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Abstract Steel bridges play an important role in the

transportation system of many countries. To ensure that

bridges are structurally sound, engineers monitor their

performance, which is known as structural health moni-

toring. Historical evidence indicates that bridge damage is

pervasive and that the service life of bridges is decreasing.

To manage safety and costs, engineers must be able to

accurately predict the service life of bridges. A statistical

method to predict service life for steel bridges is presented,

which can assist bridge engineers, bridge owners, and state

officials in the objective assessment of deteriorated bridges

for retrofit or replacement. Timely repair and retrofit of

bridges increase their safety levels and decrease costs. A

nonparametric statistical approach based on the bootstrap

method for stress analysis for fatigue life prediction of steel

bridge components is proposed. The bootstrap provides a

simple approach for the reproduction of the extremely

complex probability distribution of measured strain data. It

is completely automated numerical method which requires

no theoretical calculations and it is not based on the

asymptotic results. The service life index is introduced

which quantifies the fatigue life of steel bridges under daily

traffic loads. A regression model is developed for the

prediction of remaining service life of steel bridges using a

service life function. The predicted remaining service life

derived from the function can contribute to effective

management of steel bridges.

Keywords Steel bridges � Service life � Bootstrap � Service
life index � Regression � Simulated strains and stresses

1 Introduction

Bridges play a significant role in the expansion of public

transportation network infrastructure in the world. The

development of bridges establishes new network connec-

tions, which can enhance the economic progress of a

country. What is very clear is that damage appears in many

of the bridge’s components with the passage of time.

Therefore, damage detection of bridges is a key issue for

managing cost-effective decisions regarding bridge man-

agement systems (BMS). Since structural health monitor-

ing (SHM) is becoming increasingly useful and applied in

BMS, it is now vital for managing bridges throughout

construction, operation and maintenance. One of the sig-

nificant areas of bridge SHM is service life prediction or

bridge prognosis. Changes in properties of structure com-

ponents during their service life relate to damage of

structures that are monitored in SHM. Extensive research

has been conducted on service life evaluation of steel

bridges using damage detection and fatigue assessment

methods. However, as our literature review below reveals,

few studies have developed a bridge service life index

which considered the damage and fatigue which results

from variations in actual daily traffic patterns, which is the

primary goal of this research.

There has been a considerable interest worldwide in the

field of bridge engineering and much research has been

carried out on bridge topics. Wang et al. [1] studied finite

element based fatigue assessment of corrugated steel web

beams in highway bridges. Their paper presented a finite

element analysis and its related experimental test of
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corrugated steel web beams subjected to fatigue loading.

Results showed that it is possible to expect the fatigue

crack failure arising at the weld root or weld toe corre-

sponding to sections with reference angle using the effec-

tive notch stress analysis [1]. Grandic et al. [2] presented

evaluation of torsional stiffness in beam and slab bridge

decks based on load testing. The results of load testing

conducted on series of bridges in Croatia are compared

with results obtained on different numerical grillage mod-

els in which torsional stiffness of main structural elements

was varied. According to conducted analyses, a design

value of the coefficient of torsional stiffness reduction for

the verification of serviceability limit state of main struc-

tural elements of beam and slab bridge deck is proposed

[2]. Tarighat [3] focused on model based damage detection

of concrete bridge deck using an adaptive neuro-fuzzy

inference system. In this paper, an adaptive neuro-fuzzy

inference system (ANFIS) is used to detect the possible

damage location in a concrete bridge deck modeled by

finite element method. Results showed that this method can

decrease the time and cost of visual inspections and be used

as real-time damage detection caution system in practice

[3]. Service life prediction of bridges has been developed

and evaluated in many fields. One of the fields is fatigue

evaluation for service life prediction. Miner and Calif [4]

proposed the ‘‘damage cumulative’’ rule. It was proposed

as a simple and conservative life prediction based on the

concept of cumulative fatigue damage. Using this concept,

they tested different types of aluminum alloy specimens

with different stress ratios and different combinations of

loading cycles. A percentage of failure at a specified stress

level was defined by a number of loading cycles. Accord-

ing to this concept, total damage occurs when the number

of cycles reaches 100 percent leading to fatigue failure of

the specimen [4]. Soliman et al. [5] studied fatigue

assessment and service life prediction of existing steel

bridges by integrating SHM into a probabilistic bilinear S–

N approach. Soliman et al. (2013) demonstrated that the

present methods for fatigue remaining life prediction of

steel bridges can be conservative. In their study, a bilinear

S–N approach was proposed. They investigated how dif-

ferent slopes above and below the constant amplitude

fatigue threshold (CAFT) related to S–N curves for better

prediction of fatigue life [5].

