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Abstract Environmental simulation models, such as precipitation-runoff watershed models, are
increasingly used in a deterministic manner for environmental and water resources design, planning, and
management. In operational hydrology, simulated responses are now routinely used to plan, design, and
manage a very wide class of water resource systems. However, all such models are calibrated to existing
data sets and retain some residual error. This residual, typically unknown in practice, is often ignored,
implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the
residuals will result in simulated responses with distributional properties that do not mimic those of the
observed responses. This discrepancy has major implications for the operational use of environmental
simulation models as is shown here. Both a simple linear model and a distributed-parameter
precipitation-runoff model are used to document the expected bias in the distributional properties of
simulated responses when the residuals are ignored. The systematic reintroduction of residuals into
simulated responses in a manner that produces stochastic output is shown to improve the distributional
properties of the simulated responses. Every effort should be made to understand the distributional
behavior of simulation residuals and to use environmental simulation models in a stochastic manner.

1. Introduction

With increasing frequency, hydrologic models, and, more generally, environmental simulation models
(ESMs), are being used for a myriad of applications in operational hydrology. Such uses include the design,
planning, and management of water resource systems under changing climates, land use, and other anthro-
pogenic shifts. Such models are often used in a deterministic fashion that ignores the model uncertainty
associated with simulated responses. The primary goal of this work is to demonstrate how this approach
leads to simulated responses that cannot reproduce the distribution of the observed responses. The impact
of ignoring model uncertainty is shown to be magnified for hydrologic extremes and design-relevant prod-
ucts, such as design floods and droughts; problems that are likely to be exacerbated by climate change.

There is increasing and widespread attention given to uncertainty analysis of environmental and water
resource simulation models as evidenced by the recent reviews by Liu and Gupta [2007], Moradkhani and
Sorooshian [2008], Matott et al. [2009], Montanari [2011], Beven [2014], and Mirzaei et al. [2015]. However, all
such literature focuses exclusively on estimation of uncertainty intervals for model responses. Although
integration of the stochastic structure of ESM residuals is paramount to developing such uncertainty inter-
vals, construction of uncertainty intervals does not remove the bias in design-relevant products such as
design floods, droughts, and storage-yield curves. A goal of this study is to emphasize the importance and
advantage of exploiting recent advances in the uncertainty analysis of ESMs for the purpose of improving
the operational use of such models in water resources design, planning, and management. However, this
discussion addresses only simulation error, leaving observational error, which can be substantial, aside.

Deterministic use and stochastic use refer to the way in which model output is used in subsequent applica-
tions. Here, the deterministic use of ESMs refers to the use of simulated responses as single, certain esti-
mates of model response. Deterministic use employs simulated responses as a single realization of a
simulated process and uses this single realization to derive any required design, planning, or management
product. Stochastic use is an ex post facto solution, effectively a post-processing procedure, where model
uncertainty is added to the model output by some means after the simulated response has been produced.
The stochastic use of a statistical or deterministic model requires a Monte-Carlo process by which equally
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likely model output traces are produced. Note that, as in Vogel [1999], both statistical and deterministic
models are viewed as equivalent in the sense that both types of models consist of both stochastic and
deterministic elements.

This initial study assumes that all forms of model uncertainty associated with climatic inputs, model param-
eters, and even measurement error are all embedded in the model’s residual errors. Understanding how to
embed such complex sources of uncertainty into ESM model residuals is an active area of research [e.g.,
Clark et al., 2008; Schoups and Vrugt, 2010; Smith et al., 2015] as is the consideration of multimodel ensemble
predictions [e.g., Clark et al., 2015a, 2015b; Montanari and Koutsoyiannis, 2012].

A basic goal of this study is to document that the main problem with the deterministic use of hydrologic
models is that the probability distributions of the observed and simulated responses will deviate from each
other when one ignores the distributional properties of the model residuals. It has long been understood
that calibrated models, either physical, empirical, or statistical, tend to produce sets of model outputs with
lower variance than is experienced in the real world [e.g., Matalas and Jacobs, 1964; Kirby, 1975; Lichty and
Liscum, 1978]. Usually, environmental simulation models are calibrated in such a way to ensure that simulat-
ed responses are unbiased, overall, when compared to the observations used to calibrate the model. Never-
theless, there is a tendency of all simulated responses to exhibit cumulative distribution functions (cdf) with
flatter slopes than the observations upon which they are based. This effect has been termed the ‘‘model
smoothing effect’’ [Kirby, 1975]. Vogel [1999] argues that, as long as model residuals are independent of
model inputs, the variance of the simulated response will always be less than the variance of the observa-
tions used to calibrate the model, regardless of whether the model is based on a deterministic or stochastic
representation of reality. In spite of the now widespread research, development, and application of uncer-
tainty analysis associated with ESMs, the understanding of the uncertain properties of simulated responses
has somehow failed to percolate to the level of operational hydrology. That is, designers and managers typ-
ically, though not universally, require a deterministic (‘‘single-number’’) response for planning, design, and
management of projects and, as is outlined here, the critical issues embedded in the development of uncer-
tainty intervals are simply not integrated into the development of such ‘‘single-number’’ responses.

