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a b s t r a c t 

A period-of-record flow duration curve (FDC) represents the relationship between the magnitude and 

frequency of daily streamflows. Prediction of FDCs is of great importance for locations characterized by 

sparse or missing streamflow observations. We present a detailed comparison of two methods which 

are capable of predicting an FDC at ungauged basins: (1) an adaptation of the geostatistical method, 

Top-kriging, employing a linear weighted average of dimensionless empirical FDCs, standardised with a 

reference streamflow value; and (2) regional multiple linear regression of streamflow quantiles, perhaps 

the most common method for the prediction of FDCs at ungauged sites. In particular, Top-kriging relies 

on a metric for expressing the similarity between catchments computed as the negative deviation of the 

FDC from a reference streamflow value, which we termed total negative deviation (TND). Comparisons 

of these two methods are made in 182 largely unregulated river catchments in the southeastern U.S. us- 

ing a three-fold cross-validation algorithm. Our results reveal that the two methods perform similarly 

throughout flow-regimes, with average Nash-Sutcliffe Efficiencies 0.566 and 0.662, (0.883 and 0.829 on 

log-transformed quantiles) for the geostatistical and the linear regression models, respectively. The differ- 

ences between the reproduction of FDC’s occurred mostly for low flows with exceedance probability (i.e. 

duration) above 0.98. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

A flow duration curve (FDC) is a graphical depiction of the cu-

ulative distribution of streamflows in a river catchment. Given

 record of streamflow, the FDC can be empirically estimated

y ranking the streamflows and estimating a corresponding ex-

eedance probability from an appropriate plotting position (e.g.,

eibull, Blom, etc., see Stedinger et al., 1993; Vogel and Fen-

essey, 1994 ). The resulting curve, which is a relationship between

xceedance probabilities (or flow durations) and discharge, indi-

ates the percentage of time a given streamflow value has been

qualled or exceeded over an historical period ( Vogel and Fen-

essey, 1994 ). Although many variations exist, FDCs are often con-

tructed from daily streamflows and consider either each year in-

ividually (one FDC for each year of record) or the entire period

f record (one FDC for the entire period). The former are useful
∗ Corresponding author. 
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or assessing the year-to-year variability of streamflow, whereas

he latter can be considered a steady-state picture of the en-

ire hydrological regime over the period considered ( Hughes and

makhtin, 1996 ). This work is concerned with period-of-record,

aily FDCs, which are essential to the development and manage-

ent of water resources and are routinely required in hydropower

eneration, design and water supply systems, irrigation planning

nd management, waste-load allocation, sedimentation studies, 

abitat suitability and many other water resource investigations

see Vogel and Fennessey, 1995 ; and Castellarin et al. 2013 ). 

While empirical FDCs provide an important characterization of

he behaviour of streamflow in a watershed, they require stream-

ow data in order to be constructed. Therefore, due to a lack of

ata, FDCs are not readily available along ungauged stream reaches.

his is problematic because these are often the very regions where

e have the greatest need for an understanding of streamflow be-

aviour. Recognizing this need, the prediction of FDCs in gauged,

artially gauged, and ungauged sites has been, for years, an ex-

remely active area of research ( Singh, 1971; Dingman, 1978; Fen-

essey and Vogel, 1990; Castellarin et al., 2013 ). Given increasing

http://dx.doi.org/10.1016/j.advwatres.2016.06.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2016.06.008&domain=pdf
mailto:alessio.pugliese3@unibo.it
http://dx.doi.org/10.1016/j.advwatres.2016.06.008
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concerns relating to our ability to predict streamflow properties at

ungauged locations, the International Association of Hydrological

Sciences (IAHS) launched an initiative for Predictions in Ungauged

Basins (PUB) ( Sivapalan et al., 2003 ). The prediction of FDCs at un-

gauged sites, because of their widespread use in water resources

engineering, was one of the main goals of the PUB initiative. 

Concerning the problem of FDC prediction in ungauged basins,

regional models proposed in the literature follow a variety of dif-

ferent approaches and conceptualizations, which are covered e.g.

by Castellarin et al. (2013, 2004 ). We concentrate on two different

prediction strategies, namely regional quantile-regression or sim-

ply regional regression (see e.g. Castellarin et al., 2013 ), which is a

classical and widely used approach, and an alternative approach

based on geostatistical interpolation. We present a detailed and

comprehensive comparison of the potential, ease of implementa-

tion, and reliability of the two approaches relative to a broad geo-

graphical area in the southeastern United States. 

Regional regression has long been used to predict daily FDCs

in ungauged basins ( Fennessey and Vogel, 1990; Klemeš, 20 0 0;

Castellarin et al., 2013 ). An example of such an approach is pro-

vided in a recent comparison of techniques for predicting contin-

uous time series of daily streamflow (see Farmer et al., 2014 ), one

of which required the prediction of ungauged FDCs prior to time

series prediction. In their study, treating quantiles as nearly inde-

pendent, Farmer et al. (2014) used a regional multiple-linear re-

gression to produce an estimate of the logarithmically transformed

quantiles as a function of at-site basin characteristics. With discon-

tinuous estimates of specific quantiles, log-normal interpolation is

used to complete the continuous FDC ( Farmer et al., 2014 ). While

this method is objective, reliable, and easy to implement, it does

not account for interdependency among quantiles along the FDC.

Ignoring quantile dependencies can lead to complications, such as

the failure of the resulting FDC to exhibit its expected monotonic

property. For example, Archfield et al. (2010) employed a recursive

approach to estimation of regional FDCs to ensure the monotonic

properties of FDCs are reproduced. 

Over the past decade, geostatistical approaches to predicting

streamflow indices in ungauged basins have become increasingly

popular (see e.g. Chokmani and Ouarda, 2004; Skøien et al., 2006;

Castiglioni et al., 2009; Archfield et al., 2013 ). Such techniques, re-

lying on kriging methods, do not require identification of hydro-

logically homogeneous regions. Using a kriging-based weighting

scheme, Castellarin (2014) introduces the prediction of a contin-

uous FDC within a three-dimensional xyz space, where x and y are

functions of the physiographic and climatic catchment descriptors,

while z represents the streamflow duration in terms of standard-

normal variate. Another viable strategy is to predict the FDC as a

single, continuous curve along the duration domain, removing the

need for interpolation between quantiles. As an example of this

approach, Pugliese et al. (2014) show how to predict FDCs through

a comprehensive point index of the FDC which characterizes, in

some extent, the shape of the curve. This index can be estimated in

ungauged basins employing Top-kriging ( Skøien et al., 2006 ), can

be used for expressing hydrological similarity between catchments,

and can yield weights to directly relate all FDCs in a region. 

