burges and Lettenmaier (1975) study, normal
distributions for the random variables was assumed in the
Streeter-Phelps equation considering a Cv range of the input ran-
dom variable of 0.05–0.32. However, in the Garen and Burges
(1981) study, a highly non-linear rainfall–runoff model was used
assuming uniform distributions for the random variables with Cv
range of 0.1–0.6. In the Garen and Burges study agreements were
found when the Cv of the input random variables were less than
0.3. However studies by Scavia et al. (1981), Gardner et al.
(1981), Gardner and O’Neill (1983), Smith and Charbeneau
(1990) found contrary results. Scavia et al. (1981) considered a
highly non-linear lake eutrophication model assuming triangular
distributions with Cv range of 0.16–0.42. Gardner et al. (1981) also
considered a non-linear model. Though in these studies the three
cited assumptions of FOVA were not met, it is also noted that in
most cases, independence of the input random variables was
assumed which would have led to the observed disagreement.
Scavia et al. (1981) actually confirmed that near linearity did not
play a significant role in the disagreement between the FOVA
and MC results. These studies illustrate that the three assumptions
previously cited as necessary for a good fit of FOVA analysis are
apparently not adequate or sufficient.

Ignoring higher order terms has been highlighted as one of the
reasons why FOVA does not yield accurate results. However,
including such higher order terms is only possible for bias esti-
mates (see Phatarford, 1977 for a good example of how to use
FOVA to derive a first estimate of bias). For variance estimates such
terms requires the knowledge of higher order moments which are
mostly not available. Bates and Townley (1988) suggest that inclu-
sion of second order terms in Eq. (2) may increase the accuracy of
mean estimates especially when the degree of non-linearity is sig-
nificant while Scavia et al. (1981) shows that first order lineariza-
tion is probably not the main reason that disagreement between
variance estimates from FOVA and Monte Carlo simulations. For
functional relations with strictly independent random variables
Tyagi and Haan (2001) derived the correction factors FOVA esti-
mates of mean and variance of a multiplicative and additive power
function. Generally most studies conclude that the lack of agree-
ment increased as the variability of input random variable was
increased. We hypothesize that if the covariance between the input
random variables is included, the FOVA may give results that are
almost in agreement with MC even when these assumptions are
violated. However, for most models, it is not easy to evaluate this
covariance thus this is one of the main limiting factors of the appli-
cation of FOVA. In general, we conclude that MC experiments are
essential for evaluating the degree of accuracy obtained from
FOVA, and such an approach is taken here. Once, or if, FOVA is ver-
ified, however, it can provide advantages over MC analyses because
it provides more general results which are much less computa-
tional intensive than MC experiments.
4. Generalized SRY relationship based on actual streamflows

The generalized SRY that was used to derive estimates of water
supply yield, Y, in this study was developed by Kuria and Vogel
(2014a) from a global database of 729 unregulated rivers all of
which had continuous monthly streamflow data for at least
25 years (see their Fig. 1 for the spatial coverage of the dataset).
The median mean annual runoff (MAR) = 354 mm, coefficient of
variation (Cv) = 0.314 and skewness (V) = 0.561 while the maxi-
mum MAR = 5370 mm, Cv = 2.97 and V = 0.119 and minimum
MAR = 0.393 mm, Cv = 0.0619 and V = �2.22. See Tables 1 and 2
of McMahon et al. (2007b) for detailed statistical descriptions of
these rivers. This is the same dataset used by McMahon et al.
(2007b) to develop a generalized SRY for estimating reservoir stor-
age capacity S. Kuria and Vogel (2014b) found that when the SRY
model developed by McMahon et al. (2007b) for estimating S, is
used (solved) to estimate yield, Y, the resulting estimates often
led to yield ratios (yield/mean annual of the flows) Y/l > 1 which
are infeasible in practice. The following approach was used by
McMahon et al. (2007b) to obtain the values of the variables
needed to develop their generalized SRY model. For each monthly
flow series, behavior analysis (McMahon and Adeloye, 2005, pg
80–81) was used to calculate storage capacities for hypothetical
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Fig. 1. Comparison of coefficient of variation of yield using FOVA and MC
simulation.