The divergence of the probability distributions of simulated and observed responses in deterministic hydro-
logic models has been recognized for decades. In the context of precipitation-runoff modeling, Kirby [1975]
was the first to term this effect the ‘‘model smoothing effect’’ and to provide a simple correction useful for
linear models. Numerous subsequent studies of small U.S. streams documented that rainfall-runoff model
estimates of flood discharges with large recurrence intervals tend to exhibit downward bias [e.g., Lichty and
Liscum, 1978; Thomas, 1982; Sherwood, 1994]. Additionally, Lichty and Liscum [1978], Thomas [1982], and
Sherwood [1994] all found reductions in the variances of extreme events. Remarkably, except in instances
where such models are used in forecasting, no further discussion of this issue could be found in the rainfall-
runoff modeling literature. The ‘‘model smoothing effect’’ is not just limited to deterministic models: statisti-
cal models have also showed a reduction in simulated variance when compared with observed variance
[Skøien and Bl€oschl, 2007; Rasmussen et al., 2008; Farmer et al., 2014, 2015].

For statistical models, it is often possible to derive corrections that can be used to adjust simulated
responses to ensure that they exhibit the same distributional properties as the observations used to devel-
op and calibrate the models. Within the context of regression models for extending and augmenting short
streamflow records, Matalas and Jacobs [1964] first provided a correction to ensure the equivalence of vari-
ance between the original short record and the extended record. Hirsch [1979] provides a further example,
which led Hirsch [1982] and Vogel and Stedinger [1985] to introduce a suite of Maintenance of Variance
Extension methods that are designed to reproduce the variance of streamflows estimated from the use of
regression methods. However, little attention has been paid to statistical properties beyond the variance.
Simple corrections for inflating the variance of model output may be available for some particular statistical
model structures, yet such corrections will be difficult to derive for more complex deterministic models and
for properties other than the variance.

Interestingly, in the field of hydrologic forecasting, there is a rich history of using calibrated model residuals
to correct for the ‘‘model smoothing effect’’ associated with both stochastic and deterministic models. For
example, Hirsch [1981] developed a technique, known as ‘‘position analysis,’’ for producing ensemble
monthly hydrologic forecasts based on the serial correlation of monthly streamflow data. He showed that
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the variance of the residuals associated with an autoregressive moving-average model for streamflow
forecasting could be estimated using the difference between observed monthly historical streamflow and
1-month-ahead predictions that would have been made in each preceding time step. By establishing the
behavior of model residuals using a historical data set, the stochastic forecasting model could be applied
for future months having, as yet, undetermined residuals. Tasker and Dunne [1997] document how such a
stochastic ‘‘position analysis’’ may be applied within a drought context. More recently, Henley et al. [2013]
document how such a stochastic ‘‘position analysis’’ of drought risk can be conditioned upon drivers of cli-
mate and climate change. Clark et al. [2004], Schaake et al. [2007], and others in the flood forecasting com-
munity have extended Hirsch’s techniques to produce streamflow forecasts whose statistical properties
mimic those upon which the models are based.

The exploration of the distributional impacts of the deterministic use of ESMs begins with a simple, statisti-
cal model, enabling a theoretical analysis that demonstrates the influence of model residuals on simulated
response, highlighting the impacts of ignoring model residuals in operational hydrology. In the remainder
of the paper, the properties of model output for a more realistic deterministic, distributed-parameter, pre-
cipitation-runoff model are considered. Finally, within the context of the distributed-parameter, precipita-
tion-runoff model, an ex post facto solution for reincorporating model residuals into simulations and
correcting for distributional bias is developed and evaluated.

2. Theoretical Properties of Simulation Model Output

This section considers some general statistical properties of simulated responses derived from a simulation
model of streamflow. In general, a hydrologic model of streamflow can be abbreviated as

Q5Q̂1� (1)

where Q represents observed streamflow, Q̂ represents the modeled streamflow, which is a function of
model structure, input variables, and some parameter specification, and � represents the model error associ-
ated with the model simulation. The examples herein address time series of streamflows and the modeling
thereof, but the generalized structure of equation (1) can accommodate most spatial and temporal hydro-
logic models.

The first priority of model calibration is typically unbiasedness, i.e., on average the simulated response is
equivalent to the observed response. This is summarized by taking the expectation of equation (1) to yield

E Q½ �5E Q̂1�
� �

5E Q̂
� �

1E �½ � (2)

where E . . .½ � represents the expectation operator. For the condition of unbiasedness to hold, the expecta-
tion of the residual, E �½ �, should approach zero through calibration. While this is ideal, it is seldom achieved.
Importantly, as is shown here, a model can exhibit overall unbiasedness yet still exhibit differential bias
under high or low streamflow conditions or both.