In service life prediction of bridges based on monitoring

data, measured strain is an important indicator of bridge

fatigue behavior. Zhou [6] presented a method for assess-

ment of bridge remaining fatigue life evaluation through

field strain measurements. Zhou [6] reported that a large

number of bridges appear to have an infinite fatigue life

[6]. Also, Ye et al. [7] conducted a statistical analysis of

stress spectra for fatigue life assessment of steel bridges

with structural health monitoring data. They developed a

method for fatigue life assessment of steel bridges using

long-term measured dynamic strain data [7]. Alampalli and

Lund [8] proposed a method for estimating fatigue life of

bridge components using measured strains. Alampalli and

Lund [8] show that most of the critical components had an

infinite fatigue life and others had a substantial fatigue life

[8]. Likewise, Sanayei et al. [9] performed instrumentation,

nondestructive testing, and finite element model updating

for bridge evaluation using strain measurements. There-

fore, a baseline finite element model was developed and

calibrated with nondestructive test data that could be used

in fatigue studies [9].

Others have introduced approaches for fatigue reliability

assessment of steel bridges in service life prediction. For

example, Ni et al. (2013) proposed a monitoring-based

fatigue reliability assessment of steel bridges. In the pro-

posed method, they developed a fatigue reliability model of

steel bridges using long-term monitoring data. The relia-

bility index and failure probabilities which are related to

fatigue life were then determined from the joint probability

density function of the hot spot stresses [10]. Wang et al.

[11] studied fatigue reliability to update fatigue life eval-

uation of existing steel bridges. There, a probabilistic

fracture mechanics method based on the Bayes theorem

was used to update relevant parameters of crack growth

models using information from nondestructive inspection.

A procedure was proposed for assessing and updating

fatigue reliability of existing steel bridge components [11].

Sahrapeyma et al. [12] performed a study on life-cycle

prediction of steel bridges using reliability-based fatigue

deterioration profile. The effects of repair, rehabilitation,

and maintenance on the deterioration profile were specified

by a numerical approach. In addition, a reliability index

was recommended with a plan for maintenance of an

existing bridge [12].

Another field of research used to predict service life of

bridges is deterioration due to chloride effects. Oh et al.

[13] presented a realistic assessment for safety and service

life of reinforced concrete deck slabs with steel girder

bridges. A deterioration model due to chloride ingress was

established. For structural evaluation, the service life pre-

diction of deck slabs due to loading and environmental

effects were presented based on materials used [13]. Also,

Cheung et al. [14] studied service life prediction of rein-

forced concrete deck bridge structures exposed to chlo-

rides. In this research, variations in reinforced concrete

deck surfaces were studied considering local climate con-

ditions [14].

Our literature review reveals that previous studies did

not consider actual changes in the average daily traffic. At

best, they define average daily traffic using a constant

annual rate [8, 15]. This research proposes a quantitative

service life index which can be computed from actual
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strain measurements associated with average daily traffic.

This service life index can be used for the estimation of

the ultimate fatigue life of existing steel bridges and to

consider traffic-induced stress variations. The approach is

to obtain the nominal stresses at a specific location (or

critical location) using measured strains under daily

traffic. Then, a set of new measured strain samples is

derived by a statistical approach, termed the bootstrap

method. The bootstrap produces new samples of measured

strains, which reproduce extremely complex statistical

properties of the available strain observations. The boot-

strap is used to predict future strain ranges considering the

relevant number of cycles that define the service life of a

steel bridge. In addition, a life index is defined for ulti-

mate service life prediction of existing steel bridges.

Since service life prediction of bridges is a key issue for

managing effective decisions by BMS, a regression model

is developed using stresses and the associated number of

cycles for service life prediction by examining changes in

the service life index. These changes lead to a service life

function that is defined as the number of cycles experi-

enced by a steel bridge under actual changes of daily

traffic using only measured strains. The proposed

regression model can be used to evaluate the ultimate

fatigue life and remaining fatigue life at critical locations

on the existing steel bridges. Here, service life and fatigue

life are assumed to have the same meaning.

2 Fatigue Theory

Fatigue damage is a cumulative process related to the

number of loading cycles experienced by each specimen

through the load carrying system of a structure. The

number of loading cycles experienced by each specimen is

expressed as a percentage of the failure life at a given stress

level, which is proportional to the expected remaining life.

