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Abstract The field of hazard function analysis (HFA) involves a probabilistic assessment of the ‘‘time to
failure’’ or ‘‘return period,’’ T, of an event of interest. HFA is used in epidemiology, manufacturing, medicine,
actuarial statistics, reliability engineering, economics, and elsewhere. For a stationary process, the probabil-
ity distribution function (pdf) of the return period always follows an exponential distribution, the same is
not true for nonstationary processes. When the process of interest, X, exhibits nonstationary behavior, HFA
can provide a complementary approach to risk analysis with analytical tools particularly useful for hydrologi-
cal applications. After a general introduction to HFA, we describe a new mathematical linkage between the
magnitude of the flood event, X, and its return period, T, for nonstationary processes. We derive the proba-
bilistic properties of T for a nonstationary one-parameter exponential model of X, and then use both Monte-
Carlo simulation and HFA to generalize the behavior of T when X arises from a nonstationary two-parameter
lognormal distribution. For this case, our findings suggest that a two-parameter Weibull distribution pro-
vides a reasonable approximation for the pdf of T. We document how HFA can provide an alternative
approach to characterize the probabilistic properties of both nonstationary flood series and the resulting
pdf of T.

1. Introduction

Many disciplines are concerned with the time to arrival of a certain magnitude event in excess of a design
threshold, which results in a system failure. Depending on the field of application, the time to arrival is often
termed the return period, time to failure, or survival time, just to name a few. The analysis of this variable is
termed ‘‘hazard function analysis’’ (HFA), and has roots in many fields. HFA is used to determine the onset
or relapse of a disease in the bio-statistics, the time until a person becomes employed in economics, the
time until a device fails in reliability engineering, and the time to death in actuarial science, among many
other fields and uses [Klembaum, 1996; Klein and Moeschberger, 1997; Tung et al., 2006; Kottegoda and Rosso,
2008; Cleves, 2008; Finkelstein, 2008; Lawless, 2011]. HFA comprises a well-known set of tools for characteriz-
ing the probability distribution function (pdf) of the return period, T, associated with a specific event or pro-
cess over the course of a time period of interest. Importantly, in nonstationary cases (i.e., where the event
likelihood changes through time), HFA can represent T and its distribution. Using HFA to improve our under-
standing of the probability distribution of T is important because design standards in reliability engineering
and manufacturing, as well as policies for clinical trials in public health, are based on the expected time until
the failure of a piece of equipment, or even the end of a person’s life after diagnosis of a disease.

In hydrology, we are concerned with the return period T of a flood event which exceeds the capacity of cur-
rent flood prevention systems, and the corresponding reliability that such an event will not exceed the
design capacity over a future planning horizon. Flood series are known to exhibit nonstationary behavior
due to changes in land use, climate, water infrastructure, and other factors [Milly et al., 2008, 2015]. We apply
HFA to the return period of flood events, where a failure is defined as a flood event X which exceeds a
design flood magnitude xo. Our goals are (1) to show that HFA can provide a mathematical linkage between
the probabilistic properties of X and T for nonstationary processes and (2) to illustrate how HFA can be used
to generalize and characterize our understanding of the probabilistic properties of the return period and
reliability under nonstationary conditions. The paper is organized as follows: section 2 provides a brief sum-
mary of stationary and nonstationary flood frequency analysis; section 3 presents an overview of HFA theory
and applications; section 4 details the derivation of stationary and nonstationary Exponential models of
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flood peaks using HFA; similarly, section 5 evaluates a nonstationary lognormal model of flood peaks using
HFA and documents how the Weibull HFA model can represent the distribution of T for this case; and sec-
tion 6 provides concluding remarks.

2. Summary of Stationary and Nonstationary Flood Frequency Analysis

Stationarity implies that flood observations (e.g., annual maxima), X, are identically distributed with cumula-
tive distribution function (cdf), FX(x; h), where h is a vector of parameters that does not change in time.
Under stationary conditions, the design event xo determines the capacity of the flood control project corre-
sponding to a fixed exceedance probability associated with xo, equal to p 5 1 2 FX(xo; h) so that
xo5F21

x 12p; h½ �. For the stationary case, p is constant over time and the return period, T, follows an
exponential (continuous) or geometric (discrete) distribution with average return period equal to 1/p
(for example, see Douglas et al. [2002] for derivation). This is an important result, because under station-
ary conditions, the distribution of T is always exponential, regardless of the pdf of the process X, of
interest.

Under nonstationary conditions, the parameters h of the distribution of X are not constant, and the nonsta-
tionary cdf is given as FX(x; h(t)). Now the exceedance probability associated with the design event xo is a
function of time and is given by pt 5 1 2 FX(xo; h(t)). Thus, under nonstationary conditions, the risk of failure
and associated reliability change accordingly (see Olsen et al. [1998], Salas and Obeysekera [2014], and
Cooley [2013] for mathematical details). In a review of developments in nonstationary flood frequency anal-
ysis, Bayazit [2015] notes a recent increase in the number of articles on this subject. Despite this increasing
attention, fundamental questions still remain concerning whether or not nonstationary methods are
needed [see e.g., Cohn and Lins, 2005; Lins and Cohn, 2011; Matalas, 2012; Montanari and Koutsoyiannis,
2014; Serinaldi and Kilsby, 2015]; and further, the question of how to select an appropriate design event
given evidence of nonstationarity and future uncertainty [Obeysekera and Salas, 2013; Salas and Obeysekera,
2014; Read and Vogel, 2015; Rootz�en and Katz, 2013; Stedinger and Griffis, 2011]. Since the work of Cohn and
Lins [2005], one must always question whether or not a deterministic trend can be distinguished from sto-
chastic persistence.

Interestingly, in spite of the tremendous attention given to methods for characterizing nonstationary flood
frequency distributions associated with flood discharges, X, relatively little attention has been given to
understand the properties associated with the return period, T, or reliability indices associated with nonsta-
tionary hydrologic variables X. We do not attempt to summarize the myriad of recent papers which intro-
duce nonstationary probabilistic models of X (see Bayazit [2015] for a recent review). Instead, we focus our
attention here on the few studies which have considered the probabilistic properties of T under nonstation-
ary conditions.