Table 1
Coefficient of variation of estimated reservoir yield, Cy resulting from Monte-Carlo
(MC) and first-order (FOVA) analysis for reservoirs fed by Gamma annual inflows with
coefficient of variation, Cq.

n MC
(Cq = 0.5)

FOVA
(Cq = 0.5)

MC
(Cq = 1)

FOVA
(Cq = 1)

MC
(Cq = 2)

FOVA
(Cq = 2)

10 0.155 0.145 0.268 0.264 0.482 0.514
20 0.107 0.104 0.188 0.189 0.335 0.368
30 0.087 0.085 0.152 0.155 0.273 0.302
40 0.075 0.074 0.132 0.135 0.235 0.262
50 0.067 0.066 0.118 0.121 0.21 0.235
60 0.061 0.061 0.108 0.11 0.191 0.214
70 0.057 0.057 0.1 0.102 0.177 0.199
80 0.053 0.053 0.093 0.096 0.165 0.186
90 0.05 0.05 0.088 0.09 0.156 0.175

100 0.047 0.047 0.083 0.085 0.148 0.166

Table 2
The Lower Intervals (LI) and Upper Interval (UI) of reservoir true yield estimated from
Eq. (1) for R = 0.8 and 0.95 and S/l = 0.5, 1 and 2.5.

True yield, Y (m3/yr) LI (m3/yr) UI (m3/yr)

R = 0.8, S/l = 0.5 277 246 318
1 319 283 366
2.5 384 341 441

R = 0.95, S/l = 0.5 226 200 259
1 260 230 298
2.5 313 278 359

260 F. Kuria, R. Vogel / Journal of Hydrology 529 (2015) 257–264
reservoirs required to meet yields in the range of 30–80% of mean
historical flow for three steady state reliabilities of 90%, 95% and
98%. A constant yield was assumed during each simulation.
These experiments resulted an overall dataset with 12, 413 combi-
nations of S, R and, Y across all 729 rivers.

McMahon et al. (2007b) used Weighted Least Squares (WLS)
regression to develop two sets of generalized SRY models based
on storage estimates derived from SPA and BA. WLS regression
was employed to account for the fact that each streamflow record
had a different record length leading to estimates of S, R, and Y with
varying accuracy. The weights were proportional to the record
lengths giving greater weight to rivers with more streamflow infor-
mation. Their resulting multivariate regression equations relate
the storage capacity, S, as a function of numerous independent
variables including: the mean l, standard deviation r, and skew
c of the annual inflows and those parameters describing the sys-
tem yield Y and reliability R. Their equation for storage capacity
based on BA summarized in Table 4 of their paper is:
S ¼ 1:932l�3:254r1:599c�0:074Y2:67Z1:445
R ðR2 ¼ 0:899Þ ð5Þ

where S is storage capacity, l, r and c are the mean, standard devi-
ation and skew coefficient of the annual inflows, Y is the yield which
all have units in millions of m3. ZR is the standardized normal vari-
ate with R equal to the system reliability (for example, a system
with reliability R = 0.95 corresponds to a value of ZR = 1.645).
Kuria and Vogel (2014a) evaluated Eq. (5) more fully by comparing
a more robust form of regression known as Iterative Reweighted
Least Squares (IRLS) and concluded that Eq. (5) compared favorably
to their slightly improved SRY relationship. However, they found
that when Eq. (5) is solved for Y, that resulting estimates of the yield
ratio were often greater than unity, which is physically not possible.
Thus Kuria and Vogel (2014a) developed a generalized SRY relation-
ship using yield as the dependent variable. They employed IRLS
regression to minimize the impact of outliers, thus producing a
more robust regression. Their generalized SRY relationship is:

Y ¼ 0:631l1:135r�0:342c0:017S0:203Z�0:306
R ðR2 ¼ 0:992Þ ð6Þ

where all the variables have the same meaning and units as
described in Eq. (5).