All fatigue cycles are converted to the same stress level and

the cumulative effects are determined. Miner and Calif

(1945) suggest that, ‘‘when the total damage, as defined by

this concept, reaches 100 percent of the fatigue life, then

the structural element would fail’’ [4]. Bridges are sub-

jected to a high number of heavy trucks loading cycles

during their service life. As a result, bridge steel compo-

nents are directly subjected to this cyclic loading, which

can lead to fatigue damage, in particular, at steel

connections.

The damage (D) is a function of the number of loading

cycles applied to the failure at a specific stress level. It can

be shown as, Di = f (ni/Ni), where, ni is the number of

cycles applied at a specific stress level (ri) and Ni is the

number of cycles applied at the same stress level to fatigue

failure. The relationship between stresses and the number

of cycles is linear based on Miner’s rule. Miner assumed

when the summation of increments of damage, ni/Ni, for

different stress levels is equal to unity then fatigue failure

occurs [16]. This protocol for the estimation of fatigue life

in steel structures is computed as,
X

Di ¼
X ni

Ni

¼ 1 ð1Þ

There is a constant amplitude fatigue threshold (CAFT)

for each S–N curve. CAFT is also called endurance limit,

fatigue limit, and fatigue strength. It is a threshold value of

stress range, below which the specimen will not develop

fatigue cracks during the expected life of the bridge. When

the stress is below this limit, the material may endure an

infinite number of cycles without failure, ‘‘therefore, a

requirement on higher-traffic-volume bridges that the

maximum stress range experienced by a detail be less than

the constant amplitude fatigue threshold provides a theo-

retically infinite fatigue life, leading to heavier and more

expensive steel structures. Instead, the maximum stress

range experienced by a detail which is more than the CFAT

estimates a theoretically finite fatigue life’’ [17].

In this paper, it is assumed that critical components are

free of cracks. However, if such components suffer from

cracks, the cycles below the CAFT should be considered

for service life prediction using results of other researchers

[5]. The provided S–N curve protocol estimates the fatigue

damage when the maximum stress range experienced by a

bridge component exceeds the CAFT. Fatigue endurance

strain is related to fatigue endurance stress through

Hooke’s law for uniaxial linear elasticity. This is a nec-

essary ingredient for comparison of analytical strains with

measured strains of steel specimens.

3 Assessment of Bridge Failure

Failure is a general term that refers to two conditions:

collapse and distress (unserviceability). It is defined as the

inability of a constructed facility; in this case a bridge or its

components, to perform as specified in the construction and

by design documents [18]. Bridge collapse refers to the

failure of all or a substantial part of a bridge that then

requires full or partial replacement [19]. Collapse is the

loss of integrity and it occurs when the entire or a sub-

stantial part of a structure comes down, in which the

structure loses the ability to perform its function in carrying

a designed load. Collapse can be further classified into two

categories: catastrophic collapse and partial collapse.

Catastrophic collapse implies that several primary struc-

tural members of a span have fallen down, such that no

travel lane is passable. Partial collapse suggests a condition

where some of the primary structural members of a span
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have fallen down, where such a condition endangers the

lives of those traveling on or under the structure. Distress is

the unserviceability of a structure or its components. Dis-

tress may or may not result in a collapse. In this situation,

the structure undergoes some deformation without losing

whole structural integrity. Loss of serviceability refers to a

condition where there are no signs of structural distress or

collapse; however, large deformations can lead to a loss of

function and the bridge may be closed. In summary, bridge

collapse and distress (unserviceability) are subsets of

failure.

Bridges are fabricated and constructed with many

structural components and there are numerous welded and

bolted connections. These connections are mostly the

critical locations for fatigue damage and failure; therefore,

special attention must be given to structural connections.

Values of fatigue damage in the vicinity of welded and

bolted connections are compared for detection of possible

fatigue failure locations [20]. The fatigue behavior is

investigated at critical locations of steel bridges. Since

failure of connections in fracture critical steel components

can result in bridge failures, then service life of the steel

bridge and predicted life of the critical components can be

the same. A fracture critical bridge is defined by the

FHWA as a steel member in tension, or with a tension

element, whose failure would probably cause a portion of

or the entire bridge to collapse. In this paper, a method-

ology for service life prediction of steel bridges is pre-

sented by an evaluation of steel connection fatigue failure

as critical locations under high-cycle fatigue analysis using

a proposed service life function.