Obeysekera and Salas [2013] and Salas and Obeysekera [2014] linked the probabilistic properties of X and T
using the theory introduced by Olsen et al. [1998], Cooley, [2009], Wigley [2009, reprinted], and others for a
few particular cases. Similarly, Read and Vogel [2015] used the theory introduced by Olsen et al. [1998] and
others, along with Monte-Carlo simulations to link the probabilistic properties of X and T for a wide class of
systems characterized by a nonstationary lognormal (LN2) model which was found to be representative of
actual flood series across the continents of the U.S. [Vogel et al., 2011] and the U.K. [Prosdocimi et al., 2014].
By citing those studies, we are not promoting the application of nonstationary methods, rather, we are only
providing support and evidence for the goodness of fit of that particular nonstationary LN2 model eval-
uated at thousands of rivers on two separate continents. It may be important to consider the consequences
of nonstationarity as illustrated by Read and Vogel [2015] who showed that even a small degree of nonsta-
tionarity associated with X can lead to extremely complex shapes in the corresponding pdf of T. This study
extends the work of Read and Vogel [2015] by exploiting HFA instead of the approach of Olsen et al. [1998],
to generalize our understanding of the impact of nonstationary behavior in X on the probabilistic properties
of T. As we discuss in the next section, HFA has been applied to water resources problems to describe the
probabilistic properties of T [see e.g., Tung and Mays, 1980; Tung and Mays, 1981; Lee and Mays, 1983; Plate
and Duckstein, 1987; Mays and Tung, 1992]. Nevertheless, this is the first study we are aware of that uses
HFA to link the probabilistic properties of X and T.
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3. Hazard Function Definitions, Theory, and Applications

Time to failure analysis is a branch of HFA that deals with the length of time T that a system remains opera-
tional until experiencing a failure (i.e., exceedance) event. In reliability engineering, such an analysis pro-
vides an approach for combining the various factors which tend to cause failures (e.g., environmental and
operational deterioration) into a single random variable, T [e.g., Tung and Mays, 1980; Mays, 1996; Tung
et al., 2006; Kottegoda and Rosso, 2008]. Table 1 summarizes definitions and applications of the hazard rate
function (defined below) in fields that commonly apply HFA, also widely known as survival analysis. Exten-
sive descriptions of survival analysis can be found in monographs on the subject [Klembaum, 1996; Klein
and Moeschberger, 1997; Cleves, 2008; Lawless, 2011; Finkelstein, 2008] and textbook chapters discussing HFA
in broader contexts such as probability [Bean, 2001], applied statistics [Kottegoda and Rosso, 2008], and reli-
ability engineering [Mays and Tung, 1992; Tung et al., 2006; Mays, 1996]. Nonparametric and semiparametric
methodologies in survival analysis, not explored here, are also commonly applied [see Kaplan and Meier,
1958; Cox, 1972; Klembaum, 1996].

The hazard function, or failure rate function h(t), is central to HFA and is defined as the probability that a
failure event occurs in a given time interval (t, t 1 Dt) [e.g., Tung et al., 2006]:

hðtÞ5 fT ðtÞ
12FT ðtÞ

52

dST ðtÞ
dt

ST ðtÞ
(1)

where h(t) is in units of failures/time, fT is the pdf of the return period, or time to failure T, FT is the cdf of T,
and ST 5 1 2 FT is the survival function of T, also known as the reliability function, which represents the
probability of no failure in the time interval (0, t], given that failure has not yet occurred prior to t.

From the definition in (1), it follows that the cumulative hazard function H(t), which represents the total
number of failures over a specified time interval [Cleves, 2008], is given as

HðtÞ5
ðt

0

hðsÞds5
ðt

0

dST ðsÞ
ST ðsÞ

ds52ln ðST ðtÞÞ (2)

The survival function of the return period T can be rewritten from (2):

ST ðtÞ5exp 2

ðt

0

hðsÞds

0
@

1
A5exp ð2HðtÞÞ (3)

For stationary independent and identically distributed processes, the hazard function is constant as is
shown below, and the return period T associated with the design event xo follows an exponential (geomet-
ric) pdf for the continuous (discrete) case, regardless of the form of FX(x; h) [see Gumbel, 1941; Thomas,
1948; Douglas et al., 2002; Volpi et al. 2015]. See Douglas et al. [2002] for a discussion of how the assumption
of independence impacts the probabilistic properties of T.

The hazard function for the one-parameter exponential (EXP1) case with rate parameter k can be derived
from (1) as:

hðtÞ5 fT ðtÞ
12FT ðtÞ

52
kexp ð2ktÞ
exp ð2ktÞ 5k (4)

The constant hazard rate in (4) reflects the constant exceedance probability po, associated with the design
event xo, so that hðtÞ5k512FXðxo; hÞ5po.

Table 1. Cross-Disciplinary Examples of HFA: Hazard Function Definitions and Applications

Field Definition Example

Manufacturing Conditional failure rate Parts wearing out in a machine
Epidemiology Age-specific failure rate Number of people in specific age group contracting a disease
Actuary statistics Force of mortality Likelihood of dying at a particular age
Reliability engineering Failure rate Failure of electronic devices
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Importantly, the hazard function defined in (1) is not necessarily a probability distribution function and is
usually only constrained to be nonnegative, h(t)� 0; it may be increasing or decreasing, nonmonotonic, or
discontinuous [Klein and Moeschberger, 1997]; however, we can interpret h(t) as the conditional probability
of failure in an infinitesimally small time period between t and (t 1 Dt) given that the system has survived
until time t. In this sense, the hazard function is a measure of risk: the greater the hazard between t and
(t 1 Dt), the greater the risk of failure in this time interval. This probabilistic interpretation of the hazard
function sets our work apart from all previous HFA research as discussed below.