This paper contrasts the ability to reproduce the FDC at un-

gauged sites of traditional regional-regression approaches applied

by Farmer et al. (2014) , and others, with that of the geostatisti-

cal technique of Pugliese et al. (2014) . We implemented a three-

fold cross-validation algorithm to verify the accuracy of the result-

ing predictions for each ungauged site. The main objective of this

study is to provide a comprehensive assessment and comparison of

the prediction capabilities and reliability for each method. A sec-

ondary goal is to provide guidance for future research on estima-

tion of FDCs at ungauged sites, especially in terms of identifying

particular aspects of each of the methods that offer opportunities
or improvement. Because of the tremendous attention given to re-

ional regression approaches for estimation of streamflow statistics

n the past, and the recent innovations relating to the use of geo-

tatistical methods, it is our goal to provide guidance and assess-

ent for new opportunities relating to the use of both of these

pproaches for estimation of time series of daily streamflow at un-

auged sites. 

The methods compared in this study are computationally inten-

ive, and are based on several previous studies which have devel-

ped regional regression equations ( Farmer et al., 2014 ) and geo-

tatistical methods based on Top-Kriging ( Pugliese et al., 2014 ) for

he purpose of estimating FDCs at ungauged sites. Most of the

ethods have been developed and discussed elsewhere, however,

o our knowledge, this if the first effort to compare these computa-

ionally intensive methods using a rigorous cross-validation experi-

ent across a broad and hydrologically diverse region consisting of

undreds of gauged basins with rather heterogeneous geomorpho-

ogical and climatic conditions. Since the methods are complex and

ave been discussed elsewhere, the following sections only provide

 brief overview, concentrating mostly on a large and complex ex-

erimental program which was developed for this study to provide

 comparative assessment of their performance at ungauged sites. 

. Materials and methods 

We provide a comparison between two previously-developed

echniques for the prediction of FDCs at ungauged sites: (1) re-

ional multiple-linear regression of independent quantiles and

2) an adaptation of Top-kriging capable of predicting continuous

DCs. In this section we describe the study area, the construction

f empirical FDCs, the regional regression techniques, the geosta-

istical tools, and how the prediction methods were implemented. 

.1. Study area, streamflow data, and empirical flow duration curves 

The study area is located in the southeastern United States

nd covers an area of approximately 355.0 0 0 km 

2 . The climate

s generally warm and humid with average temperatures rang-

ng from 19.9 °C in the southern part to 10.4 °C at the northern

eaches; mean annual precipitation spans from 1150 to 2070 mm

er year ( Gotvald et al., 2009; Farmer et al., 2014 ). The study

rea encompasses parts of Alabama, Florida, Georgia, Mississippi,

orth Carolina, South Carolina, Tennessee, and Virginia and in-

ludes 182 gauged river catchments, which are considered to be

elatively undeveloped and only minimally impacted by regulation

 Falcone, 2011 ). Fig. 1 shows the spatial distribution of catchments

cross the study area. Table 1 quantifies the distribution of key hy-

rologic and climatic characteristics across all catchments. 

For all basins, daily streamflows series were obtained from

.S. Geological Survey (USGS) streamgauges (U.S. Geological Survey

ater Data for the Nation, http://dx.doi.org/10.50 6 6/F7P55KJN ).

s described by Farmer et al. (2014) , these streamgauges were

creened to have at least 6 complete calendar years of daily

treamflow recorded between 01/10/1980 and 30/03/2010. The

treamflow sequences of a few sites (6 out of 182) contained zero

ow values, resulting in 0.3% of the total station-days data, thus,

n order to be logarithmically transformed, zeros were censored

t 0.0 01ft 3 /s ( ∼= 

0.0 0 0 03m 

3 /s) (see details in Farmer et al., 2014 ,

able 1 ). The vast majority of the streamgauges were considered

eference quality by the GAGES-II database ( Falcone, 2011 ), though

ome were included on the basis of previous flood-frequency

nalyses ( Gotvald et al., 2009 ). The tables and appendices of

armer et al. (2014) , provide detailed information on the stream-

auges selected and their associated watersheds. 

Empirical FDCs were constructed from the daily streamflow

eries by ranking the streamflows from complete water years

http://dx.doi.org/10.5066/F7P55KJN
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Fig. 1. Study area in the southeastern United States, showing 182 gauged catchments included in the analysis. Triangles indicating gauge locations are coloured according to 

groups used for the three-fold cross-validation (CV Gauge group k , with k = 1,2,3). 

Table 1 

Statistics of catchment characteristics for 182 gauged catchments included in the study: length of the observed streamflow series 

(y), drainage area (A), mean annual flow (MAF), 95% exceeded quantiles divided by MAF (q95), mean annual precipitation (MAP), 

mean annual potential evapotranspiration (PET), mean annual temperature at catchment scale (Tmean), mean basin elevation (Hmean), 

empirical total negative deviation (TND). 

y (yrs) A (km 

2 ) MAF (m 

3 /s) q95 (-) MAP (mm) PET (mm) T mean ( °C) H mean (m) TND (-) 

Minimum 6 .0 15 0 .3 0 1150 577 10 18 1 .373 

First quartile 18 .2 226 3 .3 0 .05 1360 754 13 116 2 .679 

Median 30 .0 588 6 .9 0 .12 1460 862 16 252 2 .998 

Mean 24 .3 1427 15 .4 0 .13 1470 846 15 371 2 .995 

Third quartile 30 .0 1317 15 .8 0 .21 1550 955 18 521 3 .351 

Maximum 30 .0 56610 598 .1 0 .59 2070 1042 20 1452 4 .054 
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nd assigning an appropriate probability to each rank. Probabil-

ties are assigned using the Blom plotting position, which de-

nes the probability, or duration, of the i th observation as d i =
( i − 0 . 375 ) / ( n + 0 . 25 ) , where n is the series length. This plot-

ing position gives unbiased quantiles of the Normal distribution,

hich is a reasonable approximation for logarithmically trans-

ormed streamflows ( Stedinger et al., 1993 ). In order to improve

he visualization of streamflow quantiles corresponding to small

nd large durations, i.e. floods and low flows respectively, we em-

loy standard normal variates for plotting streamflows. 

.2. Regional multiple linear regression of independent quantiles 

One of the most common techniques for the prediction

f FDCs at ungauged sites is the use of regional regression

 Castellarin et al., 2013 ). For this work, we relied on a previous
pplication of regional regression that was applied to our study

rea by Farmer et al. (2014) . The methodology is summarized here,

ut further information can be obtained by referring to the original

ource. 

At its simplest, regional regression treats the continuous FDC as

iscrete points. Regressions of selected FDC points are then built

ndependently of each other. Farmer et al. (2014) chose to dis-

retize the FDC into 27 quantiles, with durations of 0.02, 0.05, 0.1,

.2, 0.5, 1, 2, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 98, 99,

9.5, 99.8, 99.9, 99.95, and 99.98 percent. 