When the yield ratio is computed using Eq. (6), Kuria and Vogel
(2014a) found that all values were less than unity as expected.
Because the models in Eqs. (5) and (6) are based on an actual global
streamflow database of 729 rivers, they are able to reproduce both
the empirical distribution of streamflows and the resulting empir-
ical SRY relationships globally. Importantly, the database used to
develop Eqs. (5) and (6) consists of monthly flow records from riv-
ers from different parts of the world: from USA, to Europe, to South
Africa among others, with varying hydrologic characteristics: see
McMahon et al. (2007a,b,c) for a detailed description of these char-
acteristics. Thus both models may be considered for application
worldwide.

Eq. (6) can be generalized as:

Y ¼ KSb1 Zb2
R lb3rb4cb5 ð7Þ

where K and bi, i = 1,. . .,5 are the constants of the model. Thus where
the streamflow data is available for say n years, estimates of Y that
can be met from a storage capacity S with a specified reliability R
can be evaluated using Eq. (8)bY ¼ KSb1 Zb2

R l̂b3
Q r̂b4

Q Gb5
Q ð8Þ

where bY is the estimate of Y; l̂Q ; r̂Q and GQ are the estimates of
mean, standard deviation and skewness of the annual inflows into
the reservoir respectively. For Gamma flows GQ ¼ 2Cv̂ where

Cv̂ ¼ r̂Q
l̂Q

. Substituting into Eq. (8) and collecting like terms results in:

bY ¼ 2b5 KSb1 Zb2
R l̂b3�b5

Q r̂
2

b4þb5
2

� �
Q : ð9Þ

Letting;

a ¼ 2b5 KSb1 Zb2
R

b ¼ b3 � b5 ¼ 1:118

c ¼ b4 þ b5

2
¼ �0:163

And substituting for these constants in Eq. (9) results inbY ¼ al̂1:118
Q ðr̂2

Q Þ
�0:163 ð10Þ

Eq. (10) is used to analytically derive the variance of yield esti-
mates from a given reservoir of storage capacity S and reliability R
fed by Gamma inflows. Since Eq. (10) is a power law equation, its
exponents can be interpreted as nondimensional sensitivity coeffi-
cients known as elasticities. Thus a unit increase in mean annual



F. Kuria, R. Vogel / Journal of Hydrology 529 (2015) 257–264 261
flow increases the yield from the reservoir by 1.12% while a unit
increase in variance of the flows reduces the yields from the reser-
voir by 0.16%. A unit change in mean annual flow has a larger
impact on the yields than a unit change in variance of the stream-
flows. These results can be used to evaluate the impacts of climate
change of surface water reservoir yields. Here Eq. (10) is used to
derive the variance of estimated reservoir yields for reservoirs
fed by Gamma streamflows using the FOVA analytical uncertainty
analysis method.

5. Moments of estimated moments of reservoir yield

The yield model given in Eq. (10) is a function of sample mean
and sample variance of the inflows into the surface water reservoir.
Therefore for us to derive the variance of reservoir yield estimates,
the central moments of sample a mean and sample variance are
needed. We consider the cases of both normal and Gamma inflows
in this section.