Usually, the most attention during generic calibration is given to the overall variability of the residuals. Tak-
ing the variance of both sides of equation (1) leads to

var Qð Þ5var Q̂1�
� �

5var Q̂
� �

1var �ð Þ12cov Q̂; �
� �

(3)

where var . . .ð Þ and cov . . .ð Þ represent the variance and covariance operators. Unlike with the expectations
in equation (2), it is not as straightforward to ensure the equivalence of the variances of the simulated and
observed response. There may be a complex interaction between the variance of the residuals and the
covariance between the simulated response and the residuals. For simple models, it is often assumed that,
by virtue of the fitting procedure and the underlying model structure, the simulated responses are uncorre-
lated with the residuals, that is, cov Q̂; �

� �
50. If such is the case, then minimizing the variance of the resid-

uals, var �ð Þ ! 0, is the only way to ensure that the simulated responses have the same variance as the
observations, var Q̂

� �
! var Qð Þ. Unfortunately, in practice, there is always residual error such that

var �ð Þ > 0, thus, given the assumption of independence, the variance of the simulated responses will
always be smaller than the variance of the observed responses. When the independence of the simulated
responses and residuals cannot be assumed, the interplay between var �ð Þ and 2cov Q̂; �

� �
becomes much

Water Resources Research 10.1002/2016WR019129

FARMER AND VOGEL DETERMINISTIC AND STOCHASTIC MODEL USE 3



more important and a definitive statement concerning the relative magnitudes of var Qð Þ and var Q̂
� �

is no
longer possible.

It is not only the variance of the simulated responses that will be misrepresented when model errors are
ignored: all higher and lower order moments will also be misrepresented. Consider the i-th moment of
equation (1)

E Qð Þi
h i

5E Q̂1�
� �i
h i

(4)

where i is typically a positive integer, but, as was shown by Farmer et al. [2015], can be any nonzero number.
Farmer et al. [2015] document that if one’s interest is in the goodness-of-fit of a hydrologic model to the
low streamflows under drought conditions, then consideration of the lower order moments, i.e., i < 0, also
termed inverse moments, is paramount. The expansion of the right-hand side of equation (4) for any posi-
tive integer documents that the equivalence of the i-th moments of Q and Q̂ is dependent on the extremely
complex interactions between the moments of � and the moments of the cross products of � and Q̂. This
dependence carries through from the noncentral moments defined above, as well as to centralized
moments (e.g., variance) and standardized moments or moment ratios (e.g., the skewness and kurtosis). Fur-
thermore, the moments of the probability distribution of streamflow are linked to the quantiles of that dis-
tribution as shown by Farmer et al. [2015]. Thus, and quite importantly, bias in the distributional properties
of modeled streamflows will result in corresponding bias in the modeled quantiles of the streamflow distri-
bution. However, without model-specific assumptions about the distribution of the errors (e.g.,
cov Q̂; �
� �

50), categorical descriptions of the effects are not possible.

Due to the complex relations between the probability distributions of the observed responses, simulated
responses, and model residuals, ignoring the distribution of the residuals can have a substantial impact on
derived model products even beyond the characteristics of the probability distribution of the simulated
response (i.e., temporal and spatial stochastic properties). The following section examines the impact of
ignoring model residuals on the behavior of derived properties of model responses useful for the design,
planning, and management of water resources. A simple linear model is used to arrive at first-order yet gen-
eral findings, and is followed by an example using a much more realistic and complex distributed water-
shed model fit to hundreds of actual watersheds.

3. Example 1: A Simplified Linear Model of Streamflow

Consider a simple, analytical linear model of streamflow. As an example of a model of environmental sys-
tems, this is a gross oversimplification of reality, yet it is attractive for several reasons. The use of a simple,
analytical model enables a general, closed-form demonstration of the impact of neglecting the distribution
of model residuals on the output of ESMs. Such generalized results would be difficult to obtain using a real-
istic simulation model of a particular system. Even though the model used here is trivial, its calibration and
use is representative of how most ESMs, even extremely complex and physically realistic ones, are used in
practice.

Consider a precipitation-runoff model where streamflow observations, Qt , are related to rainfall observa-
tions, Pt , by the simple linear model

Qt5a1bPt1�t (5)

where a and b are model parameters, and �t are independent, identically distributed random residual errors
with mean zero and a constant variance, r2

� . An advantage of the simple model in equation (5) is that a
plethora of analytical theoretical results are available. For example, Stedinger et al. [2008] used this model to
show that the only way to obtain meaningful prediction intervals using the generalized likelihood uncer-
tainty estimation (GLUE) method was to assume a formal statistical model for the behavior of the model
residuals. Their comparisons were between well-known analytical prediction intervals for the model in
equation (5) and Monte-Carlo simulation results from GLUE.