A log-linear regression model was developed for each duration

sing a range of basin characteristics from the GAGES-II database

 Falcone, 2011 ). Some of the explanatory variables used are log-

rithmically transformed so the “log-linear” regression is linear

ith respect to the potentially transformed explanatory variables.

eighted-least squares regression was used to weight quantile
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Table 2 

Summary of the catchment characteristics used for quantiles log-linear regression. A letter “x” distinguishes whether 

or not the recalled variable is employed in one of the selected durations range, i.e. 0.02–2%, 5–95% and 98–99.98%. 

Basin characteristics are reported in the first column along with the variable codename used in Farmer et al. (2014) . 

Catchment characteristic Flow regime 

0 .02–2% 5–95% 98–99 .98% 

Drainage Area (DRAIN_SQKM) x x x 

Mean watershed slope (SLOPE_PCT) x x 

Mean annual precipitation (PPTAVG_BASIN) x x 

Average value of total soil thickness (ROCKDEPAVE) x x x 

Percentage of the basin classified as planted or cultivated (PLANTNLCD06) x 

Rainfall and runoff coefficient from the Universal Soil Loss Equation (RFACT) x 

Average silt content of soils (SILTAVE) x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The shaded area qualitatively illustrates the meaning of Total Negative De- 

viation (TND). 
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estimates by the record length associated with each streamgauge.

Tobit regression was applied to handle zero streamflow observa-

tions which are treated as censored values ( Greene, 1997 , p. 962–

7). To help ensure continuity, streamflow durations were broken

into three regimes: durations 0.02–5%, 5- 95%, and 98–99.98%.

Each regime was associated with a selected set of basin character-

istics, even though some of them are shared among flow regimes.

For instance, drainage area and the average value of total soil thick-

ness are used in all the regressions regardless the specific flow

regime, while the mean annual precipitation is used for high and

median flows only. Within each regime, the variables for predic-

tion were held constant and only the coefficient values were al-

lowed to vary. Table 2 shows a summary of the basin charac-

teristics used for all the three flow regimes in the regional re-

gression method. Further details and the final results of these re-

gressions can be found in Farmer et al. (2014) (see Table 4 of

the supplementary material at http://pubs.usgs.gov/sir/2014/5231/

table/sir2014-5231 _ tables%201 – 7.pdf ). 

For the sake of brevity we will refer to regional regression

method as RR in the remainder of the manuscript. 

2.3. Geostatistical prediction of continuous flow duration curves 

Top-kriging (or topological kriging) is a powerful geostatistical

procedure developed by Skøien et al. (2006) for the prediction

of hydrological variables. Like all kriging approaches, Top-kriging

produces predictions of hydrologic phenomena at ungauged sites

with a linear combination of the empirical information collected at

neighbouring gauging stations. That is, the unknown value of the

streamflow index of interest at prediction location x 0 , Z ( x 0 ), can be

estimated as a weighted average of the variable measured in the

neighbourhood: 

Z ( x 0 ) = 

n ∑ 

i =1 

λi Z ( x i ) (1)

where λi is the kriging weight for the empirical value Z ( x i ) at loca-

tion x i , and n is the number of neighbouring stations used for in-

terpolation. Kriging weights λi can be found by solving the typical

ordinary kriging linear system ( 2a ) with the constraint of unbiased

estimation ( 2b ): 

n ∑ 

j=1 

γi, j λ j + θ = γi, 0 i = 1 , . . . , n (2a)

n ∑ 

j=1 

λ j = 1 (2b)

where θ is the Lagrange parameter and γ i, j is the semi-variance

between catchment i and j ( Isaaks and Srivastava, 1990 ). The

variogram, which represents the semi-variance of the increment
( x i ) − Z( x j ) between catchments i and j with respect of catch-

ents distance (see for details Skøien et al., 2014 ), delivers the

patial variability of the regionalised variable Z across sites. Top-

riging considers the variable defined over a non-zero support

, the catchment drainage area ( Cressie, 1993; Skøien et al.,

006 ). The kriging system of Eqs. (2) remains the same, but the

emi-variances between the measurements need to be obtained

y regularization, i.e. smoothing the point variogram over the

upport area. The point variogram can then be back-calculated

y fitting aggregated variogram values to the sample variogram

 Skøien et al., 2006 ). 

Pugliese et al. (2014) proposed a method for using Top-kriging

o predict continuous FDCs at ungauged locations; indeed, they re-

uce the dimensionality of the problem by seeking a unique in-

ex of site-specific FDCs. Unlike the regional regression approach,

hich treats quantiles as independent, this Top-kriging-based ap-

roach considers the entire curve simultaneously. This is accom-

lished by first standardising the empirical FDCs at site x, �( x, d ),

or some reference value, Q 

∗( x ), to yield a dimensionless FDC: 

 ( x, d ) = 

�( x, d ) 

Q 

∗( x ) 
, (3)

here d denotes a specific duration. The reference value can be

 given streamflow statistic, such as the long-term average of the

aily streamflow series. Pugliese et al. (2014) identified an overall

oint index that effectively summarizes the entire curve. This in-

ex, which the authors termed total negative deviation (TND), is

erived by integrating the area between the lower limb of the FDC

nd the reference streamflow value Q 

∗ (see Fig. 2 ). 

Empirically, TND values are computed as: 

 ND ( x ) = 

m ∑ 

i =1 

| q i ( x ) − 1 | �i (4)

http://pubs.usgs.gov/sir/2014/5231/table/sir2014-5231_tables%201
http://-
http://7.pdf
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here q i = 

Q i 
Q ∗ represents the i th empirical dimensionless quan-

ile standardised for the selected reference value Q 

∗, �i is half of

he frequency interval between the ( i + 1 ) th and ( i − 1 ) th quantile

nd the summation involves only the m standardised quantiles less

han 1. The range of the summation, m , in Eq. (4) is a function of

he maximum duration d ∗. Duration d ∗ is itself a function of the

inimum record length across gauged sites in the study region;

herefore, using the Blom plotting position and the information in

able 1 , the maximum duration was set to d ∗ = 0 . 9997 . 

Having calculated empirical TNDs, Pugliese et al. (2014) propose

sing the TNDs as a regionalised variable to develop site-specific

eighting schemes. The same weights derived through the solu-

ion of the linear kriging system (2) for TND are used for a batch

rediction of the continuous, dimensionless FDC for the ungauged

ite x 0 : 

ˆ 
 ( x 0 , d ) = 

n ∑ 

i =1 

λi ψ ( x i , d ) ∀ d ∈ ( 0 , 1 ) (5)

here λi , with i = 1 , . . . , n , are the weights resulting from the krig-

ng interpolation of TNDs; ψ( x i , d ) is the dimensionless, empirical

DC at the donor site x i , and 

ˆ ψ ( x 0 , d ) is the predicted dimension-

ess FDC. It is worth highlighting that the computation of the lin-

ar kriging system (2) depends on n , the number of neighbouring

ites on which to base the spatial interpolation, a fact that will be

xplored below. 