For a given random variable X of length n say streamflow record
Xn, we use the well known estimators of sample mean and sample
variance given by:

Sample mean; l̂Xn ¼
P

nXi

n
ð11aÞ

Sample variance; r̂2
Xn
¼
P

nðXi � l̂Xn Þ
2

n� 1
ð11bÞ

Eqs. (11a) and (11b) are consistent and unbiased estimators of
the sample mean and sample variance. In general,

Ebl̂Xnc ¼ lX ð12aÞ

Varðl̂XnÞ ¼
r2

X

n
ð12bÞ

Eðr̂2
Xn
Þ ¼ r2

X ð12cÞ

Cho and Cho (2008) derived the general solution for the
Varðr̂2

Xn
Þ as:

Varðr̂2
Xn
Þ ¼ 1

n
l4 �

n� 3
n� 1

l2
2

� �
ð12dÞ

where l2 and l4 are the second and fourth moments of the random
variable evaluated about the central moments. For a normal distri-
bution l2 ¼ r2 and l4 ¼ 3l2

2 ¼ 3r4 (Stuart and Ord, 1987).
Replacing for these moments in Eq. (12d) and solving, when stream-
flows follow a normal distribution Eq. (12d) reduces to the well
known result that:

Varðr̂2
Xn
Þ ¼ 2r4

X

n� 1
ð13Þ

For a Gamma distribution, GQ ¼ 2Cv̂ , l4 ¼ 3þ 6
a

� �
r4 and

l2 ¼ r2 where a ¼ l2

r2. Replacing for these moments in Eq. (12d)
and solving, when streamflows follow a Gamma distribution Eq.
(12d) reduces to:

Varðr̂2
Xn
Þ ¼ 2r4

X

n� 1
nl2

X þ 3nr2
X � 3r2

X

nl2
X

� �
ð14Þ

¼ 2r4
X

n� 1
1þ 3Cv2

X
n� 1

n

� �� �
ð15Þ

The coefficient of variation of these moments can be evaluated
as:

Cv l̂Xn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðl̂Xn Þ

p
Eðl̂XnÞ

¼ rX

lX

ffiffiffi
n
p ð16Þ
Cv r̂2
Xn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðr̂2

Xn

q
Þ

Eðr̂2
Xn
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

n� 1
1þ 3Cv2

X
n� 1

n

� �� �s
ð17Þ

The above results were used to derive the variance of yield esti-
mates for reservoirs fed by Gamma inflows using FOVA uncertainty
analysis method.

6. Derivation of variance of water supply yield Y using First
Order Variance Approximation (FOVA)

For a bivariate function given by Eq. (10)

Var½bY � ffi @bY
@l̂Q

 !2

Varðl̂Q Þ þ
@Y
@r̂2

Q

 !2

Varðr̂2
Q Þ

þ 2
@bY
@l̂Q

@bY
@r̂2

Q

�����
lxj

Covðl̂Q ; r̂2
Q Þ ð18Þ

Thus for reservoirs fed by Gamma distributed inflows, the vari-
ance of yields estimated from Eq. (10) can be derived as:

VarðbY Þ ¼ abl̂b�1
Q r̂2c

Q

� 	� 	2
Varðl̂Q Þ

þ acl̂b
Q r̂2ðc�1Þ

Q

� 	2
Var r̂2

Q

� 	
þ 2 abl̂b�1

Q r2c
Q

� 	
acl̂Q r̂2ðc�1Þ

Q

� 	
Covðl̂; r̂2

Q Þ ð19Þ

Now the covariance between sample mean and sample variance
is derived by Stuart and Ord (1987) as; Covðx̂; s2Þ ¼ l3

n . And for

Gamma distribution l3 ¼ 2r4

l . Therefore covariance between sam-

ple mean and sample variance when flows follow Gamma distribu-
tion is Covðx̂; s2Þ ¼ 2r4

nl . Substituting for variance of sample mean,

variance and their covariance,

VarðbY Þ ¼ abl̂b
Q r̂2c

Q

� 	2 Cq2

n

þ acl̂b
Q r̂2ðc�1Þ

Q

� 	2 2r4

n� 1
1þ 3Cq2 n� 1

n


 �� �
þ 4bc al̂b

Qr2c
Q

� 	2 Cq2

n
ð20Þ

which can be simplified as:

VarðbY Þ ¼ b2ðbY Þ2 Cq2

n
þ c2ðbY Þ2 2

n� 1
1þ 3Cq2 n� 1

n


 �� �
þ 4bcðbY Þ2 Cq2

n
ð21Þ

VarðbY Þ ¼ bY 2 b2 Cq2

n
þ c2 2

n� 1
1þ 3Cq2 n� 1

n


 �� �
þ 4bc

Cq2

n

 !
ð22Þ

Now;

Cŷ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbY Þq
EðbY Þ ð23Þ

Using FOVA, EðbY Þ � Y . Substituting for EðbY Þ in Eq. (19), the final
form of the equation for Cy reduces to:

Cy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n
Cq2 þ 2c2

n� 1
1þ 3Cq2 n� 1

n


 �
þ 4bc

n
Cq2

s
ð24Þ
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Fig. 2. Comparison of coefficient of variation of yield using FOVA and MC
simulation assuming the covariance between input random variable, Cov = 0.
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The results of coefficient of variation of yield estimates Cy,
derived from FOVA are shown in Fig. 1 (labeled for example
FOVA Cq = 0.5) evaluated at different coefficient of variation of
streamflows (Cq) when the covariance between input random vari-
ables and Fig. 2 when this covariance is assumed to be zero. Also
included in Figs. 1 and 2 are the results of Monte Carlo simulations
of streamflows from the same distribution (labeled for example
McCq = 0.5). There is good agreement between both methods
when the covariance between the input random variables is con-
sidered. These results show that when the correlation between
mean and variance is a taken into account, the MC and FOVA
results are in good agreement. Therefore inclusion of covariance
terms can be quite significant for obtaining good approximation
of variance estimates using FOVA. We also note from Fig. 1, as
did Kuria and Vogel (2014b) that a generalized understanding of
the variability in estimates of water supply yield can be obtained
from Eq. (20) which only depends on the coefficient of variation
of the inflows and the record length. This is quite important
because the result is independent of particular values of the stor-
age capacity S and/or reliability R. A tabulation of the results of
these comparisons are also presented in Table 1 which demon-
strates the effects of the variability of streamflows (quantified by
Cq) and the length of the streamflow record n for storage ratio,
(s/mean) = 1.5 and reliability, R = 0.9 on the coefficient of variation
of estimated reservoir yields Cy.

Fig. 1 and Table 1 illustrate that the agreement between MC and
FOVA analyses is greatly quite good, but that agreement degrades
slightly as the coefficient of variation of the streamflows Cq,
increases and as the sample size n, decreases.
7. The minimum length of streamflow records for design of
reservoirs

Our analysis of the variability of water supply reservoir yields
results in several conclusions. (1) The constant water supply yield
values used during the design of water supply reservoirs may not
actually be achieved during the actual performance of the reser-
voir, especially when only short streamflow records are available
for rivers with high variability (arid and semi-arid regions). (2)
Water supply reservoir yield estimates are a random variable and
can be approximated by the Gamma (GAM) probability distribu-
tion (see Kuria (2014) for further details). (3) When Cy is used to
characterize the variability of the yield estimates, the storage ratio
(S/l) and reliability of the yield estimates do not appear to influ-
ence the variability of yield estimates. The length of record n and
the coefficient of variation of inflows, Cq, are the only two factors
that appear to influence the coefficient of variation of the yield
estimates, and (4) the likely intervals of yield estimates can be
determined using the analytical Cy model derived in this paper
for known reservoir storage capacities, reliability, and length of
record of streamflows. These results can be used to provide guid-
ance to reservoir design, planning and management concerning
the necessary minimum length of streamflow data and other
sources of information needed to obtain reservoir yields of a spec-
ified reliability. With the awareness that actual yields from water
supply reservoirs are a random variable then it would be more
accurate for reservoir designs to consider the range of yields
expected from the reservoirs for a given reliability instead of a sin-
gle value. For such designs to be carried out, then the minimum
length of streamflow data to be considered during reservoir design
would need to be specified. This is analogous to specifying the min-
imum sample size of data required for estimating parameters
within a specified range which is often done in environmental
and water quality studies as is described below.