Generally, the simulation model in equation (5) would be calibrated using historical observations of precipi-
tation and streamflow to obtain estimates of the model parameters a and b, which are denoted by a and b.
After the model is calibrated, the simulated response is generated from
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Q̂t5a1bPt (6)

which ignores the residual errors specified in equation (5) and used for calibration. Typically, such models
are used as if they provide a deterministic representation of the underlying environmental system. As such,
some modelers and many users tend to be uncomfortable considering multiple series of simulated results
each of which would attempt to add the residual error back into the simulated response. This is especially
true in the realm of operational hydrology, wherein managers typically desire a single deterministic answer
and systems, and many existing hydrologic design methods are not equipped for handling stochastic
responses. However, with the increasing popularity of uncertainty analysis, this is becoming less of a hurdle.
In fact, many practitioners currently use or are moving toward the application of ensembles of similarly
probable simulations. Instead of using ESMs as deterministic models, it is essential to consider similarly likely
realizations of the augmented model

Qt5a1bPt1et

where the model error term, et , is generated in such a way as to reproduce the theoretical properties of the
residual errors in equation (5).

Now consider a watershed subjected to annual precipitation, P, with mean lP and variance r2
P resulting in

streamflow, Q, with mean lQ and variance r2
Q. Given the assumption that the residuals are independent of

the rainfall equation (5) one can show that the variance of the residuals is

r2
�5 12R2
� �

r2
Q

where R2 represents the coefficient of determination of the fitted model, a measure of goodness-of-fit,
which is related to the model coefficient via

b5R
rQ

rP

Simply taking the expectation of equation (5) and algebra leads to the intercept term:

a5lQ2blP

In practice, the hydrologist employs the simulated response Q̂t in equation (6), whose variance is

var Q̂t
� �

5r2
Q̂

5b2r2
P5R2r2

Q (7)

Failing to account for the distributional properties of the residuals results in a reduction in the variance of
the simulated response by a factor of R2. According to (7), even well-fit precipitation-runoff models, which
exhibit R values ranging from 0.7 to 0.9, will underestimate the variance of the observed streamflows by a
factor between 0.49 and 0.81. The consequences of generating responses with variances that are too small
can be tremendous, generally leading to underestimation of design flood events and overestimation of
design low streamflows as is shown below. This can be especially problematic for the thousands of climate
change investigations that use ESMs to explore the impacts of changes in climate inputs on environmental
systems. Such models may be misrepresenting the distributional properties of their responses. (Though, as
the next section will show, it is not possible to draw categorical conclusions as to the direction of bias when
using more complex models.)

The underestimation of the variance of the simulated response will result in an underestimation of the
design flood events and an overestimation of low-streamflow quantiles. For simplicity, consider the case of
normally distributed streamflows and model residuals, in which case it is possible to derive the percent bias
in resulting estimates of a quantile or design event as

DpQp5
Q̂p2Qp

Qp
5

lQ̂ 1ZprQ̂

� �
2 lQ1ZprQ
� �

lQ1ZprQ

where Qp indicates the 100p-th percentile of the distribution of streamflow, and Zp is the 100p-th percentile
of the standard normal distribution. Since model responses are unbiased, lQ̂ 5lQ, this case can be simpli-
fied by combining it with rQ̂ 5RrQ from equation (7) to yield
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DpQp5
lQ̂ 1ZpRrQ
� �

2 lQ1ZprQ
� �

lQ1ZprQ
5

lQ̂ 2lQ

� �
1ZprQ R21ð Þ

lQ1ZprQ
(8)

Equation (8) can be used to obtain the average percent bias in design events. The T -year design event can
be assessed by relating the nonexceedance probability p in equation (8) to the average return period, T ,
using p512 1

T . Equation (8) can also be simplified by introducing the coefficient of variation, CQ5
rQ

lQ
so that

DpQp5
ZpCQ R21ð Þ

11ZpCQ
(9)

Figure 1 illustrates the downward bias associated with the design flood events in a relatively well-calibrated
model (R250:7). The magnitude of the bias increases as the design return period T increases and as CQ

increases. Taking the limit of equation (9) as CQ approaches infinity reveals that the bias approaches R21
(216% in this case). Figure 1 considers downward bias associated with flood quantiles, but, due to the sym-
metry of the normal distribution, low flow design events will exhibit upward bias whose magnitude is iden-
tical to the downward bias shown for the high design events in this case.