Once a reliable model (e.g., a regional regression model, or krig-

ng model, etc.) for predicting Q 

∗ at the ungauged site x 0 has been

et up for the study region, the prediction of the dimensional FDC,
ˆ ( x 0 , d ) , can be obtained as: 

ˆ ( x 0 , d ) = 

ˆ Q 

∗( x 0 ) ˆ ψ ( x 0 , d ) ∀ d ∈ ( 0 , 1 ) (6) 

here ˆ Q 

∗( x 0 ) is the prediction of Q 

∗ at the ungauged site x 0 and
ˆ 
 ( x 0 , d ) has the same meaning as in (5) . For the sake of brevity

his method of prediction is referred to herein as Total Negative

eviation Top-kriging (TNDTK). TNDTK was applied with the same

7-point resampling of the FDC developed for regional regressions

RR) above. 

.4. Cross validation procedure and comparative assessments 

A three-fold cross-validation (3FCV) procedure was used to eq-

itably compare the regional regression model against TNDTK. The

ataset was divided into three random subsets (see Fig. 1 ); each

rediction model was calibrated on two-thirds of the data and

hen applied to produce an ‘ungauged’ prediction on the remaining

hird. Iterating for each third, the algorithm leads to predictions for

ach and every site across the study area. We used the same ran-

om subsets as in Farmer et al. (2014) . 

The performance of each prediction method was assessed using

he Nash-Sutcliffe efficiency index either in natural, i.e. real, space

NSE) and in logarithmic space (LNSE) ( Nash and Sutcliffe, 1970 ).

hese are computed as follows: 

NS E j = 1 −
∑ n d 

k =1 

(
�

(
x j , d k 

)
− ̂ �

(
x j , d k 

))2 

∑ n d 
k =1 

(
�

(
x j , d k 

)
− μ j 

)2 
j = 1 , . . . , n s 

NS E j = 1 −
∑ n d 

k =1 

(
ln �

(
x j , d k 

)
− ln ̂

 �
(
x j , d k 

))2 

∑ n d 
k =1 

(
ln �

(
x j , d k 

)
− ω j 

)2 
j = 1 , . . . , n s 

(7) 

here �( x j , d k ) (m 

3 /s) and 

ˆ �( x j , d k ) (m 

3 /s) are the empirical and

redicted k th streamflow quantiles at site x j , respectively, μj is the

ean of the empirical streamflow quantiles at site x j , ω j is the

ean of the logarithms of the empirical streamflow quantiles at
ite x j , while n s and n d are respectively the total number of sta-

ions (i.e. 182) and the number of selected quantiles for FDC dis-

retization (i.e. 27). 

In addition to a site-by-site comparison of performance, the

ash-Sutcliffe efficiencies can be used to estimate the performance

cross streamflow quantiles. This is accomplished by summing

ver sites rather than durations in Eqs. (7) : 

S E k = 1 −
∑ n s 

j=1 

(
�

(
x j , d k 

)
− ˆ �

(
x j , d k 

))2 

∑ n s 
j=1 

(
�

(
x j , d k 

)
− μk 

)2 
k = 1 , . . . , n d (8)

nd likewise with LNSE, with the same meaning of symbols as in

7) . This metric allows one to visualize the performance of a se-

ected model as a function of the duration interval and, specifically,

o assess how the results vary in different streamflow regimes,

.g. high-flows rather than low-flows. It should be noted, however,

hat the cross-site range of streamflows for a particular quantile

s greater than the within-site range across the FDC, a fact which

ay affect the usefulness of a quantile-specific NSE. 

An additional metric of performance was the overall error of

rediction 

j = 

n d ∑ 

k =1 

∣∣�(
x j , d k 

)
− ˆ �

(
x j , d k 

)∣∣ j = 1 , . . . , n s (9)

here �( x j , d k ) and 

ˆ �( x j , d k ) (m 

3 /s) are the same variables as

bove and δj (m 

3 /s) is the overall error computed for a given

odel. This metric captures the overall distance between empiri-

al and predicted FDCs by computing the absolute error at each

uration interval and then summing across the range of durations

see Ganora et al., 2009 ). Finally, two statistical non-parametric hy-

othesis tests were employed to verify whether or not the model

rrors δi are significantly greater for TNDTK compared to RR. To ac-

omplish this task we used (1) the Wilcoxon signed-rank test with

he null hypothesis that TNDTK errors are larger than RR and (2)

he exact binomial test, which performs an exact test about the

robability of success in a Bernoulli experiment, both at 5% signif-

cance level. For the latter, we considered the random variable X ,

efined as the number of sites out of 182 for which model errors

i are lower for TNDTK relative to RR ones, under the assumption

hat X follows a Binomial distribution with the number of trials

 = 182 (i.e. number of catchments) and the hypothesized proba-

ility of success p = 0 . 5 (see Hollander and Wolfe, 1999; R Core

eam, 2016 ). 

. Results 

.1. Prediction of mean annual streamflow 

For this application we considered the mean annual stream-

ow (MAF) as the reference streamflow Q 

∗ used to standardise the

treamflows, because it is a traditional method to standardise FDCs.

owever, in our ungauged application, this necessitates the pre-

iction of the mean annual streamflow before FDCs can be back-

ransformed from TNDTK. A power-law model of MAF as a function

f drainage area ( A ) was employed to investigate how much of the

AF variability is explained by the influence of drainage area. 

Using regional regression, we observed a strong ( R 2 ∼= 

0.927)

og-log relationship between the MAF and A (i.e. scaling expo-

ent resulted equal to 0.93; see Fig. 3 a). Fig. 3 demonstrates that

rainage area can be considered one of the primary drivers con-

rolling the average discharge across the study area. 

This power-law model was therefore used to standardise empir-

cal MAF values to be predicted with Top-kriging, which directly

andles drainage area as a key variable of the model. The MAF

as scaled by a factor of A 

0.93 , where A is the drainage area of
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Fig. 3. Left panel: scatter diagram between Mean Annual Flow (MAF) and Drainage Area (A). Right panel: empirical vs. predicted MAF with either Top-kriging (cyan dots) or 

regional regression (red circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Prediction of dimensionless FDC in cross-validation for TNDTK: empirical vs. 

predicted standardised streamflows (big panel); empirical vs. predicted TND values 

(small panel). 
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the specific catchment, and Top-kriging was then applied in order

to predict MAF using the 3FCV algorithm, for different neighbour-

hood sizes n , analogous to the sensitivity analysis performed for

TNDTK which is described in Section. 3.2 . Similarly, we employed

the same cross-validation algorithm with the regional regression

model, in order to consistently assess which one of the two mod-

els performs better for the prediction of MAF in ungauged sites.