4 Service Life Function

A primary goal in this paper is to develop a service life

function, f(l), to predict service life of existing steel

bridges, which accounts for the daily variation in bridge

loads. Each S–N curve contains many points and failure of

each steel component can occur at one of these points,

which are unknown for each component. It is possible to

predict service life of a steel component if that point on S–

N curve can be found. This is called the equivalent point,

which is determined by the service life function. Steel

components endure many variable stress cycles in their

service life. The stress cycles are determined at each crit-

ical location on a steel component and are converted into

an equivalent point on corresponding S–N curve using

Miner’s rule. Then the service life of steel component can

be evaluated by the service life function of that point on the

S–N curve. The service life function is a decreasing

function of the life index. It would be possible to assess

service life of steel bridges if measured responses were

available for their entire service life. Although not all

variable stresses of steel components, which are related to

their service life, can be determined, some of the stresses

can be calculated by measured strains. Here, all other

stresses are calculated from actual stress measurements

using the bootstrap. Then, the bootstrap method is

employed to generate all variable stresses of steel compo-

nents. As a result, the service life of existing steel bridges is

predicted based on the service life function. This function

is not a damage index to depict safe or unsafe condition of

bridges rather the service life function illustrates the rela-

tionship between our experiences of the percentage of

elapsed service life against ultimate service life of steel

bridges. It is used for the calculation of the remaining

service life of steel bridges.

5 Bridge Survival Distribution Function With
Heavy Truck Events Using Bootstrap Method

Our proposed method requires monitoring of steel bridges

with strain gages. When trucks are moving over bridges

instrumented with strain gages mounted on steel compo-

nents close to structural connections, the data acquisition

system gathers strain measurements. These measured

strains are represented by a single random variable ei. The
behavior of the magnitude and frequency of this random

variable is completely and uniquely determined by its

probability density function (PDF), f(e), which denotes the

probability of occurrence of the random variable e. The
cumulative distribution function (CDF), F(e), describes the
non-exceedance probability that the random variable ei is
less than or equal to some value x. The CDF is used to

define its complement, known as the survival distribution

function (SDF). The survival distribution function of x

describes the exceedance probability associated with x such

that,

S eð Þ ¼ 1� F eð Þ ¼ P e� xð Þ ¼
Z1

x

f eð Þde ð2Þ

where, e = measured strain, f eð Þ = probability density

function (PDF), F eð Þ = cumulative distribution function

(CDF), S eð Þ = survival distribution function (SDF)

The SDF is also known as the survival function. Life-

times of various processes are described using the SDF

[21–23], which is simply the complement of the CDF.

Knowledge of the SDF for the measured strains is needed

to predict the service life of steel bridges. There are two

main categories of statistical approaches for the estimation

of the SDF, parametric and nonparametric. A parametric

method assumes a theoretical distribution function that

requires selection of a suitable form for the SDF and
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estimation of the SDF’s model parameters. Researchers

have shown that the SDF of bridge strain data exhibits very

complex shapes, which are challenging to model using

traditional analytic SDF models [24]. Instead, a nonpara-

metric statistical approach, the bootstrap method, is used to

estimate the SDFs from lifetime data, which, in this case,

are the strain measurements.

The bootstrap method is a computational approach that

replaces complex analytical statistical theory with com-

puter intensive resampling of the available data. It can be

used to solve nearly any traditional statistical problem.

Bootstrapping is implemented by resampling observations

from an independent and identically distributed set of

observed data, with replacement to create additional data

sets. The bootstrap samples will have the same properties

as the original measurements as long as the resampled

observations are independent and identically distributed.

The bootstrap samples can then be used in further sta-

tistical analysis. The bootstrap can be used to reliably

distinguish changes in SDFs associated with bridge strain

measurements during its service life as was shown by

Follen et al. [25]. An SDF and its sampling properties are

readily determined using the bootstrap resampling

method. In the field of structural engineering, Bigerelle

and Iost [26] and Bigerelle et al. [27] employed bootstrap

analysis for fatigue life prediction. Their research showed

that the bootstrap is a powerful tool for modeling prob-

ability density function of fatigue life time prediction

[26, 27]. The theory of the bootstrap has shown that, for

independent and identically distributed random variables,

such resampling with replacement preserves all the sta-

tistical properties of an independent data set, including its

SDF and CDF [28].

Here, the estimation of the service life function is

described using the bootstrap method. It provides a simple

approach for the reproduction of the extremely complex

probability distribution of measured strain data. It is

completely automated numerical method which requires no

theoretical calculations and it is not based on the asymp-

totic results. The estimation is accomplished by randomly

drawing a large number of samples of size m from the

original sample (measured strain data), with replacement.