To date, all previous applications of HFA that we are aware of begin with an assumed form of the hazard
function h(t) and do not derive its form from first principles as we do. Normally, h(t) is introduced as a func-
tion that attempts to characterize such nonstationary processes as the deterioration of infrastructure [Mays
and Tung, 1992], urban transportation [Hensher and Mannering, 1994], the remaining ‘‘survival’’ life of a
device or human being [Finkelstein, 2008; Lawless, 2011], time of relapse to a disease [Klein and Moesch-
berger, 1997], or duration of economic events [Kiefer, 1988]. In such parametric applications of HFA, the user
assumes that h(t) takes a certain shape (e.g., ‘‘bathtub,’’ increasing, and decreasing), which reflects ones’
intuition and/or experience about the nature of changes in the exceedance probability of a certain hazard
over time [Wienke, 2010]. We are unaware of any previous work using HFA, other than our companion paper
[Read and Vogel, 2016] which derives the hazard function from assumptions regarding the probabilistic
properties of the original variable of interest X, as is our goal. Consider a time varying model for floods, FX(x;
h(t)), in which floods are independent but not necessarily identically distributed (i/nid). Let us also restrict
ourselves to an increasing trend in the mean of the annual maximum series (AMS) [Vogel et al., 2011; Prosdo-
cimi et al., 2014]. Now the exceedance probability associated with the design event changes as a function of
time, pt, and thus the expected waiting time until a flood occurs is no longer simply 1/p. Tung and Mays
[1980, 1981] first considered this case and introduced the idea of dynamic (or time varying) reliability mod-
els to address the issue of modeling risk and reliability under such nonstationary conditions, i.e., with load-
ing as a random independent variable that changes over time and represents a composite risk of failure
that may be a combination of multiple stresses on the system. The objective of Tung and Mays [1980, 1981]
and Lee and Mays [1983] was to derive a model for the dynamic reliability of a system over a planning
period where the distribution of loads that cause system failure change over time [Lee and Mays, 1983]. Our
work extends their work by connecting the concept of dynamic reliability modeling with HFA for the pur-
poses of flood planning.

We distinguish our work from others by defining h(t) as the exceedance probability of a failure, defined as
the exceedance of an event X in excess of the design capacity xo, in the time interval (t, t 1 Dt). Thus, we
estimate h(t) from the probabilistic properties of the random variable of interest, which here is the annual
maximum flood discharge X, and the design capacity xo of the system. We relate h(t) with the cdf associated
with xo, given by FX(xo; h(t)), so that:

hðtÞ512Fxðxo; hðtÞÞ5pt (5)

where xo reflects the chosen design capacity of the system. Our primary goal is to use the hazard function
h(t) to deduce the survival function from the probability distribution of the waiting times for the next
exceedance flood event X> xo for i/nid systems given the assumption that h(t) 5 pt 5 1 2 Fx(xo, h(t)) analo-
gous to the stationary EXP1 case shown in (4).

To ensure validity of the assumption in (5), we compare our HFA approach for defining the behavior of
return periods for nonstationary flood series, with existing approaches introduced by Olsen et al. [1998] and
others. The approach of Olsen et al. [1998] relies on knowledge of pt, defined as the annual probability of
exceeding a design flood. In cases for which pt is assumed to be continuously increasing every year, the
average return period is:

T15EðTÞ511
Xtmax

t51

Yt

i51

ð12piÞ (6)

and tmax represents the year in which the exceedance probability is equal to one [see Olsen et al., 1998;
Cooley, 2013; Salas and Obeysekera, 2014; Read and Vogel, 2015]. In the following sections, we compare
results of HFA for a few simple cases with the results given in (6).

Water Resources Research 10.1002/2015WR018370

READ AND VOGEL HAZARD FUNCTIONS FOR FLOODS UNDER NONSTATIONARITY 4119



3.1. Survival and Hazard Function Analysis in the Water Resources Literature
Tung et al. [2006] and Mays [1996] provide detailed descriptions of possible hazard functions in the context
of reliability of hydraulic infrastructure. Despite the applicability of HFA to hydrologic challenges associated
with infrastructure design and planning under nonstationarity, few hydrologic studies even mention HFA in
this context [Katz and Brown, 1992; Wang et al., 2010; Zhong and Hunt, 2010]. Lee et al. [1986] applied HFA
to the problem of multiyear drought durations to identify the logistic model for describing the shape of the
hazard rate function.

Much of the literature on hydrologic applications of HFA employs a set of proportional hazard (PH) regres-
sion models first introduced by Cox [1972]. Such models differ significantly from our work because they
require survival data, information often not available in the context of water resource applications. Such PH
models are useful when survival data are available because they enable one to employ multivariate regres-
sion to relate covariates to failure processes. Cox PH models differ from the parametric models used here
because they focus on the probabilistic properties of T alone and do not assume underlying knowledge
about the functional form of the hazard function or the distributional properties of the hazard variable X.
PH models have been widely applied in the bio-statistics literature and are useful in determining whether
covariates (stationary or time varying) influence the probability of occurrence of events (i.e., does climate
influence the occurrence of floods, droughts, etc.) [Klein and Moeschberger, 1997]. Applications of PH models
in the water resources literature include characterizing flood risk [Futter and Mawdsley, 1991], climate varia-
tion [Maia and Meinke, 2010], and changes in flood behavior by the peaks over threshold method [Smith
and Karr, 1986; Villarini et al., 2012], based on covariates other than time. Literature on ‘‘trend attribution’’ in
hydrology has applied PH models to identify mechanisms for changes in peak flood regimes [Cunderlik and
Burn, 2004; Villarini et al., 2012], though more research is needed in this area [Merz et al., 2012]. A critical
limitation of the use of PH models in hydrology is the lack of a linkage between the probabilistic properties
of the flood process of interest X and the properties of the survival distribution of T, which is the focus here.