Fig. 3 b shows an example of the performance of Top-kriging us-

ing a neighbourhood of n = 6 (cyan dots) as well as the perfor-

mance of regional regression (red circles). Fig. 3 b reports on the

x -axis the empirical MAF values (m 

3 /s) against either Top-kriging

or regional regression predictions of MAF (m 

3 /s) on the y -axis, as

the result of the 3FCV algorithm. The assessment of the prediction

capabilities in terms of Nash-Sutcliffe efficiency, computed either

in natural (NSE) or in log-transformed space (LNSE), reveals very

good performances for Top-kriging, with NSE and LNSE equal to

0.93 and 0.97, respectively, whereas a slight drop in performance

is obtained using regional regression, with NSE and LNSE equal to

0.90 and 0.93, respectively. 

It is worth noting that the differences in terms of both NSE

and LNSE for the regional linear regression and Top-kriging are

rather minor. Therefore, even though the two procedures are inter-

changeable from a practical viewpoint for the study area, we de-

cided to employ the geostatistical method as the reference method

for the prediction of MAF in ungauged basins for the 3FCV cross-

validation. 

3.2. Prediction of dimensionless FDCs 

The TNDTK method produces estimates of dimensionless FDCs.

While this is useful for regionalisation studies, it is not directly

comparable to the methods employed by Farmer et al. (2014) for

estimation of the FDC itself. For this reason, we only briefly con-

sider the predictive performance of TNDTK for dimensionless FDCs.

A preliminary sensitivity analysis suggested that a neighbour of

n = 6 sites provided the best results; these results are summarized

in Fig. 4. 

The main panel of Fig. 4 shows the relationship between em-

pirical and 3FCV predicted dimensionless quantiles (27 for each

site). The sub-panel in the bottom right corner shows the empirical

TND values ( x -axis) against their prediction in cross-validation ( y -

axis). The quoted NSEs are for all streamflow quantiles in the plot,

across sites and durations. Note that since the NSE is so sensitive
o the range of the predictions and observations that this measure

ay be obscured by outliers, especially on the high end. However,

t is an adequate metric for this initial assessment. Surprisingly,

he Top-kriging model performs rather poorly for several locations

hen predicting TND (NSE of 0.46), but very well when predicting

imensionless streamflow quantiles, especially for high-flows (NSE

f 0.852). This suggests that the weights from Top-kriging of TND

ield significant added value when used for predicting FDCs by av-

raging empirical dimensionless curves. Also, this finding indicates

hat simple Top-kriging may not predict TND values in ungauged

ocations accurately enough for some applications and a more so-

histicated prediction technique needs to be identified and tested

or a reliable prediction of TND values (e.g. Top-kriging with ex-

genous variables, see e.g. Chokmani and Ouarda, 2004; Archfield

t al., 2013 ), which is an open avenue for future studies. 
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Fig. 5. Distributions of at-site Nash-Sutcliffe efficiencies for natural (NSE, left panel) and log-transformed (LNSE, right panel) streamflows plotted against the number n of 

neighbouring sites used for the interpolation with TNDTK. Efficiency values are represented as a box-and-whiskers plot summarizing the 1st, 2nd (median) and 3rd quartiles 

along with whiskers extending to the most extreme data point which is no more than 1.5 times the interquartile-range away from the nearest quartile. Circles indicate 

extreme members of the distribution. The black solid line illustrates the mean of the distributions; gray and cyan dashed lines, indicate the kriging performance relative to 

TND and MAF, respectively. The prediction performance for RR is illustrated in a similar fashion using a red box (the red horizontal segment illustrates the mean value). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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.3. Comparative assessment of regional regression and TNDTK 

In this section a rigorous comparison of estimated dimensional

DCs is provided using both regional regression and top kriging.

oncerning TNDTK, we obtained a cross-validated prediction of di-

ensional FDC at any given site in the region as the product of

ocally predicted MAF (see Section. 3.1 ) and dimensionless FDC

see Section. 3.2 ). Fig. 5 shows the distribution of at-site NSEs and

NSEs for both the regional regression and several iterations of the

NDTK method (i.e. varying the size of the neighbourhood from 3

o 100 members). Before considering the relative performance be-

ween regional regression and TNDTK, the most remarkable result

s the effect of neighbourhood size on the performance of TNDTK.

s can be seen in Fig. 5 , for both NSE and LNSE, the mean per-

ormance tends to decrease as n increases, especially for n ≥ 10.

ndeed, the mean NSE reaches a minimum of 0.282 at n = 100 ,

hereas the best performances are obtained over the interval 3 ≤
 ≤ 8, with mean NSE ranging from 0.556 to 0.585 and the me-

ian NSE ranging from 0.939 to 0.949. LNSE is generally greater

han NSE, but still shows, to a lesser extent, the same generally

egative correlation with neighbourhood size. The mean LNSE is

lways above 0.8, with a maximum of 0.883 at n = 6 , while the

edians are always above 0.91 with a maximum of 0.961 at n = 6 .

urthermore, the decreasing performance with increasing n is also

haracterized by an increasing frequency of increasingly more ex-

reme low-end outliers. The source of such decaying performance

s likely to be the underlying performance of the kriging system for

ND (gray, dashed line). Interestingly, and differently from the pre-

iction of TND and FDC, the prediction of MAF using Top-kriging

cyan, dashed line) does not seem to be affected by the number of

eighbouring donor sites and results in efficiencies equal to 0.959

nd 0.966 for NSE and LNSE, respectively. 

NSE values are similar for RR and TNDTK, though TNDTK ex-

ibits substantially lower efficiency values for a larger number of

ites relative to RR, as clearly showed by mean NSE values de-

icted in Fig. 5 . The RR approach yields a mean NSE of 0.662, while

he best iteration of TNDTK yields a mean NSE of only 0.585. The

edian goodness of fit are more competitive: regional regression
emonstrates a median NSE of 0.914, while the best of the TNDTK

terations presents a median NSE of 0.949. However, NSE is no-

oriously sensitive to extreme values, a problem which is particu-

arly significant when considering values across the entire range of

treamflows at a site. Instead, LNSE values are much less sensitive

o outliers and provide a better overall reflection of the goodness

f fit corresponding to the two methods. Performance in terms of

SE values is also valuable, though, as it enables one to compare

he results of this study with several other studies that were pre-

iously published on the same topic. 