Here, the variable of interest is the strain associated steel

components during their service life. Each bootstrap sam-

ple could include some of the original data points more

than once, and possibly some observations may not be

resampled. Therefore, each of these bootstrap samples will

randomly depart from the original sample, yet theoreti-

cally, will exhibit the same probabilistic structure as the

original sample [28]. Consider a random sample of size m,

which is observed from an unknown probability distribu-

tion F,

Xi ¼ ei;Xi �F i ¼ 1 to m ð3Þ

where, Xi is identically and independently distributed

according to some unknown probability distribution. F and

ei are observed random sample of size m from measured

strain data.

The use of the bootstrap method for generating new

samples of length m from the measured data is as follows:

(1) Create the sample probability distribution F̂, putting

numerical mass 1/m at each point e1, e2, e3,…, em.

(2) Draw a random sample of size m from F̂ with F̂

fixed, as,

X�
i ¼ e�i ;X

�
i � F̂ i ¼ 1; 2; . . .;m ð4Þ

Call this the bootstrapped sample j where

X� ¼ X�
1 ;X

�
2 ; . . .;X

�
m

� �
, e� ¼ e�1; e

�
2; . . .; e

�
m

� �
[29].

Two common questions, which arise during the boot-

strap process, are: (1) determining how large of a sample is

required (m) to fully specify the SDF, and (2) figuring out

how many bootstrap samples are needed to construct

confidence intervals for the resulting SDF. Both of these

issues are addressed by Follen et al. [25] and in the dis-

cussion below.

6 Histograms of Maximum Strain Outputs
from Recorded Truck Events

An important aspect measured data quality is the noise that

is present during measurements. Because the maximum

strain measurement from each sensor is used for each truck

event in this method, the signal-to-noise ratio is always

high. As long as the signal-to-noise ratio is high in the

Fig. 1 Schematic histogram of maximum strains for measured truck

events
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measurements that make up the signature distribution,

measurement noise is unimportant [25]. Figure 1 illustrates

an example histogram of the maximum strain output per

event. Based on the histogram, a heavy truck event is

defined as an event from which the maximum strain output

is greater than eCAFT, with corresponding live load stress

level of rCAFT. This histogram represents the PDF of

maximum strain output of heavy truck events, and defines

the PDF f(e), where e is the measured strain. The shape of

such a PDF is extremely complex. To avoid the need for

specifying a theoretical PDF, the bootstrap is employed as a

nonparametric alternative because the bootstrap can repro-

duce the properties of any PDF, no matter how complex.

7 Defining Heavy Truck Events Using the Strain
Threshold

The strain monitoring system is currently set up to depict

strain data for vehicles weighing more than eCAFT. As

stated, fatigue damage is cumulative and can occur at

different stress levels based on the number of cycles.

Highway trucks apply different weights based on truck type

and cargo weight. As a result, the stress levels received at a

critical location on a steel component may vary from cycle

to cycle. The significant feature of the cumulative damage

concept lies in the hypothesis that failure occurs whenP
ni
Ni
¼ 1. Where n is number of cycles for each truck

event, which can be equal to 1, 1.5, 2 or 5 [30]. N is the

number of cycles to fatigue failure applied at a specified

stress level. It is noted, if there is a continuous time history

for measured strain data, a rainflow method will be used for

counting number of fatigue cycles. The rainflow method

would be beneficial for counting the actual number of

induced cycles [31].

8 Construction of SDF of Maximum Strain
Outputs

For m heavy truck events at a hot spot and i = 1 to m, the

absolute maximum strain values per event, e(i), are ranked

such that e(1) is the largest observed value (emax) and e(m) is
the smallest (eCAFT), as shown in Fig. 2. The SDF is a plot

of the ranked values of absolute maximum strain output per

heavy truck event against its probability of exceedance (pi)

based on a Weibull plotting position pi = i/(m?1), where

m is the sample size, and i is the rank of the observation.

The Weibull plotting position is suitable because it pro-

vides an unbiased estimate of the exceedance probabilities

regardless of the theoretical PDF from which the obser-

vations arise [32].

9 Sample Size Needed for Statistically
Stable and Independent SDFs

A stable SDF results when the strain value at a certain

probability of exceedance does not change significantly

when more data from the same distribution are added [25].