In the following sections, we employ HFA for nonstationary flood series arising from two representative
cases for flood systems: (1) a nonstationary one-parameter exponential (EXP1) distribution and (2) a more
realistic case considering a nonstationary lognormal (LN2) model. For each case, we provide a derivation of
h(t), ST(t), and H(t) and use these tools to compute design metrics of interest such as the average return
period and reliability. Our critical assumption in equation (5) is verified in two ways: by comparing results
from the HFA approach with that of Olsen et al. [1998] and others in equation (6) for both cases, and
through Monte-Carlo experiments in which we generate nonstationary flood series, and then compare
sequences of exceedance probabilities associated with a particular design event, for a wide range of flood
cases with h(t) derived using the HFA equations. Since those Monte-Carlo evaluations resulted in exact
agreement with the analytical results, for all cases considered, we do not graphically illustrate those results
here.

4. Hazard Function Analysis for Stationary and Nonstationary Exponential
Flood Peaks

The exponential distribution (EXP1) is widely used in the peaks-over-threshold (also called partial-duration-
series or PDS) method for characterizing the magnitudes of flood exceedances above some set level
[Stedinger et al., 1993]. For example, Stedinger et al. [1993] document that if the number of PDS flood arrivals
follow a Poisson process and their magnitudes follow an exponential distribution, then the series of AMS
flood magnitudes will follow a Gumbel distribution. Thus, this analysis corresponds to situations in which
the Gumbel pdf provides a good approximation to AMS. Note that until recently, the Gumbel pdf was used
as a standard in many countries [see Vogel and Wilson, 1996, Table 3].

In this section, we derive general results corresponding to HFA for the case when PDS flood magnitudes fol-
low an EXP1 distribution. This initial analysis enables us to demonstrate how the probabilistic properties of
PDS flood magnitudes X, and an associated design event xo, relate to the probabilistic properties of their
failure times, T, for a relatively realistic underlying model of flood magnitudes. The following compares the
application of HFA to both stationary and nonstationary EXP1 series. The pdf and cdf of an EXP1 random
variable, X, representing the PDS flood magnitudes above some threshold are given by
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fxðxÞ5kexp ð2kxÞ (7)

FxðxÞ512exp ð2kxÞ (8)

where k is the rate parameter, with E[X] 5 lx 5 1/k. Consider po 5 12 Fx(x), the fixed exceedance probability
associated with design event xo given by the quantile function obtained from (8):

Xo52
1
k

ln ðpoÞ (9)

Recall that since h(t) 5 p from equation (5), the survival function is given by substitution of h(t) 5 p into
equation (3), resulting in the survival distribution

ST ðtÞ512FT ðtÞ5exp 2

ðt

0

pds

0
@

1
A5exp 2p � tð Þ (10)

Similarly, since fT(t) 5 dFT(t)/dt, we obtain the pdf of the time to failure T, as an exponential distribu-
tion with parameter p, so that the average time to failure is E[T] 5 1/p for this simple stationary
case and we have verified h(t) 5 p for a hazard following a EXP1 under stationary conditions (as in
equation (4)).

Now consider the nonstationary case in which the random variable X increases with time t due to a trend in
the mean, represented by the following exponential trend model:

lxðtÞ5
1
k

exp b � tð Þ (11)

Note that for no trend, b 5 0 and the nonstationary mean reduces to the stationary mean lx51=k.
Vogel et al. [2011] and Prosdocimi et al. [2014] found that the exponential trend model in (11)
provides an excellent representation to thousands of actual flood series in both the U.S. and
the UK.

Although the trend parameter b in (11) denotes the magnitude of the flood trend, this parameter is difficult
to physically interpret. Instead, Vogel et al. [2011] and Prosdocimi et al. [2014] define the more easily under-
stood flood magnification factor M as the ratio of the flood magnitude in year (t 1 d) to the flood magni-
tude in year t (where d is a specified number of years, e.g., d 5 10 years for a decadal M). Combining the
quantile function in (9) under stationary conditions with the model for the nonstationary mean in (11) leads
to an expression for M for a nonstationary EXP1 variate:

M5
xpðt1dÞ

xpðtÞ
5

1
k exp b t1dð Þln ð12ptÞ½ �

1
k exp b � tln 12ptð Þ½ � 5exp b � d½ � (12)

which is identical to the magnification factor derived by Vogel et al. [2011] for a nonstationary LN2 variable.
The cdf of a nonstationary EXP1 variable is obtained by inserting (11) into (8) and replacing b with M given
in (12) leading to:

Fxðx; tÞ512exp ð2kx �M2t=dÞ (13)

If the design event xo is based on conditions at t 5 0, then p 5 po and the design event is fixed so that com-
bining (9) and (13) leads to an expression for the hazard rate function h(t) 5 pt as:

hðtÞ512Fxðxo; tÞ5po
M2t=d

(14)

After fixing the design event, the random variable of interest is now T, the time to failure, with t as its real-
ization. The cumulative hazard function H(t) and survival function ST(t) are obtained by inserting (14) into
the relationships in (2) and (3), respectively:

HðtÞ5
ðt

0

po
M2s=d

ds (15)
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ST ðtÞ5exp 2

ðt

0

po
M2s=d

ds

2
4

3
5 (16)

which can both be solved using numerical integration. The pdf of T is computed from the cdf by fT ðtÞ5 d
dt FT ðtÞ

which leads to the following expression, which may be solved numerically:

fT ðtÞ5
d
dt

exp

�ðt

0

po
M2s=d

ds

�2
4

3
5 (17)

Above we have shown how HFA can be used to relate the probabilistic properties of an EXP1 flood series X
combined with a fixed design event xo, to the properties of the distribution of the time to failure T, associ-
ated with the resulting design event. Figure 1 illustrates the hazard function computed from (14) for a set of
trends parameterized by decadal (d 510 years in equation (12)) magnification factors (M 5 1, 1.05, 1.2, 1.5,
and 2) assuming (a) po 5 0.1 and (b) po 5 0.01. We note from Figure 1 that the hazard rate function for the
nonstationary EXP1 model is no longer constant through time as it was under stationary conditions; and,
that greater trends are associated with more accelerated hazard rates. When h(t) approaches unity, the like-
lihood of no failure approaches zero. While h(t) is an important mathematical function in hazard analysis,
and serves as the linkage between the probabilistic properties of the time to failure, T, and the properties of
the flood series X, for the purposes of flood planning and risk communication, the survival function, cdf,
and pdf of T are more useful tools in practice.