4. Example 2: A Distributed-Parameter Precipitation-Runoff Model

The previous example provides a general, closed-form interpretation of the effect of ignoring the distribu-
tional properties of the residuals on simulation output and resulting design event estimates. However, sev-
eral grossly simplifying assumptions were required. In real-world applications, the ESMs developed and
applied are much more complex than equation (5). Accordingly, it is generally not possible to derive a
closed-form solution to understand the practical implications of ignoring the distributional properties of the
residuals. Instead, it is necessary to return to the theoretical underpinnings presented earlier and to observe
the variation in results for a realistic model across a large number of simulation experiments.

Here, a moderately complex, distributed-parameter, precipitation-runoff model is used to observe the effect of
ignoring the distributional characteristics of the residuals. The particulars of the model and the calibration
scheme are not relevant to this exploration. Instead, the results serve only as an example of model output and
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Figure 1. Example percent error in design streamflow events for a simple linear streamflow model with a coefficient of determination of
R25 0.7 (R 5 0:837).

Water Resources Research 10.1002/2016WR019129

FARMER AND VOGEL DETERMINISTIC AND STOCHASTIC MODEL USE 6



the importance of accounting for the distribution of the residuals. The distributed-parameter model, in this case,
the Precipitation-Runoff Modeling System [Markstrom et al., 2008, 2015], was calibrated at each of 1225 perennial
river basins across the conterminous United States. The focus of this work is not on the development and cali-
bration of this model, but rather on the impacts of its deterministic use, thus further details of the model are not
provided here. The general findings which follow are analogous to those of the previous case study and are in
no way model dependent. The same general qualitative conclusions presented in the following section can be
expected to result from the use of any hydrologic model. While this is a general calibration, and other calibration
schemes may target particular extrema more directly, the theoretical argument presented remains relevant.

Figure 2 presents the percent error in estimates of the moments, i.e., mean and variance, and the moment
ratios, i.e., skewness and kurtosis, of the simulated daily streamflows generated from the distributed-
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Figure 2. Percent errors in estimates of the moments, i.e., mean and variance, and the moment ratios, i.e., skewness and kurtosis, of simulated
daily time series of streamflow generated from a distributed-parameter precipitation-runoff model for 1225 sites in basins across the United States
Axis limits have been constrained to improve visibility while retaining 95% of plot data. The box of the box plots represents the 25th and 75th
percentiles of the distribution of errors, while the heavy line indicates the median and the whiskers extend to the 10th and 90th percentiles.
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parameter precipitation-runoff models. The percent error is the error associated with using the simulated
response rather than the observed response. The percent errors are plotted against the Nash-Sutcliffe Effi-
ciency (NSE), a metric of general performance [Nash and Sutcliffe, 1970]. NSE is essentially an estimator of
the standardized mean square error of the simulated responses. For many reasons, the most commonly
used estimator of NSE may itself be biased and unreliable when used with daily streamflows that exhibit
enormous values of skewness (see Figure 4 in Vogel and Fennessey [1993] and discussion). However, as the
concern here is more with the impact of ignoring the model residuals, NSE is included to provide a basic
frame of reference. To mitigate some of the unreliability associated with the estimator of NSE that results
from the underlying skewness of daily streamflow observations, the NSE was computed on the logarithms
of the daily streamflows. As expected, the models yield relatively low overall bias in the streamflows, as evi-
denced by the values of percent error of the mean. The percent error in estimates of the mean, also known
as overall model bias, has a median of approximately zero (0.146%) across all sites. There is weak correlation
between the magnitude (absolute value) of the bias and NSE, with a Spearman rank correlation of 20.327.
This is not surprising, as the NSE is a measure of standardized mean square error that depends on errors in
both the mean and variance.

For the majority of sites, estimates of the variance, skewness, and kurtosis of the daily streamflows are
underestimated: the median percent errors are 241.7%, 225.2%, and 241.0%, respectively. Although these
quantities are underestimated at the majority of sites, there are several sites (less than 25% of sites) that
show a positive bias. This is due to the fact that the covariance between the simulated response and the
residuals, discussed earlier with respect to equation (4), is seldom equal to zero and may be negative. The
magnitude of the percent error associated with the bias of these three statistics increases with decreasing
model performance. The Spearman rank correlation between NSE and those statistics are 20.275, 20.146,
and 20.116, respectively. Again, one expects NSE to be inversely related to the bias associated with any
streamflow statistic derived from the simulated model responses.

Estimates of the moment ratios, i.e., skewness and kurtosis, reported in Figure 2 are known to exhibit signifi-
cant downward bias [Wallis et al., 1974], especially so for the extremely highly skewed samples of daily
streamflow considered here, even those derived from very long daily flow records [Vogel and Fennessey,
1993]. Such severe downward bias, as documented by Vogel and Fennessey [1993], is inherent in all of the
estimates of the moment ratios (skewness and kurtosis) reported in Figure 2 for both the observed and sim-
ulated flow series. In addition, there is also downward bias in the estimated variances, which are not
moment ratios and thus not subject to the type of bias discussed by Vogel and Fennessey [1993]. Neverthe-
less, to ensure that such downward bias is not due to the issues concerning the validation of stochastic
streamflow models raised by Stedinger and Taylor [1982], the same experiments in Figure 2 were performed
using equations (11)–(14) from Stedinger and Taylor [1982] with the true mean assumed equal to the histori-
cal mean, as should be common practice when verifying and validating stochastic streamflow models. The
results from those experiments led to similar results as reported in Figure 2 and thus are not reported here.