Figure 3 reports estimates of various SDF quantiles as a

function of number of events, m and shows that the quantile

estimates become more stable as m increases. Such a

sample size m, will lead to stable estimates of the SDF in

future Bootstrap experiments. The authors conclude from

Fig. 3 that the approximate value of m needed to obtain

stable estimates of the SDF is equal to L as shown in the

figure, because estimates of the SDF quantile appear to

stabilize for bootstrap samples of that size. Each bridge

SDF is unique based on the bridge topology, traffic pat-

terns, truck types, truck weights; thus, one would need to

calculate the minimum sample size that results in

stable SDFs for other bridges.

Fig. 2 Typical SDF of maximum strain outputs

Fig. 3 Typical SDF values versus number of events
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10 SDF of Maximum Stress Outputs for Measured
Strains

The relation between stress and strain for most steel

materials used in steel bridges is a linear elastic behavior,

known as Hooke’s Law. The relation between the strain

amplitude and fatigue life cycles is usually given as stress-

number of cycles curves (S–N curves); therefore, it is

necessary to compute stress levels using measured strains.

As a result, stresses are defined as a function of measured

strains. Recall that Fig. 2 illustrates, for L heavy truck

events (i = 1 to L), the SDF of maximum stress output for

each event is defined as the ordered values of the maximum

stress output per heavy truck event (r(i)) plotted against

their probability of exceedance (pi) using a Weibull plot-

ting position pi = i/(L ? 1) as shown in Fig. 4. Here,

values of r(i) are ranked such that r(1) is the largest

observed stress associated with emax and r(L) is the smallest

associated with eCAFT. Figure 4 provides the first SDF,

which is termed g1, based on the necessary sample size L.

11 Conversion of stresses to maximum stress
based on Miner’s rule

All stresses in Fig. 4 are converted into their maximum r(1)
using Miner’s rule to calculate N�

g1. Then, all the cycles

associated with each stress level are converted into a ref-

erence number of cycles N�
g1

� �
which is given as,

N�
g1 ¼ n1ð Þg1þ

XL

i¼1

N1ð Þg1
Nið Þg1

nið Þg1 ð5Þ

where, n1ð Þg1 = number of stress cycles applied at a given

stress level r1 associated with the heaviest truck event,

N1ð Þg1 = number of cycles until fatigue failure applied at

stress level r1 according to S–N curve, nið Þg1 = number of

stress cycles applied at a given stress level ri,
Nið Þg1 = number of cycles until fatigue failure applied at

stress level ri associated with each truck event.

Now, N1ð Þg1 and N�
g1 are compared. If

N�
g1

N1ð Þg1
� 1, then

N�
g1 will be used to calculate the service life, otherwise, the

algorithm will continue to generate more number of cycles

until total damage reaches 100 percent; therefore, the first

point of life index graph is determined as r1ð Þg1;N�
g1

� �
.

Again, r1ð Þg1 is the largest observed stress associated with

emax in the first graph illustrated in Fig. 4.

12 Development of Heavy Truck Events Based
on Bootstrap Method

The goal of this section is to develop numerous SDF’s of

maximum stress outputs using the bootstrap method. The

bootstrap method is used to develop new sets of resampled

data comprising maximum stress outputs from the mea-

sured maximum stress data. Each new bootstrap sample is

then used to develop an SDF corresponding to that boot-

strap sample similar to the approach suggested by Follen

et al. [25]. Similar to Fig. 4, the SDF of bootstrapped

maximum stress outputs is plotted as a new graph, g2.

Figure 5 illustrates two estimates of the SDF of maximum

stress outputs, one is derived from use of the bootstrap and

one is based on the original sample. The two estimates are

based on the same sample size L. The SDF’s are sorted in

descending order as shown in Fig. 5 where j is the number

of each graph after sorting. Previous sections will repeat for

the new graph. At first, N related to maximum stress in the

new graph will be calculated according to S–N curve,

referred to as N1ð Þg2. Then, stresses will be converted into

Fig. 4 Typical SDF of maximum stress outputs based on required

sample size (g1) Fig. 5 Typical decreasing SDFs of maximum stress outputs
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maximum stress r1ð Þg2 to calculate of N�
g2. In Fig. 5;

r1ð Þj¼1¼ r1ð Þlarger and r1ð Þj¼2¼ r1ð Þsmaller.