The survival function ST(t) given in equation (16) and shown in Figure 2 assumes po 5 0.01 for a range of
trends (M). The time to failure distribution is clearly impacted by the presence of an increasing trend, evi-
denced by the departure from the classic exponential survival curve corresponding to a stationary EXP1
model in Figure 2. Realizations of ST(t) yield important information about the distribution of the time to an
exceedance event, or the reliability of a system, and how trends impact this experience. For example, in
Figure 2, the reliability (probability of no failure) over a 50 year project life is ST(t) 5 0.61 assuming stationar-
ity (M 5 1) and decreases to ST(t) 5 0.33 for M 5 2.

The cumulative hazard function H(t) given in equation (15) and plotted in Figure 3 provides a way to inter-
pret the total hazard through time. Note that as expected for the stationary case, H(t) 5 1 at t 5 100 indicat-
ing that only one event is expected within this time period. As the magnitude of the trend increases, the
amount of time it takes to experience an event (or magnitude above some threshold) decreases; for exam-
ple, Figure 3 illustrates that with M 5 1.5, the po 5 0.01 event may now occur twice in 100 time periods (or
once in 60 periods).

Figure 1. Hazard rate function h(t) 5 pt corresponding to flood series which arise from a nonstationary EXP1 model; lines represent trends
parameterized by a range of decadal magnification factors (M 5 1, 1.05, 1.2, 1.5, and 2) for two possible event sizes: (a) po 5 0.1 and (b)
po 5 0.01. Note the log scale for the x axis (time).
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Figures 4a–4c use equation (17)
to illustrate the impact of trends
on the shape of the distribution
of the return period. Figure 4
documents that the distribution
of the failure times change in
very complex ways, e.g., the T
distribution for a smaller event
(po 5 0.1) is less impacted than
a larger event (po 5 0.001) for
the same magnitude trend.

Overall, we have shown how
HFA corresponding to a nonsta-
tionary EXP1 model of flood
magnitudes can be applied
using the functions h(t), ST(t),
and H(t), and how this analysis
can provide a window into how
the shape of the distribution of
T and other probabilistic prop-
erties change due to trends.
Our results for nonstationary
EXP1 flood series show analo-

gous patterns as in the findings of Read and Vogel [2015] who studied the change in shape of the pdf of the
return period for a nonstationary LN2 model using completely different methods of analysis. Most impor-
tantly, analogous to the recent findings of Read and Vogel [2015], Figure 4 illustrates that the distribution of
the return period under modest nonstationarity no longer takes on a simple exponential shape, so that the
average return period may no longer be a ‘‘sufficient’’ summary statistic. We expect that further research of
other realistic nonstationary frequency models using HFA may produce similar findings.

5. Hazard Function Analysis for Nonstationary Two-Parameter Lognormal (LN2)
Floods

5.1. Preliminary Remarks
In the previous section, we derived general results for a nonstationary exponential model of flood series
which provides a good representation of the behavior of PDS of floods. Here we consider the AMS of floods,
and thus a more complex pdf of the flood series is needed. We employ the nonstationary LN2 model intro-
duced by Vogel et al. [2011] and Prosdocimi et al. [2014] based on evidence that the LN2 distribution is a
suitable approximation for representing the pdf of AMS flows [Vogel and Wilson, 1996; IACWD, 1982; Villarini
et al., 2009] and that a log linear (exponential) trend model is simple and effective for approximating a
change in the mean of the logarithms of the flows through time for thousands of rivers in the U.S. and the
UK, particularly, in urbanizing areas. The goal of the following experiments is to use Monte-Carlo simulation
to generate equally likely traces of AMS arising from a nonstationary LN2 model to: (1) examine the proba-
bilistic properties of the return period, (2) confirm our fundamental assumption in equation (5), and (3)
apply goodness-of-fit measures to select a suitable probability distribution for approximation of the survival
function associated with the return period. This approach differs from that of others who have sought a dis-
tribution for representing h(t) in that here we use (5) to derive h(t) from properties of the nonstationary LN2
model and the associated design event, which in turn enables us to use (1) to find a parametric distribution
to represent the survival function ST(t).

Read and Vogel [2015] provide details on steps to derive an expression for pt for a LN2 random variable
assuming the log linear trend model yt5ln ðxtÞ5a1b � t1et , where an ordinary least squares (OLS) regres-
sion yields estimates of the model parameters a and b for the model of the conditional mean of y given by
lyjt5a1b � t. Note that this nonstationary trend model implies a proportional reduction in ry

2 compared

Figure 2. Survival function, ST(t) (reliability) corresponding to flood series which arise from
a nonstationary (EXP1) model with po 5 0.01; lines represent trends parameterized by a
range of decadal magnification factors (M 5 1, 1.05, 1.2, 1.5, and 2).
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with stationary conditions that
depend on the magnitude of
the trend. Read and Vogel
[2015] derive a formula for com-
puting the conditional coeffi-
cient of variation Cx|t of the
nonstationary series X given by,

Cxjt5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCx

211Þð12q2Þ
21

q
(18)

where Cx is the unconditional or
historical coefficient of variation
of x, q is the Pearson correlation
coefficient defined asq5brt=ry

which measures the strength of
the linear relationship between
the flood series, Y 5 ln(X), and
the covariate time, t. As we
stated earlier, we do not recom-
mend the use of the covariate
time for predicting trends in
floods, instead in practice, a

suitable covariate which has been shown to influence physical flood processes should be used. Note the
two extreme cases of no trend, in which case (18) reduces to Cx|t 5 Cx, and a perfect trend model with q 5 1,
which leads to Cx|t 5 0.

Again, we employ the decadal magnification factor introduced by Vogel et al. [2011] to reparameterize the
slope term b into a value with physical meaning. Substitution of the log linear trend model ly|t into the cdf
for a LN2 distribution yields an expression for the exceedance probability in year t, pt, associated with the
fixed design discharge, xo, selected at the beginning of the planning period:

pt512U
ln ðxo Þ2lyjt

ryjt

� �
(19)

where ryjt5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð11C2

xjtÞ
q

by definition and U denotes the CDF for a standard normal variable.