The LNSEs show a much more equitable performance between

egional regression and TNDTK. This metric, being less sensitive to

xtreme realizations and variability, is a more honest indicator of

erformance in predicting FDCs for the same reason that logarith-

ic estimates of cross correlation provide better estimates of cross

orrelation than untransformed estimators (see Stedinger, 1981 ),

articularly for streamflow regimes which exhibit high variability.

hile RR appears to outperform TNDTK in terms of NSE, TNDTK

ields a greater LNSE, on average. Mean LNSE reaches a maxi-

um value of 0.883 for TNDTK and neighbourhood size of n = 6 ;

hereas mean LNSE is 0.829 for RR. Medians of at-site LNSE values

re 0.961 and 0.940, for TNDK and RR respectively. 

Overall, the distributions of NSEs and LNSEs are relatively simi-

ar and moderately skewed. Nevertheless, the distributions of at-

ite NSE and LNSE both support the conclusions that the best

eighbourhood size for TNDTK is n = 6 . For the remainder of this

anuscript we will focus more closely on the performance of the

-neighbour iteration of TNDTK and delve into its direct compari-

on with RR. 

In addition to at-site performance, it is useful to consider the

erformance of both RR and TNDTK for specific quantiles. Fig. 6

hows the cross-site NSE and LNSE of both regional regression and

NDTK. It should be noted that the cross-site variability, in mix-

ng potentially dissimilar sites, can have a significant impact on

he interpretations of NSE and LNSE. TNDTK outperforms the re-

ional regression in the low-flow regimes in terms of cross-site

SE, for durations ranging from 0.7 to 1, and in median-high flow

egimes, from 0.001 to 0.02. However, RR outperforms the geosta-
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Fig. 6. Nash-Sutcliffe efficiencies for natural (NSE, upper panel) and log-transformed (LNSE, bottom panel) streamflows computed at each considered duration for TNDTK 

(black line) and RR (red line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

TNDTK vs RR: model predictive accuracy in terms of Nash-Sutcliffe Effi- 

ciencies in natural (NSE) and in log space (LNSE); areas associated with 

the 50, 80 and 90% error-bands depicted in Fig. 7 (central panel) are 

also reported. 

TNDTK RR 

NSE 0 .566 0 .662 

LNSE 0 .883 0 .829 

Area Under 50% 0 .528 0 .547 

Area Under 80% 1 .422 1 .289 

Area under 90% 3 .756 1 .929 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

o  

l  

fl  

t  

i

 

d  

u  

q  

r  

c  

a  

r  

a  

a  

t  

t  

d  

a  

t  

r  

9  

r  

e

 

i  

e  

s  

m  

p  

d  

i  

o  

t  
tistical model in the median flows, from 0.05 to 0.7, and the very

high flows, i.e. duration lower than 0.001. Despite this variability,

the discrepancy appears only significant for the low-flow regimes. 

The LNSEs show a notably different story. The performance of

TNDTK and regional regression are essentially the same from the

high to the mid-low flows regime, i.e. d lower than 0.9, while

regional regression model outperforms TNDTK in the low-flow

regimes. Furthermore, while NSE indicated that high flow regimes

were more poorly estimated than low-flow regimes, the LNSEs sug-

gest the reverse. This discrepancy is likely due to the marked sen-

sitivity of NSE to poor predictions of extremely high streamflow

values, and the enhanced diagnosing capability of LNSE when it

comes to low-flow predictions. 

The upper panel of Fig. 7 further elucidates the comparative as-

sessment between the 6-neighbor TNDTK and RR by plotting the

observed quantiles against the modelled quantiles for each method

( Fig. 7 , upper panel). The results of each method overlap substan-

tially, indicating only slight differences in their corresponding pre-

diction capability. This behaviour is confirmed through the numer-

ical assessment driven by performance indices computed for both

TNDTK and RR, reported above and summarized more succinctly in

Table. 3 . The average at-site three-fold cross-validation NSE is equal

to 0.566 and 0.662 for TNDTK and RR, respectively, while the aver-
ge at-site validation LNSE is equal to 0.883 and 0.829, in the same

rder. However, the variability of performance is much greater for

ower streamflow values. TNDTK tends to overestimate the low-

ows regime much more so than regional regression. This suggests

hat the relative performances seen in the LNSEs of Fig. 6 are more

ndicative of a general behaviour. 

The middle panel of Fig. 7 shows the relative residuals, i.e. the

ifference for a given site between the predicted and empirical val-

es divided by the empirical one, computed for each of the 27

uantiles. It is worth noting that such a diagram is not symmet-

ic, because the y -axis has a lower bound equal to -1. This plot

onfirms the overestimation of low-lows for TNDTK and highlights

n underestimation of streamflow quantiles for RR in the same du-

ation range; indeed the median behaviour of both models is rel-

tively unbiased for duration below 0.5, then deflections from 0

re clear for durations ranging from 0.6 to 1, i.e. low-flows regime,

hough in dissimilar direction. Table. 3 reports the magnitude of

he areas within error-duration bands illustrated in Fig. 7 (mid-

le panel), which can be interpreted as an average relative error

cross duration for a fixed accuracy level. There is, between the

wo methods, a substantial equality in terms of 50 and 80% accu-

acy levels. Conversely, TNDTK results in a doubled value for the

0% band, an area that is driven by the variability of low-flow

egimes in Fig. 6 ; this further supports the tendency towards over-

stimation previously highlighted. 

Finally, the bottom panel of Fig. 7 shows the at-site comparison

n terms of the overall, i.e. throughout duration, distance between

mpirical and predicted FDCs computed, for both models, per each

ite with Eq. (9) . In this representation equivalence between the

odels is represented by the solid bisecting line; therefore, if one

oint falls above the 1:1 line, TNDTK provides a better overall pre-

iction of the empirical FDC than RR for that site, and vice-versa

f the point falls below the 1:1 line. This plot shows that TNDTK

utperforms regional regression for 109 sites out of 182 ( ∼= 

60%);

he binomial test reveals that the hypothesis for which model
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Fig. 7. Comparison between dimensional FDC predictions in cross-validation via 

TNDTK and RR: empirical vs. predicted dimensional streamflows (upper panel); 

error-duration bands reporting the median of relative errors against duration (solid 

lines) as well as error bands containing 50, 80 and 90% of prediction relative er- 

rors (middle panel); overall at-site prediction errors computed with Eq. (9) (bottom 

panel). 
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rrors δi are greater for TNDTK relative to RR should be rejected

 p -value = 0.0046), which suggests that TDNK is better than RR at

% significance level. This result is also confirmed by the Wilcoxon

igned rank test that reveals the null hypothesis that TNDTK er-

ors are larger than RR should be rejected at a 5% significance

evel ( p -value = 0.0242). However, it is worth noting that, similar

o NSE, this error measure defined in Eq. (9) is mostly driven

y high-flows, which are generally related to larger absolute er-

ors, thus it likely fails to capture the performance in the low-flow

egime. 