As was shown by Farmer et al. [2015] and in the previous examples, the distributional properties of the
residuals and the failure to include them in an analysis will have a strong effect on estimates of streamflow
quantiles. Figure 3 shows the percent error in the estimates of various percentiles of the daily streamflow
distribution. Here, the exceedance probability is reported because that is common practice when illustrating
flow duration curves. For each site, the integer percentiles from 1% to 99% were linearly interpolated from
the observed and simulated responses. The impact of ignoring the distribution of the residuals is not as
straightforward as in the previous examples. The highest streamflows are underestimated, with a median
percent error of 220.4% at the exceedance probability of streamflow. The low streamflows are similarly
underestimated. For example, the streamflow exceeded only 1% of the time is underestimated with a medi-
an percent error of 15.6%. There are several percentiles where the median percent error is positive. Howev-
er, there are no percentiles where the direction of the bias can be uniquely categorized as positive or
negative across all sites. Though not shown, there is generally a weak negative Spearman rank correlation
(a median of 20.362) between the magnitude of the percent error of streamflow quantiles and Nash-
Sutcliffe efficiencies of the logarithms; the magnitude of the errors increases with decreasing model perfor-
mance. Figure 3 dramatizes the complexity of the impacts of ignoring model errors when employing an
ESM: the resulting bias behaves in a very complex fashion across sites and across the range of streamflow
exceedance probabilities of interest to hydrologists.
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In addition to misrepresenting the distribution of the observed streamflow response, the failure to consider
the distributional properties of the residual errors can affect important decision-relevant products derived
from simulated ESM responses. Figure 4 demonstrates the impact of ignoring the distributional properties
of the residual error on flood frequency analysis by focusing on the series of annual maximum streamflow
(flood) events derived from the model simulations. Figure 4 reports the percent errors in estimates of design
flood quantiles corresponding to exceedance probabilities of 50%, 10%, 1%, and 0.1%, which correspond to
estimates of the 2, 10, 100, and 1000 year quantiles of the annual maximum daily streamflow series. The
median percent errors are all negative, and substantially so: 230.9%, 235.7%, 239.3%, and 241.4%,
respectively. Of course, none of the events are uniformly underestimated or overestimated across all sites.
Certainly, as model performance degrades, the magnitude of the errors in estimates of design events
increases. The Spearman rank correlations between the daily model performance and the magnitude of the
errors for the four events are 20.238, 20.230, 20.229, and 20.232. Figure 4 illustrates the remarkably large
impact of ignoring model residuals on flood frequency analysis using a general calibration of a realistic
precipitation-runoff model. The corresponding implications for water resources planning and management
are likely to be quite considerable. Studies seeking to understand why design floods estimated from
precipitation-runoff or other deterministic models do not reproduce design floods estimated from observed
streamflow series [e.g., Di Baldassarre et al., 2010, Rogger et al., 2012, and many others] would benefit from
considering the issues addressed here.

5. Reintroduction of Distributional Characteristics of Residuals to Model
Simulations

The previous sections have shown the marked bias in estimates of streamflow statistics that results from
ignoring the distributional properties of the residuals during model simulation. This effect can be mitigated
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Figure 3. Percent errors in estimated quantiles of simulated daily streamflow generated from a distributed-parameter precipitation-runoff
model for 1225 sites in basins across the United States Axis limits have been constrained to improve visibility while retaining 95% of plot
data. The box of the box plots represents the 25th and 75th percentiles of the distribution of errors, while the heavy line indicates the
median and the whiskers extend to the 10th and 90th percentiles.
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by attempting to reintroduce the distributional characteristics of the residuals into the simulated responses.
In flood and streamflow forecasting, the Schaake Shuffle [Clark et al., 2004], an approach to shuffle ensem-
ble predictions to produce new simulations preserving essential characteristics, is one method for reintro-
ducing the distributional characteristics of model residuals into ensemble forecasts. Here, a simple
resampling algorithm inspired by Bourgin et al. [2015] is applied. Their approach leverages the dependence
between calibration residuals and predicted discharge exceedance probabilities to appropriately reintro-
duce model residuals. The same methodology, that of stratifying model errors sorted by exceedance proba-
bility, can be used in the at-site calibrations of the model used here.
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Figure 4. Percent errors in the 50%, 10% 1%, and 0.1% exceedance annual maximum streamflows from simulated daily time series of stream-
flow generated from a distributed-parameter precipitation-runoff model for 1225 sites in basins across the United States Axis limits have been
constrained to improve visibility while retaining 95% of plot data. The box of the box plots represents the 25th and 75th percentiles of the dis-
tribution of errors, while the heavy line indicates the median and the whiskers extend to the 10th and 90th percentiles.
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For each site, the simulated responses were ranked and assigned a nonexceedance probability using the
Weibull plotting position