5.2. Characterization of Nonstationary LN2 Model Using HFA Principles
In the previous case considered for a nonstationary EXP1 PDS flood series, we were able to write theoretical
expressions for the pdf, cdf, and survival functions of T, whereas in this case of nonstationary LN2 AMS
series of floods, that is not possible. Instead, we resort to an alternative approach based on Monte-Carlo

Figure 4. The pdf of the distribution of the return period T corresponding to a nonstationary EXP1 model; each figure shows a range of possible trend values considering a range of mag-
nification factors (M 5 1, 1.02, 1.25, and 1.5) and plots are per event size: (a) po 5 0.1, (b) po 5 0.01, and (c) po 5 0.001.

Figure 3. Cumulative hazard function, H(t) corresponding to PDS flood series which arise
from a nonstationary EXP1 distribution with po 5 0.01; lines represent trends parameter-
ized for a range of magnification factors (M 5 1, 1.05, 1.2, 1.5, and 2).
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experiments and goodness-of-fit evaluations of various alternative models of the pdf of T. Monte-Carlo sim-
ulation is used to generate a large number of failure times, along with their associated average return peri-
ods, corresponding to a wide range of nonstationary LN2 AMS. The goodness of fit of several alternative
distributions are then evaluated in an effort to choose a reasonable probability distribution to represent
both the survival function ST(t) as well as the mean survival times (return periods).

Our experiments proceed as follows: by varying the exceedance probability (po) and associated design
event at time zero (xo), the magnification factor (M), and the coefficient of variation (Cx) independently, we
generated 100,000 sets of 1000 year traces of floods events using the nonstationary LN2 quantile function:

xpjt5exp ly1bðt2ltÞ1zpt ry

ffiffiffiffiffiffiffiffiffiffiffiffi
12q2

ph i
(20)

where ly and lt denote the mean values of y 5 ln(X) and T, and zpt is the standard normal variate randomly
generated by sampling the exceedance probability po from a uniform distribution U(0,1); b is derived from
the decadal magnification factor, M 5 exp(10b), and the standard deviation of y 5 ln(X) is equal to ry5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ð11C2
x Þ

p
if q 5 0 and ryjt otherwise. For each trace, the time to failure, T, or the time at which the flow

exceeded the design event, was recorded, producing a simulated realization of the return period T. With
100,000 realizations of T, various pdfs could be considered for approximating the distribution of the return
period as described below.

Figure 5 shows that, as expected and similar to the EXP1 model, the hazard rate for the LN2 model is con-
stant under stationary conditions (equal to po when M 5 1), and increases rapidly toward unity as the trend
in the mean increases. The plots in Figure 5 illustrate h(t) for three events (po 5 0.1, 0.01, and 0.001), with
Cx 5 1 and a range of trends. The shape of h(t) informs our search for a probability distribution to approxi-
mate the distribution of the survival times corresponding to a nonstationary LN2 model, pointing toward
one that can accommodate increasing hazards.

We employed the widely used probability plot correlation coefficient (PPCC) to assess the goodness of fit
of several two-parameter and three-parameter probability distributions to approximate the probability
distribution of failure times corresponding to our simulations based on nonstationary LN2 flood series
[see Heo et al., 2008; Vogel and Kroll, 1989; Stedinger et al., 1993; Vogel et al., 2011]. With the full range of
realizations of M, Cx, and po described in the experimental design, Figure 6 illustrates the distribution of
PPCCs associated with several candidate distributions of the failure times. PPCC values closer to unity
indicate greater confidence that the data arise from the hypothesized distribution. As evidenced by
smaller values of PPCCs, the distribution of the failure times under nonstationary conditions is no longer
well approximated by an exponential pdf, as it is under stationary conditions. Among all the distributions
considered, the two-parameter Weibull-2 distribution provides the best overall approximation of the dis-
tribution of return periods with PPCC values which ranged from 0.9970 to 0.9999, and a median value of
0.9979. For further information concerning probability plots and PPCC hypothesis tests for the two-
parameter Weibull distribution, see Vogel and Kroll [1989] who were the first to develop such a test for
this pdf.
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Figure 5. Hazard function h(t) 5 pt corresponding to nonstationary LN2 flood series with Cx 5 1; dotted and dashed lines represent increasing trends (M 5 1.01, 1.05, 1.1, and 1.5) from
stationary (M 5 1 solid black) illustrating evolution in each plot for different sized events: (a) po 5 0.1, (b) po 5 0.01, and (c) po 5 0.001.
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Based on our results in Fig-
ure 6, we further explore the
Weibull-2 model as a distri-
bution for describing the dis-
tribution of time to failure
corresponding to the nonsta-
tionary LN2 model over a
feasible range of trends (M),
event sizes of interest (po),
and hydrologic variability
(Cx).

5.3. Weibull Behavior of
Return Period Distribution
for Nonstationary LN2
Models
Consistent with our findings,
the HFA literature recognizes
the two-parameter Weibull
model as one of the most
common distributions of sur-
vival times across applica-
tions. This is due to its
flexibility in modeling both
increasing and decreasing

hazards [Mudholkar et al., 1996; Klein and Moeschberger, 1997; Wienke, 2010]. It is recognized that Weibull-2
survival models can properly describe a number of hazard types, including software reliability (i.e., time
between failures of software) [Pham and Pham, 2000], bank failure rates [Evrensel, 2008], and occurrences of
earthquakes from crustal strain [Hagiwara, 1974]. In addition, modified Weibull survival models, e.g., the
Beta-Weibull distribution, have been suggested to characterize breast cancer occurrence rates [Wahed et al.,
2009].