. Discussion 

.1. Comprehensive assessment of RR and TNDTK prediction 

erformance 

The results of this study reveal that the two approaches com-

ared perform similarly regardless of the specific choice of the

odel settings. To some extent, they could be considered inter-

hangeable, showing the same results for most of the streamflow

egimes, i.e. from very high flows to low-flows. The exception is for

ery high durations, i.e. d ≥ 0.95, for which TNDTK is characterized

y a positive bias, while RR, even if less emphasized, shows a nega-

ive bias (see middle panel in Fig. 7 ). Indeed, for the very high du-

ations, which are commonly dominated by subsurface flows, the

wo methods might be seen as complementary to each other: as

hown in Fig. 6 by the discrepancies in the behaviour of NSE and

NSE for both high and low durations. 

Nevertheless, TNDTK is a promising tool for predicting FDCs in

ngauged basins, given the small amount of input data required

y such a model, which mainly relies on streamflow series and

atchments’ size as well as their mutual position. Still, TNDTK ex-

ibited intrinsic weaknesses when contrasted against RR. In terms

f at-site performance, the overall metric of LNSE suggested that

NDTK possessed a marked advantage over RR, but, as in Fig. 7 ,

t is clear that TNDTK overestimates low-flows. This result was to

e expected. Because a linear weighting scheme that uses only

ositive weights is adopted, TNDTK is expected to overestimate

ow-flows for sites exhibiting extremely low dimensionless low-

ows and to underestimate high-flows for sites characterized by

xtremely high dimensionless high-flows (see Fig. 4 ). The same

moothing does not necessarily apply to multiple regression meth-

ds, such as RR. Despite this concern, TNDTK provides method-

logical advances over regional regression in that it is capable of

roducing continuous FDCs rather than being constrained to point

uantiles. Furthermore, RR, in treating quantiles as independent,

ay introduce non-monotonic behaviour into the FDCs; although

ot explored here, the smooth prediction method of TNDTK may

nforce monotonicity. In this application we did not find any is-

ue related to non-monotonicity for both methods, yet it may not

e the case in a different study area. Further research will address

his specific point and will deal with the monotonic property of

he curve among different approaches. 

One of the most interesting aspects of the models’ comparative

erformance corresponds to the few sites that exhibited extreme

egative results. For instance, TNDTK produces in turn 10 and 1,

ut of 182, negatives NSE or LNSE respectively, while RR results

n 7 and 3 negatives NSE or LNSE. The maps in Fig. 8 (right pan-

ls) show the locations where negative NSE values are produced

espectively by both models (upper-right, blue dots), by RR only

middle-right, light green dot) and by TNDTK only (bottom-right,

lack dots). Six sites are associated with the worst performances

or both approaches (blue dots); these sites are located mainly at

he periphery of the study area and are grouped in two different

limatic regions: a humid group in the south and a more conti-

ental group in the north. The poor results obtained for these sites
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Fig. 8. Top panels: the large central map reports those sites which resulted with LNSE < 0.5 for either TNDTK (red dots) or RR (grey dots); the three small maps in the right 

side report, respectively, those catchments with a) negative NSEs for both models (blue dots), b) negative NSE for RR only (light green dot), and c) negative NSE for TNDTK 

only (black dots). Bottom panels: log space Nash-Sutcliffe efficiencies (LNSE) for TNDTK and RR ranging within the [0,1]interval, vs. potential evapotranspiration (PETR), 

run-off ratio (ROR), mean basin elevation (H mean ), mean basin temperature (T mean ), square root of drainage area ( 
√ 

A ), in this order; the rightmost scatterplot reports TNDTK 

LNSE values vs. RR values. Sites with LNSE values ranging from 0 to 0.5 are highlighted with red dots for TNDTK and grey dots for RR. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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are not surprising, as they correspond to very small or very large

basins. Our study highlights that drainage area, mutual position

of catchments, nested structure, and differences in climate play a

significant role in the prediction of FDCs with Top-kriging and re-

gional regression. 

Furthermore, both methods suffer deficiencies in predictive ac-

curacy when the spatial density of gauging stations is low (see e.g.

Castiglioni et al., 2011; Parajka et al., 2015 ). Table 4 presents a sum-

mary of drainage areas and nested structure along with the NSE

negative efficiencies. For instance, sites 0,349,5500 and 0,347,8400

are nested and should, therefore, benefit from along-stream or

nested stream neighbours. However, there is a large difference of

more than three orders of magnitude in terms of drainage areas

and both sites belong to the same cross-validation group (i.e. group

2) and therefore prediction in one cannot benefit from data col-
ected for the other, and vice-versa. These considerations could

e extended to all nested sites that belong to the same cross-

alidation group. Also, when sites 0,349,5500 and 0,347,8400 are

emoved from the dataset (i.e. prediction of cross-validated empir-

cal FDCs for all sites belonging to group 2) the cross-validated var-

ogram does not capture the overall variability in terms of drainage

rea any longer, leading to poorer performance. 

Conversely, negative efficiencies obtained at the southern catch-

ents could be reasonably attributed to changes in climatic and

eomorphological conditions. A similar reasoning could be adopted

or the 4 catchments associated with extremely low NSE values for

NDTK only (back dots); the combination of small catchment areas

nd wide climatic variability might affect models’ ability to pre-

ict variation in streamflow regimes. With this in mind, we inves-

igated how such drivers influence the FDC predictions. 
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Table 4 

Focus on those sites where both TNDTK and RR report negative NSE (see also upper-right map in 

Fig. 8 ). From left to right, columns report respectively the gauge identification number (ID), the catch- 

ment drainage area (A), a logical value that describes whether or not the catchment is nested (NEST), 

and the cross-validation group (CVG). 

ID A (km 

2 ) NEST CVG (-) NSE TNDTK (-) NSE RR (-) 

Southern catchments 02367310 99 No 2 –12 .89 –7 .71 

023590 0 0 2946 No 1 –3 .57 –0 .24 

02326512 2868 No 3 –9 .38 –4 .86 

Northern catchments 03466228 55 No 3 –0 .41 –0 .97 

0349 ,5500 15041 Yes 2 –19 .47 –12 .89 

03478400 106 Yes 2 –1 .86 –3 .20 
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Fig. 8 suggests a climatological pattern to the poor perfor-

ance of either method. LNSEs of each method, with values

ower than 0.5 in grey (RR) or red (TNDTK), are graphed against

everal explanatory variables derived at a catchment scale (see

alcone, 2011 ). These include the square-root of drainage area, 
√ 

A

km), the mean annual basin temperature, T mean ( °C), the mean

asin elevation, H mean (m), the run-off ratio, ROR = 

MAF 
MAP 

(-), and

otential evapotranspiration ratio, P ET R = 

PET 
MAP 

(-) ( Budyko, 1974 ),

hile the spatial pattern of the poorly-performing sites is illus-

rated in the large map in Fig. 8 (note that the bottom panels high-

ight LNSEs within the [0.1] interval only, which is why the number

f dots in the large map does not match with those in the scatter-

lots). The peculiar sites seems to be small or very small catch-

ents, characterized by high mean annual temperature, low mean

levation, low run-off ratio, and high potential evapotranspiration

atio. 