Studies for determining such minimum sample sizes have been
carried out in ground water monitoring studies (Nelson and Ward,
1981) and environmental pollution monitoring (Gilbert, 1987)
among others. According to these studies, the minimum number
of samples required to estimate the mean of a random variable
depends on the confidence interval associated with a sample mean,
the variance and the margin of error of the mean. Gilbert (1987)
derives formulas for determining the minimum sample sizes for
estimating the mean for both correlated and independent data
when the data follows a normal distribution. We use this concept
in this study to determine the minimum length of streamflow
records required for water supply reservoirs yields to fall within
a specified range for a given reliability. Because here the true yield
is known apriori, likely intervals are considered here instead of
confidence intervals. Because the probability distribution of reser-
voir yield estimates can be approximated by a Gamma (GAM) dis-
tribution with skewness coefficient in the range �3 < V < 3, we use
the Wilson and Hilferty (1931) quantile function given in Eq. (25)
to determine the yield estimate for a given quantile, p.

Yp ¼ lY þ Kp � rY ð25Þ

Kp ¼
2
cY

1þ ZpcY

6
� 2cY

36

� �3

� 2
cY

 !
ð26Þ

where Yp is the yield estimate for a given quantile p, lY ¼ Y (the
true yield), cY and rY are the skewness and standard deviation of
yield estimates Y and Zp is the standardized normal variate for a
given percentile p. The standard deviation of Y estimated from
rY ¼ Cy � Y where Cy is obtained from Eq. (26) and for GAM distri-
bution, cY ¼ 2Cy. Therefore, the relative error of the yield estimates
obtained from error divided by the true yield is obtained from:

dp ¼ Kp � CY ð27Þ

Thus the relative error of reservoir yields depends on the coef-
ficient of variation of the streamflows Cq and the length of the
streamflow record, n. Therefore Eq. (27) can be used to determine
the minimum streamflow record required for reservoir yields to
fall within a specified range. Fig. 3 shows the results of minimum
length of streamflow record required to ensure that water supply
yields remain within d% of their true values 95% of the time
(p = 0.025). Fig. 2 illustrates the lower likely interval of the yield
estimates corresponding to various values of the margin of error
d%. The results in Fig. 3 are surprising because very long stream-
flow records are required to ensure that yields from water supply
reservoirs have small margin of errors and especially for rivers
with high variability. For example when a reservoir system is
designed considering 40 years of streamflow data on a river with
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Cq = 2, the actual yields obtained from the reservoir can be as low
as over 50% of the design yield value. Therefore, such a reservoir
may rarely meet the objective of reducing the variability in the
delivery of water supply from the river. On the same river if the
yields from the reservoirs are to be about 30% lower than the
design yield over 100 years of streamflow data would be required.
Such long records of streamflow are rarely available and especially
in developing countries.

8. Case study

Since this study is based on a global database, the result of this
analysis can easily be used to determine the likely range of yields
that can be expected on a given reservoir site on a river located in
any part of the world. Since the generalized SRY model used here is
developed from regression analysis, the findings in this study can
only be used for rivers which have similar statistical characteristics
as well as the reservoir operating systems (i.e. storage and reliabil-
ity), considered in the development of the regression equations for
accurate results to be obtained. Determination of likely intervals of
a given random variable requires knowledge of the frequency dis-
tribution of the variable. A detailed analysis of the approximate
distribution of reservoir yield is presented in Kuria (2014) which
shows that a three parameter Gamma distribution, also known as
the Pearson type III distribution (P3), provides the best overall
goodness of fit to estimates of water supply yield. However, an
LN2 or GAM model would also suffice for approximating the distri-
bution of water supply yield, regardless of the inflow model or
record length considered since all of the values of probability plot
correlation coefficients were extremely high for all cases consid-
ered. Considering LN2 as the distribution of the yield estimates,
the pth quantile yield estimate is given by:

Yp ¼ expðly � ryZpÞ ð28Þ

where Zp is the standardized normal variate for a given quantile p,

ly ¼ log Yffiffiffiffiffiffiffiffiffiffi
1þCy2
p
� �

and ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ Cy2Þ

q
. Here Y is estimated using

Eq. (6) and Cy is obtained from Fig. 1 or Eq. (20) once the Cq of the
inflows into the reservoir are known.

We illustrate our method using a river in the USA located at U.S.
Geological Survey gauging station 03439500. Using annual stream-
flow data for 1925–1955, the annual statistics of the streamflow
data are calculated as mean, l̂ ¼ 300:26, standard deviation,
r̂ = 72.42, coefficient of variation, Cq̂ ¼ 0:24, and skewness,
ĉ ¼ 0:795. These statistics are within the range of the global data-
set considered in this study as shown in Table 2 of McMahon et al.
(2007b). The units of mean l and standard deviation, r are million
cubic meters per year. Assuming hypothetical reservoirs with stor-
age ratios S/l of 0.5,1 and 2.5 and R = 0.85 and 0.95, the likely
ranges of yields that can be expected in the river are estimated
as shown in Table 2.
9. Conclusion

This paper develops a first order, approximate, analytical uncer-
tainty model that can be used to document the uncertainty in esti-
mated water supply reservoir yields which arises from the natural
variability inherent in streamflows as well as the limited length of
records available. Our analysis is general because it is based on pre-
vious work (Kuria and Vogel, 2014a,b) which introduced a general-
ized global model describing the relationship between the storage
capacity of a reservoir S, and its yield and reliability R. The global
SRY model is an empirical model which leads to accurate
(R2 = 0.99) estimates of reservoir yield based on estimates of the
mean variance, and skewness of the reservoir inflows.

A First Order Variance Approximation (FOVA) was used to
develop the analytical uncertainty model for reservoir yield esti-
mates and Monte Carlo (MC) simulations were used to check the
accuracy of the variance estimates from the resulting analytical
model. The results indicate good agreement between the derived
uncertainty model and the MC simulations. Previously FOVA has
been assumed to result into accurate results when there was near
linearity in functional relations, the input variables followed a near
normal distribution, and the variability of the random input vari-
ables were small. In this paper, a non-linear function was used
with non-normal (Gamma) and highly variable input random vari-
ables. However since the covariance between the input random
variables was included in our analysis, we conclude that perhaps
the covariance of the random input variables plays a central role
for obtaining accurate results from FOVA. In many cases, the
covariance of the input random variables is not available which
may have led to th in conclusion that FOVA does not yield accurate
results in numerous previous studies.

Interestingly, we found that the coefficient of variation of esti-
mated water supply yields were independent of the storage ratio
(S/l) and reliability of the yield. This observation allowed us to
develop very general relationships which summarize the variabil-
ity of yield estimates for a very wide class of reservoir systems over
a wide range of reliabilities and yields. For this simple SRY model,
the length of record and the coefficient of variation of the reservoir
inflows, appear to be the only two factors that influence the coef-
ficient of variation of the yield estimates. The variability of yield
estimates increases as the variability of flows increases and
decreases as the length of record increases. With the awareness
that actual yields from water supply reservoirs are a random vari-
able, we used the our analytical model which gives the coefficient
of variation of yield, to determine the minimum length of stream-
flow record required for designing reservoirs that will deliver
yields within a prespecified margin of error. Results indicate that
relatively long streamflow records are required to ensure that the
margin of error of yields delivered from reservoirs are small, par-
ticularly for watersheds with highly variable streamflows.
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