N�
g2 is a conversion of all cycles for each stress level

into a reference number of cycles based on the specified

number of cycles of stress data points, which is expressed

as,

N�
g2 ¼ n1ð Þg2þ

XL

i¼1

N1ð Þg2
Nið Þg2

nið Þg2 ð6Þ

where, n1ð Þg2 = number of stress cycles applied at a given

stress level r1 in bootstrapped graph, N1ð Þg2 = number of

cycles until fatigue failure applied at stress level r1 in

bootstrapped graph, nið Þg2 = number of stress cycles

applied at a given stress level ri in bootstrapped graph,

Nið Þg2 = number of cycles until fatigue failure applied at

stress level ri in bootstrapped graph.

Then, the calculated number of cycles using Miner’s

rule are compared. If
N�ð Þj¼1

Nð Þj¼1
þ N�ð Þj¼2

Nð Þj¼2
� 1, the N�ð Þj¼1 and

N�ð Þj¼2 will be used to estimate the bridge connection

service life. Otherwise, the algorithm will continue to

generate more cycles until total damage reaches 100 per-

cent. In this section, the second point of the life index graph

is determined as r1ð Þg2;N�
g2

� �
. As a result, the algorithm

will continue until
Pk

j¼1

N�ð Þj
Nð Þj

¼ 1, where j is the number of

sorted graphs in descending order as; j = 1 is the largest

graph and j = k is the smallest graph and k is the number of

repetitions of the stress history to failure using bootstrap

method. r1ð Þj are sorted decreasing graphs including r1ð Þgi
as i = 1, 2, 3, …, k.

13 Life Index and Cumulative Number of Cycles

According to the obtained points, a graph of the maximum

stresses vs. cumulative number of cycles will be plotted.

Therefore, for all the points the absolute maximum stress

values and dependent number of cycles will be ranked from

the largest to the smallest. Then Ncumulative is given as,

Ncumulative ¼ N�
j¼1 þ

Xk

j¼1

Nð Þj¼1

Nð Þj¼k

N�
j¼k ð7Þ

where, N�
j¼1 = number of stress cycles applied at the lar-

gest maximum stress level r1ð Þj¼1, Nð Þj¼1 = number of

cycles until fatigue failure applied at the largest maximum

stress level r1ð Þj¼1, N
�
j¼k = number of stress cycles applied

at the smallest maximum stress level r1ð Þj¼k,

Nð Þj¼k = number of cycles until fatigue failure applied at

the smallest maximum stress level r1ð Þj¼k:

The service life index (lj) is defined by mapping all the

stresses on a range of [0, 1] as,

lj ¼
ðr1Þj � ðr1Þmaxj

ðr1Þminj � ðr1Þmaxj

for j ¼ 1; 2; 3; . . .; k ð8Þ

where, r1ð Þj is the maximum stress level for each boot-

strapped graph, similar to Fig. 5. The min j and max

j indices values are equal to 1 and k, respectively.

Aging of a steel bridge over a period of time can be

calculated by the piecemeal decrease of life index. This

means that the service life index will gradually decrease as

the steel bridge ages until fatigue failure.

The service life index starts from unity. Unity is the first

point of life index, which shows a steel bridge is undam-

aged and no repair is deemed necessary. On the other

hand, when the service life index is less than one, the steel

bridge is subjected to fatigue cycles, with a collapse pre-

dicted as lj, which is equal to zero, and approaches

Ncumulative. The service life index can be used as a reliable

fatigue signature to evaluate the age condition of existing

steel bridges under load cycles and can also be used to

predict the remaining service life. This is documented

below how the service life index can be used as an indi-

cator for steel bridge service life prediction subjected to

cyclic loadings.

14 Determination of Service Life Based
on Regression Analysis Using Service Life
Function

A curve is fitted through the points (lj vs. Ncumulative) using

ordinary least squares regression to fit the function f lð Þ.
The function f lð Þ is defined as the service life function.

Regression analysis identifies and quantifies the function

f lð Þ that determines the number of stress cycles applied at

the maximum stress levels. This function represents actual

changes of average daily traffic (ADT), a unique feature of

this research. Average daily traffic is equal to the total

heavy truck traffic volume during a given time period,

ranging from one day to one year, divided by the number of

days in that time period. It should be noted that this value

will vary year to year. In fact, due to an increasing demand,

the ADT for a given bridge generally increases. Hence, the

number of cycles can change throughout the service life of

steel bridges. When the life index of a specific bridge is

calculated based on measured stresses, and then the number

of cycles related to actual changes of traffic will be

determined by substituting the value of calculated life

index into the service life function. The measured stresses

are experienced based on actual traffic loads. The following

inverse exponential function f lð Þ is proposed for modeling
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service life because it captures the shape relationship

between the service life indices and cumulative number of

cycles.

f lð Þ ¼ a� ln 1� lð Þ
b

� �c

ð9Þ

where, constants a, b, and c are specific values for each

steel bridge and f(l) represents the number of stress cycles

applied at the maximum stress levels for a given service

life index l.
The function f lð Þ in Eq. (9) is also useful as an

approximating function for possibly an algebraically

complex a nonlinear relationship in terms of the life index.