As another interpretation, since ROR and PETR mainly sum-

arize the average annual hydrological water balance of a given

atchment, it follows that the hydrological regime of the south-

rn catchments is dominated by subsurface flows along with an

ncreased capacity of storing and retaining water (low ROR), while

he sub-humid climate (high PETR) gains the seasonal variability of

treamflows ( Ponce et al., 20 0 0; Berghuijs et al., 2014 ). The same

ypotheses can be developed for the regional regressions, though

n both cases there are sites with similar characteristics that per-

orm quite well. Likely, subsurface flows together with climatic

hanges along the NE-SW direction could deeply influence the final

rediction of low flows for either method. 

.2. Guidance for future research 

Consistent with previous work by Pugliese et al (2014) , a neigh-

ourhood of six donor sites produced the greatest predictive ca-

acity for TNDTK. Different from previous work, application of Top-

riging resulted in rather poor predictions of empirical TND values.

SE associated with cross-validated TND values dropped from 0.81

see Pugliese et al., 2014 , p. 3808) to 0.46. Although it is worth

ointing out that we used a different cross-validation procedure in

his study, and thus a direct comparison between these two case

tudies might be flawed. However, analogous to what is presented

n Pugliese et al. (2014) , poor predictions of TND did not automat-

cally result in poor FDC predictions by using kriging weights re-

ulting from Top-kriging application to the prediction of TND val-

es. This outcome seems to suggest that TND is a rather complex

ignature of streamflow regime, which is difficult to capture and

redict, yet it is highly descriptive in terms of hydrological sim-

larity and future analyses should focus on how to improve TND

redictions. 

Understanding how to couple and blend the two methods, com-

ining their complementarities is definitely an interesting open

uestion for future research. For instance, future analyses should

ook at ( i ) the possibility to incorporate a bias correction module,
ithin the TNDTK method e.g. by directly accounting for external

rifts associated with geomorphological and climatic characteris-

ics, and ( ii ) different and “duration-oriented” weighting schemes,

hich might be applied over constrained duration intervals, e.g. an

xclusive set of weights for the low-flow regime, one for the high-

ow, etc. Moreover, a rather complex issue is finding a comprehen-

ive descriptor capable of expressing the similarity between catch-

ents in terms of FDCs. Future research should address this issue

nd move towards the delineation of better metrics for quantifying

he similarity/dissimilarity between the curves, instead of resorting

o signatures such as TND, which evidently provide only a partial

escription of an FDC. 

Finally, this study showed how climatic and geomorphologic

atterns could play a significant role in the prediction of FDCs in

ngauged basins, thus the practice of dispensing with the delin-

ation of homogenous regions, commonly adopted in geostatisti-

al applications, might be unsuitable for large and very large study

reas, as in this study. Although this practice could introduce fur-

her elements of subjectivity in the procedure, this feature could

e taken into account in future analyses and, furthermore, dealing

ith prediction of FDCs in a changing environment, might be an

nteresting research avenue exploring how much the performances

ely on the assumption of different across-space climatic and geo-

orphologic conditions. 

. Conclusions 

This study focuses on a comparative assessment of two differ-

nt methods for the prediction of flow-duration curve (FDCs) at

undreds of ungauged basins in the southeast United States. The

rst method proposed is an adaptation of Top-kriging, capable of

redicting the FDC in a given ungauged catchment by employing

 linear weighted average of empirical standardised FDCs, belong-

ng to n donor sites. The prediction is carried out via an empiri-

al dissimilarity index defined as the negative deviation of the FDC

rom a selected reference streamflow value. The reference stream-

ow value chosen in this study for standardising each curve is the

ean Annual Flow (MAF), which is a traditional method to stan-

ardise FDCs. The second method explored in this study is the re-

ional multiple linear regression method, which has been widely

sed in several climatic and geomorphological contexts around the

orld. This approach treats the FDC as a collection of independent

treamflow quantiles and predicts every quantiles with a regres-

ion based on a different combination of climatic and geomorpho-

ogic catchments descriptors. 

This study demonstrated that the two procedures perform quite

imilarly across a broad range of streamflow regimes ranging from

early floods to droughts. Overall, the regional regression method,

ermed RR, appeared more robust than TNDTK for very high du-

ations (i.e. severe droughts), showing better performance indices

nd lower bias, while TNDTK tends to overestimate low-flows. 

Still, TNDTK proved to be a reliable procedure for the prediction

f FDCs at ungauged sites while simultaneously ensuring its unique
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characteristics including that: ( i ) it is able to predict the entire FDC

as a single object regardless of the number of points used in a re-

sampling scheme; ( ii ) it preserves the monotonic non-increasing

property of the FDC, as a fundamental requirement of cumulative

frequency distributions; ( iii ) it works with a limited amount of in-

put data, so that, it only requires a reasonable number of stream-

flow series and their related catchments’ boundaries. 

Our comparative assessments have revealed several useful con-

clusions which hopefully will inspire future research. In partic-

ular, the TNDTK approach which only uses streamflow informa-

tion was shown to be competitive with the regression approach

requiring much more information concerning differences among

drainage basins. Numerous opportunities exist for improvement

of both methods. For instance, our results highlight that drainage

area, mutual position of catchments, nested structure and differ-

ences in climate all play a significant role in the prediction of FDCs

with Top-kriging and regional regression. Our results also highlight

the importance of the identification of a more reliable metric than

the TND approach employed here, capable of describing similar-

ity among FDCs, which is still a challenging science question to

be addressed in the future. Indeed, a more complex conceptualiza-

tion of the differences, or “distance”, between curves, might lead

to better and more unbiased performance. Perhaps our most im-

portant findings relate to the situations in which these methods

performed poorly, which occurred at sites which were either small

or very small catchments, characterized by high mean annual tem-

perature, low mean elevation, low run-off ratio and high potential

evapotranspiration ratio. Future research might benefit from defin-

ing hydrologic homogeneity in those terms to better contrast our

ability to estimate FDCs at ungauged sites. 
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