Using an empirical analysis, the cdf of the time to failure associated with a design based on AMS from the
nonstationary LN2 model can be linked with a Weibull-2 survival model. Consider a two-parameter Weibull
cdf of the random variable time to failure, T:

FT ðtÞ512exp 2
t
r

� �j� �
(21)

where the scale and shape parameter are given by r and j, respectively. The survival function is written as
ST(t) 5 1 2 FT(t) and interestingly, in this case, the corresponding hazard function is also given by a Weibull
distribution as shown by Mudholkar et al. [1996] as:

hðtÞ5 j
r

t
r

� �ðj21Þ

(22)

Given the relationship in (2), ST(t) and h(t) can be combined to produce the cumulative hazard function; in
the case of the Weibull-2 survival distribution, the result is

HðtÞ5 t
r

� �j

(23)

To fit a Weibull model to the distribution of simulated return periods, the shape (j) and scale (r) of the
Weibull-2 distribution must be estimated from the LN2-distributed failure times and related to physical
parameters of the hydrologic system. Using the survival package in R [Therneau, 2015], maximum likelihood
estimates for j and r were obtained from the simulated return periods corresponding to the nonstationary
LN2 flood series (see Vogel and Kroll [1989] for a comparison of a variety of alternative estimation methods
corresponding to the Weibull distribution). We then used multiple regression to relate estimates of j and r

Figure 6. Boxplots of PPCC values that illustrate goodness of fit of simulated failure time data
corresponding to nonstationary LN2 flood series for a range of parameters (M: 1–2; Cx 5 0.25–
1.5; po 5 0.001, 0.01, and 0.1) to a range of models including the Exponential (1-EXP), General-
ized Pareto (2-GP), Rayleigh, 2-Weibull, Normal, Generalized Extreme Value (GEV), and Pearson
Type III (Pe-3) distributions.
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to the physical and design parameters of the hydrologic system, i.e., the decadal magnification factor, M,
the coefficient of variation, Cx, and the exceedance probability, po. The resulting models were

r5
1

20:024910:0489 �M20:0194 � Cx11:0882 � po
(24)

j5e20:3252M0:6583Cx
20:1196po

20:1858 (25)

with adjusted R2 values of 0.961 and 0.987, respectively. To determine the predictive goodness of fit of this
approach, a leave-one-out regression analysis of both (24) and (25) was conducted. The resulting Nash-
Sutcliffe Efficiencies (NSE) for each of the regressions in (24) and (25) were 0.796 and 0.968, respectively.
Based on the high NSE and adjusted R2 of (24) and (25), we are reasonably confident in using these equa-
tions to approximate values of j and r based on a given set of hydrologic parameters (i.e., M, Cx, and po)
and using these estimates for hydrologic planning and design.

Given a set of hydrologic parameters (M, Cx, po), (24) and (25) can be used to compute ST(t) and H(t) for any
arbitrary system. Figures 7 and 8 show the resulting survival function, ST(t), and cumulative hazard function,
H(t), over a range of trends and flood variability based on the regression results in (24) and (25). Because
h(t) is an increasing function, H(t) increases through time, especially for higher trends. The cumulative haz-
ard H(t) function is yet another way to interpret the expected number of events within a certain period of
time, and an easy way to visually compare expected exceedances under stationary conditions to those
under nonstationary conditions.

The survival function, ST(t), and the cumulative hazard function, H(t), are impacted by the flood variability
(Cx) such that a higher Cx corresponds with greater reliability (ST(t)) and fewer total failures over a given
time period. Our explanation for this result is that the mean return period is more influential than its stand-
ard deviation in terms of describing the overall time to failure, or in other words changes in the mean return
period dominate the system failure response. This is especially true under conditions of nonstationarity, as
was shown earlier, and by Read and Vogel [2015] where the pdf of the return period becomes more sym-
metric as the degree of nonstationarity increases.

5.4. Comparison of Weibull-2 Survival Regression Model With Theoretical Values
In this section, we provide a comparative assessment of the ability of (24) and (25) to characterize the PDFs
of return periods. Expressions for the average return period, E[T], and system reliability can now be esti-
mated from the Weibull-2 distribution combined with (24) and (25). The expected value of a Weibull-2 distri-

bution is:

E½T �5r � C
�

1
j

11

�
(26)

where C() is the Gamma function. A
regression estimate of E[T] is obtained
by substituting the regression estima-
tors in (24) and (25) into (26). In addi-
tion to this approximate regression
approach, the average return period of
T was computed by two alternative
approaches: (1) calculating the mean
of the simulated failure times corre-
sponding to the simulated nonstation-
ary LN2 flood series for a given set of
parameters, and (2) determining an
exact result for the average return
period T1 in equation (6) where pt in
equation (19) is derived from the non-
stationary LN2 model. The comparison
of the three approaches provides a val-
idation of the consistency among

Figure 7. Survival function of simulated time to failure data corresponding to a
nonstationary LN2 flood series; traces illustrate parameter subsets for the
po 5 0.01 event corresponding to a range of values of coefficient of variation Cx

and Magnification factor, M.
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methods. For the entire range of M, Cx,
and po values considered here, Figure
9 compares the exact E[T] result (y
axis) with the regression estimates of
the mean failure times based on (24),
(25), and (26) against a 1:1 line.

Figure 9 illustrates that the average
return periods, T1, are extremely well
approximated by our regression
approach in (24)–(26). In practice, it is
much easier to estimate the Weibull
parameters using the fitted regression
and then to use ST(t) to describe the
likelihood of experiencing an event
rather than the more cumbersome and
time-consuming approaches based on
Monte-Carlo simulations or the analyti-
cal approach in equation (6). Our
regression results, although approxi-
mate, may therefore be quite practical
and useful in flood planning. This

regression approach may be particularly useful if similar approximations hold for a wider range of models
of nonstationary flood series including Gumbel, GEV, and Log Pearson Type III distributions. These distribu-
tions have been recommended for nonstationary flood frequency analysis [Villarini and Smith, 2010; Salas
and Obeysekera, 2014; Serinaldi and Kilsby, 2015], and thus are natural cases to consider for the application
of HFA to the field of hydrology. Another promising avenue of research would be an extension to the initial
application of HFA to a nonstationary Generalized Pareto model for PDS floods by Read and Vogel [2016].
Further extensions to our application of HFA may also benefit from consideration of the PH models recom-
mended by Smith and Karr [1986], Maia and Meinke [2010], and Villarini et al. [2012], which may better ena-
ble incorporation of physically meaningful covariates into an HFA analysis rather than the regression
approach employed here.