It is applicable to data sets, which are naturally related to

bending curvature, and can be used to fit trends with

complex curvature with no particular theoretical function.

The estimated function f lð Þ can be used for service life

predictions. If daily strain values for truck events are

measured on a bridge, then the actual change in ADT can

be determined for each year. Hence, the number of cycles

can change throughout a bridge’s service life. To consider

the actual change in ADT, the extracted, measured, maxi-

mum stress level of the bridge will be calculated due to

heavy truck events after a specific time interval. Then, a

life index corresponding to this stress level is calculated

using Eq. (8). The induced number of cycles at this stress

level is determined by Eq. (9) based on the actual change

of ADT. Steel bridge remaining service life at the equiv-

alent point is estimated as,

T ¼ Ncumulativeð Þ � f lð Þ
NADTð ÞHeavytrucks

ð10Þ

where, NADTð Þ represents the number of cycles for average

daily traffic in one year for heavy trucks. The presented

theory for service life prediction of existing steel bridges

using measured strain data is summarized in the

flowchart as shown in Fig. 6.

In summary, for the application of the presented pro-

cedure for service life prediction to a full-scale steel bridge,

first, all the critical components are determined. Then,

measured strains are gathered for all the critical locations

on the critical components. Probability density function,

cumulative distribution function, and survival distribution

function of measured strain data are determined. After,

determining the required sample size for a stable statistical

survival distribution function, maximum stresses are cal-

culated from measured strain data for each truck passage.

SDF of maximum stress data are plotted and all the stress

data are converted into their maximum r1ð Þg1 using

Miner’s rule. Also, the number of cycles associated with

each maximum stress level is converted into a reference

number of cycles, N�
g1. Using the bootstrap method, max-

imum stress data are extended to more data as future

events. Similar to SDF of maximum stress data, all the

SDFs of bootstrapped stress data are plotted. Then, the

maximum stress data associated with each bootstrapped

SDF is converted into its maximum stress for each SDF.

Maximum stress values and associated number of cycles

Fig. 6 Procedure for steel bridge service life prediction
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N�
gi, which is labeled N�

j are ranked from the largest to the

smallest. The cumulative number of cycles is calculated

from the associated number of cycles for each truck pas-

sage and then life indexes are determined by a mapping the

stresses into a range of [0, 1]. After plotting the life index

points vs. cumulative number of cycles, a service life

function is fitted through the points using regression anal-

ysis. Finally, remaining service life of the steel bridge is

determined using the cumulative number of cycles, the

service life function, and the average daily traffic volume

related to the bridge.

15 Conclusions

A simple and reliable statistical method is presented for

service life prediction of steel bridges which is based on

measured strain data gathered from a real-time structural

health monitoring system over a specified time period. The

following innovations were used in the proposed method:

1. A nonparametric bootstrap method is employed for

generation of new samples of measured strain data,

which are then used to simulate stresses of steel

bridges under daily traffic loads. This paper presents

describes how the bootstrap method can be used to

predict possible future fatigue cycles as a nonparamet-

ric statistical tool. This method uses computer simu-

lations to replace the complex theoretical probabilistic

assumptions and models required for most statistical

approaches used to summarize probability

distributions.

2. A service life index is introduced based on the survival

distribution function of the maximum stresses, using

Miner’s rule according to the steel linear elastic

behavior. This quantitative index enables the predic-

tion of the ultimate service life of existing steel bridges

based on the number of cycles.

3. Also, a service life function as a nonlinear service life

function is proposed for the prediction of remaining

service life of steel bridges. This function can be used

for modeling relationships between life index and

cumulative number of cycles using regression analysis.

The proposed service life function can predict the

remaining service life for any arbitrary future time

period within the range of values considered in the

experiments. The fitted service life function was

capable of considering the actual changes in the

average daily traffic for the prediction of remaining

service life.

4. In a structural health monitoring program, service life

of a steel bridge can be calculated using the proposed

function based on regression analysis which presents a

powerful tool for determining accuracy of statistical

functions. As a result, this method predicts the number

of cycles under fatigue behavior which a steel bridge

can endure in its service time period. The proposed

service life prediction can contribute to effective

management of steel bridges.
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