pi5
ri

n11

where pi is the nonexceedance probability of the i-th observation, ri is the rank of the i-th observation, and
n is the number of observations. The Weibull plotting position is an attractive choice because it is known to
reproduce the expected value of the unknown nonexceedance probability associated with the observa-
tions, regardless of the distribution from which the observations arise [David and Nagaraja, 2003]. As in
Bourgin et al. [2015], model residuals were computed as the ratio of the observed response to the simulated
response. This practice assumes that the residuals are correlated with the simulated response and that each
residual is simply a fraction of the original simulated response. To produce an alternate, synthetic realization
of simulated responses, the simulated daily streamflows, and their associated model residuals were grouped
into 10 equally spaced groups defined by the nonexceedance probabilities associated with each simulated
streamflow response. For each group, the synthetic simulated response was generated by multiplying the
original simulated response by a random residual drawn, with replacement, from the residuals associated
with that group. Such random resampling, with replacement, is known as the Bootstrap (e.g., see drought
examples in Tasker and Dunne [1997] and Henley et al. [2013]). When synthetic streamflows have been gen-
erated for all original simulations in all groups, the resulting series is presented in the original order and rep-
resents an alternate, synthetic realization of daily streamflows with model error reintroduced. This can be
repeated to produce several realizations of synthetic streamflow for the same site; a process that could lead
to the generation of prediction intervals, as proposed by Bourgin et al. [2015].

The overall approach presented by Bourgin et al. [2015] and modified as described above is similar to the
use of copulas for implementing the Bootstrap. The stratification of residuals by the nonexceedance proba-
bility of simulated responses is, in a loose sense, a sort of nonparametric, empirical copula. However, it is
not an exact copula, which would explicitly describe the joint distribution of a set of variables, because no
effort is made to directly reproduce the correlation between the simulated responses and the model resid-
uals in the residual resampling scheme. However, because the rank of the simulated responses is used to
stratify the residuals, this effectively maintains the joint distribution between the residuals and the stream-
flows. Alternatively, as a parametric approach, it could have been assumed that simulated responses and
errors follow a multivariate normal distribution. However, initial evaluations not included here but based on
the assumption of multivariate normality produced synthetic series of simulated streamflows that did not
mimic the observed streamflow. A different parametric copula or modified ensemble approaches [Clark
et al., 2004; Schefzik et al., 2013] may be more appropriate, but our initial exploration only considers the
empirical, nonparametric copula-inspired procedures described above.

Recall from Figures 2 and 3, that failing to account for the distributional properties of model residuals pro-
duced substantial errors in estimates of the various moments and quantiles of the distribution of daily
streamflow. Figure 5, similar to Figure 3, illustrates the error associated with the median estimates of the
various quantiles of the distribution of the synthetic daily streamflow series. Here the median errors are
computed as the median of errors from 100 synthetic simulated responses produced by reintroducing mod-
el residuals as described above. Comparing Figures 3 and 5, noticing the dramatic change in vertical axis
limits, there is, on average, substantial reduction in the errors associated with each quantile when model
errors are reintroduced. The median reduction in error across all sites and all quantiles is 94%. For almost all
quantiles, more than 90% of the sites show smaller absolute errors than were seen when ignoring the distri-
bution of residual errors. Only at the extremes do more than 10% of sites show greater percent errors when
residuals are considered. Across all sites and all quantiles, nearly 95% of site-quantiles showed improve-
ment. The median error in the first exceedance probability is now 3.15% and the median error in the 99th
exceedance probability is 218.1%; in both cases, the variability in errors is greatly reduced. Though biases
remain, the improvements in the estimation of streamflow quantiles illustrated in Figure 5 have clear impli-
cations for project design. These results emphasize the need for future research into more effective stochas-
tic methods for the reintroduction of residuals into simulation model output.