As previously discussed, Read and Vogel [2015] and others [see Bayazit, 2015; Serinaldi, 2015; Sivapalan and
Samuel, 2009] document concerns with use of the average return period in practice and, instead, recom-
mend use of system reliability over a planning horizon. In fact, Read and Vogel [2015] argue this point even

under stationary conditions.
We compare estimates of
reliability (survival function)
based on regression esti-
mates of the Weibull-2
model parameters (combin-
ing the inverse of (21) with
estimates of r and j
obtained from (24) and (25))
to exact values of reliability
computed from the expres-
sion given in Read and Vogel
[2015] and elsewhere: Re ln5

Qn
i51
ð12piÞ. Figure 10 com-

pares reliability estimates
over a wide range of plan-
ning horizons for the exact
and Weibull-2 regression

Figure 9. Comparison of exact values of average return period E[T] from (equation (6)) with
regression estimates from a fitted Weibull-2 model in (24), (25), and (26). The data range repre-
sents a reasonable range of parameters from LN2 distributed flood flows (M 5 1 – 2; Cx 5 0.25–
1.5; po 5 0.001, 0.01, and 0.1).
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Figure 8. Cumulative hazard function H(t) for simulated time to failure data corre-
sponding to flood series arising from a nonstationary LN2 model; traces illustrate
parameter subsets for the po 5 0.01 event corresponding to a range of values of
coefficient of variation Cx and Magnification factor, M.
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estimates for a range of hydrologic systems (as defined by trends, M, variability, Cx, and initial design proba-
bility, po). The regression-based Weibull-2 estimates reproduce the exact reliabilities reasonably well for a
range of increasing trends and event sizes (Figures 10a and 10b). The greatest difference between exact
and approximate regression-based reliability values is only 60.04 years, occurring for higher values of Cx.

Both of our previous analyses of the probabilistic properties of the return period corresponding to flood
series which arise from a nonstationary LN2 AMS model, and for a nonstationary EXP1 PDS flood series,
show that the reliability ST(t) over a planning horizon is reduced when increasing trends in a flood series
exist. This implies that a design engineer may want to reconsider the design event xo(po) and adjust it to
maintain a certain level of acceptable risk, if nonstationary conditions are either known to have occurred in
the past, and/or expected to persist into the future. The challenge of design event selection is not new, and
even under stationary conditions, uncertainty plays a central role in estimating the risk of failure in hydraulic
structures [Tung and Mays, 1981; Tung et al., 2006]. Coupling HFA with a risk-based decision framework
under nonstationarity, analogous to the work of Rosner et al. [2014], may lead to general guidance on a
methodology for selecting an ‘‘optimal’’ design event given uncertainty about past and future trends.
Research in risk-based design of hydrologic systems by Bao et al. [1987] and others, along with the nonsta-
tionary risk-based framework presented in Rosner et al. [2014], may benefit from integration with the HFA
framework introduced here. In addition to all the existing sources of uncertainty associated with a stationary
flood frequency analysis, there is always increased uncertainty associated with additional model parameters
needed for a nonstationary model. Such increased uncertainty associated with the application of nonsta-
tionary methods will impact design quantile estimation as shown by Serinaldi and Kilsby [2015]. Thus, non-
stationary methods should be used with great caution and always compared and contrasted with
traditional stationary methods of flood frequency analysis.

6. Conclusions

The purpose of this paper is to understand the benefits and limitations in applying hazard function analysis
(HFA) to nonstationary flood planning. We provide two examples integrating HFA with standard hydrologic
frequency analysis using standard metrics employed by operational hydrologists. Our overall goal was to
use HFA to link the probabilistic properties of the hydrologic flood series X with the probabilistic properties
of the return period T, associated with future floods which exceed some design flood threshold. We began
with a simple yet realistic analytical example based on a nonstationary one-parameter exponential (EXP1)
model of partial duration flood series, to demonstrate the application of HFA concepts including the hazard
function, survival function, and the cumulative hazard function. Next, we used Monte-Carlo simulation to
consider a more realistic model of annual maximum flood series (AMS) which arise from a nonstationary
LN2 model. In agreement with results from numerous other fields which have applied HFA, the Weibull-2
model was identified as a suitable model of the survival function for nonstationary LN2 AMS. We developed
regression models to estimate the Weibull shape and scale parameters based on known hydrologic system
parameters and design requirements, and provided equations for calculating the average return period and
reliability, achieving reasonably precise estimates without complex computations required using alternative

Figure 10. Comparison of reliability values corresponding to nonstationary LN2 flood series using exact simulation results (black lines) with Weibull-2 regression model estimates (grey
lines) for a range of experimental values: (a) trends, M 5 1 (stationary), 1.1, and 1.5; (b) po 5 0.1, 0.01, and 0.001; (c) Cx 5 0.2, 0.5, and 1.5.
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approaches. We provide useful equations for relating the properties of actual flood control systems to the
probabilistic properties of the return period and reliability associated with a particular design event when
AMS of floods arise from a nonstationary LN2 model. These findings suggest significant utility and potential
associated with the application of HFA to other reasonable nonstationary models of AMS of floods, includ-
ing the Gumbel, GEV, and Log Pearson Type III distributions. We anticipate that this initial study, introducing
an approach for linking the probabilistic properties of X and T for flood applications, should prove useful for
improving our understanding of the impact of nonstationarity on water resources design, planning and
management. Finally, we remind all future researchers who consider employing nonstationary hydrologic
frequency analysis in practice, to heed carefully the warnings and guidance provided by Serinaldi and Kilsby
[2015] concerning the introduction of additional sources of uncertainty into such an analysis. Thus, in spite
of the attention and advances relating to nonstationarity, we are still at a stage in the evolution of nonsta-
tionary methods for flood frequency analysis to raise serious questions about their use compared with tradi-
tional stationary methods.
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