The procedure described by Bourgin et al. [2015] and as modified above does not account for the inherent
spatial or temporal correlation structure of the model residuals. Furthermore, its application is driven only
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by the distribution of the simulated responses. For this reason, it is unlikely to resolve the biases associated
with centralized and standardized moments or derived products such as design quantiles of the annual
maximum or minimum series. The bias associated with moment estimates is complicated by the interaction
and correlation among moments. The bias associated with design quantile estimates is largely due to the
inherent temporal persistence in both the flow and residuals. Neither the interaction of moments nor tem-
poral persistence are accounted for in this reintroduction method. The median percent errors of the mean,
variance, skew, and kurtosis are 1.29%, 13.7%, 20.0%, and 50.8%, respectively. For the 50%, 10%, 1%, and
0.1% annual maximums, the median percent errors are 22.1% 22.3%, 22.2%, and 22.7%, respectively. Except
for the kurtosis, these median percent errors show clear improvements over the previously reported values
when the median of 100 realizations, which include the reintroduction of residual errors, at each site is con-
sidered. However, the improvements are highly variable and site-specific, showing that this initial method
does not provide reliable performance improvements for these products.

The idea of an ex post facto introduction of model residuals as an improvement to simulated model
responses is akin to post-processing and two-stage least squares regression. In two-stage least squares
regression, an initial simulation model is developed and then a second model of the residuals or another
independent variable is constructed to account for information left out of the original simulation model. A
valid argument can be made that the original simulation model should just include all available information
from the start. The same could be argued here but requires the redevelopment of ESMs. However, regard-
less of improvements in model calibration, this analysis reveals that model errors should always play a piv-
otal role in environmental simulation.

It is nearly impossible for the distributions of observed and simulated responses of any deterministic model
to converge, exactly. Even with the reintroduction of model residuals, any single particular simulated series
of responses will contain other sources of error not included in the model residuals and thus will always
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Figure 5. Median percent errors in estimated quantiles of daily streamflow generated from 100 synthetic realizations of a distributed-
parameter precipitation-runoff model for each of 1225 sites in basins across the United States. Synthetic realizations were generated by
reintroducing residual errors following the methods described herein. Axis limits have been constrained to improve visibility while retain-
ing 95% of plot data. The box of the box plots represents the 25th and 75th percentiles of the distribution of errors, while the heavy line
indicates the median and the whiskers extend to the 10th and 90th percentiles.
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misrepresent the distribution of the observed response. There are many ways to calibrate a hydrologic
model, but the fact remains that, even with the most targeted and evolved calibration schemes, some resid-
ual error will remain in the simulated response. The tools and discussion presented here only serve to make
users aware of the danger of the deterministic use of ESMs. With this knowledge, it is possible to make
more informed management decisions and judgments with regard to environmental systems and resour-
ces. In practice, the deterministic use of environmental simulation models should be tabled in favor of at
least an ex post facto stochastic use of simulated response, whereby model residuals are reintroduced after
model simulation.

6. Summary and Conclusions

The deterministic use of environmental simulation models introduces substantial distributional bias into
various important statistics computed from simulated responses. This bias is particularly severe at the distri-
butional extremes corresponding to floods and droughts, regions of particular concern to hydrologists,
planners, and managers. Even though a model may generate unbiased simulations overall, bias in various
important statistics derived from such simulations arise from ignoring the distributional properties of model
residuals. This bias can be mitigated by considering a stochastic reintroduction of model residuals into sim-
ulated responses. Exactly how to do so requires additional exploration and may depend on the particular
application and the simulation model developed. Stochastic use, as an ex post facto solution to the problem
of distributional bias, may be a more attractive approach than attempting to improve the simulation model
in question, or conducting sensitivity or uncertainty analyses. Importantly, many of the components of a rig-
orous uncertainty analysis can be redirected for use in the stochastic development and implementation of
environmental simulation models in operational studies. Such analyses and developments may be particu-
larly important within the context of the additional uncertainty corresponding to the impacts of climate
change. The findings presented here indicate that without a consideration of the stochastic component of
both statistical and deterministic models, systematic bias will result in flood and drought applications.

These conclusions are substantiated by a theoretical analysis of the impact of model residuals and further
evidenced by two examples presented above. The first example considered an idealized, closed-form solu-
tion that demonstrates the general effects of ignoring the distribution of model residuals on the simulated
distribution of streamflow. The second example presents the case of a more complex and realistic
distributed-parameter precipitation-runoff model calibrated at each of 1225 perennial river basins across
the United States There, the effects of the residuals on simulated responses cannot be explicitly derived.
Instead, the effects are demonstrated by an analysis of the first four moments, the distribution of stream-
flow, and several design floods. The second example concludes by presenting one approach that can be
used to improve the simulated response in design events. The results of this initial analysis emphasize the
need to exploit recent advances in the uncertainty analysis of environmental simulation models for the pur-
pose of developing new and effective methods of reintroducing the distributional properties of residuals
into simulation output.

While this initial analysis only considered hydrologic models of streamflow time series, the general conclu-
sions can be applied to almost any simulation modeling application in which extreme events play a pivotal
role. While no single solution exists, moving from the deterministic use of environmental simulation models
to at least an ex post facto stochastic use will improve both understanding and communication of the
uncertainties and biases in simulated results, which in turn should lead to improvements in the design,
planning, and management of water resource systems.
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