Chow’s Handbook of Applied Hydrology
About the Author

Vijay P. Singh, Ph.D., D.Sc., D. Eng. (Hon.), Ph.D. (Hon.), D. Sc. (Hon.), P.E., P.H., Hon. D. WRE, Academician (GFA), is a Distinguished Professor and Caroline & William N. Lehrer Distinguished Chair in Water Engineering in the Department of Biological and Agricultural Engineering and Zachry Department of Civil Engineering at Texas A&M University. He holds a B.Tech degree from U.P. University of Agriculture and Technology, a Master's Degree from the University of Guelph, a Ph.D. from Colorado State University, and a D.Sc. from the University of the Witwatersrand. One of today's leading experts in the field of hydrology, Dr. Singh specializes in surface water hydrology, groundwater hydrology, hydraulics, irrigation engineering, environmental quality, and water resources. He has published 25 books and has edited over 58 books, and has published hundreds of journal articles. He has been the Editor-in-Chief of the Journal of Hydrologic Engineering, ASCE; is currently serving as Editor-in-Chief of Open Agriculture, and Journal of Agricultural research, and Journal of Groundwater Research and is on the editorial boards of numerous journals. He is also serving as Editor-in-Chief of Water Science and Technology Book Series as well as World Water Resources Book series. He has received more than 75 national and international awards.
Contents in Brief

<table>
<thead>
<tr>
<th>Part</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>Fundamentals</td>
<td>1.1</td>
</tr>
<tr>
<td>Part 2</td>
<td>Data Collection and Processing</td>
<td>4.1</td>
</tr>
<tr>
<td>Part 3</td>
<td>Methods</td>
<td>12.1</td>
</tr>
<tr>
<td>Part 4</td>
<td>Hydrologic Processes and Modeling</td>
<td>37.1</td>
</tr>
<tr>
<td>Part 5</td>
<td>Sediment and Pollutant Transport</td>
<td>63.1</td>
</tr>
<tr>
<td>Part 6</td>
<td>Hydrometeorologic and Hydrologic Extremes</td>
<td>73.1</td>
</tr>
<tr>
<td>Part 7</td>
<td>Systems Hydrology</td>
<td>81.1</td>
</tr>
<tr>
<td>Part 8</td>
<td>Hydrology of Large River and Lake Basins</td>
<td>93.1</td>
</tr>
<tr>
<td>Part 9</td>
<td>Applications and Design</td>
<td>127.1</td>
</tr>
<tr>
<td>Part 10</td>
<td>Future</td>
<td>151.1</td>
</tr>
</tbody>
</table>
For online supplements and color versions of images, please go to www.mhprofessional.com/handbookofappliedhydrology
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>xxxiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Advisory Board</td>
<td>xliii</td>
</tr>
<tr>
<td>Practitioner Advisory Board</td>
<td>xlv</td>
</tr>
</tbody>
</table>

Part 1. Fundamentals 1-1

Chapter 1. The Hydrologic Cycle 1-3

1.1 Characteristics of Water 1-3
1.2 Definition of Hydrology 1-4
1.3 Hydrologic Cycle 1-4
1.4 Components of the Hydrologic Cycle 1-5
1.5 Schematic Representation of the Hydrologic Cycle 1-5
1.6 Scales in Hydrologic Cycle 1-6
1.7 Impact of Climate Change on the Hydrologic cycle 1-6
1.8 Influence of Human Activities and Land Use Changes on Hydrologic Cycle ... 1-6
1.9 Relation between Hydrologic Cycle and Carbon and Nitrogen Cycles 1-7

References 1-9

Chapter 2. Watersheds, River Basins, and Land Use 2-1

2.1 Introduction 2-1
2.2 Components of Watersheds 2-1
2.3 Delineation of A Watershed 2-4
2.4 Watershed Hydrological Processes 2-4
2.5 Characteristics of a Watershed That Impact on Hydrological Processes 2-4
2.6 River Basin 2-6
2.7 River Basin Management 2-6
2.8 Major River Basins in the World 2-7
2.9 Land Use .. 2-7
2.10 Closing Remarks 2-8

References 2-8

Chapter 3. Water Balance 3-1

3.1 Introduction 3-1
3.2 Hydrologic Fluxes 3-1
3.3 Water on The Earth 3-1
3.4 Water Balance Modeling 3-4
3.5 Natural and Anthropogenic Effects on the Water Balance 3-7
3.6 Conclusions 3-9

References 3-9

PART 2. Data Collection and Processing 4.1

Chapter 4. Hydrometeors and Quantitative Precipitation Estimation 4-3

4.1 Introduction 4-3
4.2 Types of Hydrometeorological Data 4-3
4.3 Remote Sensing of Precipitation 4-3
4.4 Hydrometeorological Data Processing 4-4
4.5 Hydrometeorological Data Quality Assurance and Control 4-5
4.6 Quantitative Precipitation Estimate Data Use, Archiving, and Accessibility ... 4-6

Chapter 5. Streamflow Data 5-1

5.1 Streamflow 5-1
5.2 Types of Streamflow Data 5-1
11.7 Future Direction .. 11-6
References ... 11-6

Chapter 12. Fuzzy Logic .. 12-1
12.1 Fuzzy Logic Basics .. 12-1
12.2 Function of Fuzzy Numbers 12-2
12.3 Fuzzy Rule-Based Modeling (Fuzzy Inference) 12-3
Acknowledgement ... 12-5
References ... 12-5

Chapter 13. Evolutionary Computing: Genetic Algorithms 13-1
13.1 Introduction .. 13-1
13.2 Evolutionary Computing in Hydrology: An Overview 13-1
13.3 Genetic Algorithms 13-2
13.4 GA Applications in Hydrology 13-3
13.5 Conclusion and Future Directions 13-3
References ... 13-3

Chapter 14. Relevance Vector Machine 14-1
14.1 Introduction .. 14-1
14.2 Background ... 14-1
14.3 Mathematical formulation 14-2
14.4 Application of RVM 14-3
14.5 Examples from Hydrology and Future Scope 14-4
14.6 Miscellaneous Topics 14-5
References ... 14-6

Chapter 15. Harmonic Analysis and Wavelets 15-1
15.1 Introduction .. 15-1
15.2 The Continuous Wavelet Transform 15-1
15.3 Discrete Time Wavelet Transform and Multiresolution Analysis 15-3
15.4 Signal Energy Repartition in the Wavelet Frame 15-3
15.5 Wavelet Analysis of the Time–scale Relationship Between Two Signals 15-4
15.6 Wavelet Cross Spectrum and Coherence 15-4
15.7 Applications of Wavelet Transforms in Hydrology and Earth Sciences ... 15-5
15.8 Perspectives ... 15-5
References ... 15-5

Chapter 16. Outlier Analysis and Infilling of Missing Records in Hydrologic Data 16-1
16.1 Introduction .. 16-1
16.2 Concepts and Methods for Outliers Analysis 16-2
16.3 Concepts and Methods for Handling Missing Records ... 16-3
16.4 Discussion and Concluding Remarks on Methods for Outliers and Infilling of Missing Records 16-5
16.5 Future Research Directions 16-6
References ... 16-6

Chapter 17. Linear and Nonlinear Regression 17-1
17.1 Linear and Nonlinear Regression 17-1
17.2 Measures for Goodness of Fit 17-4
17.3 Multiple Linear Regression 17-5
17.4 Nonlinear Regression 17-6
References ... 17-9

Chapter 18. Time Series Analysis and Models 18-1
18.1 Introduction .. 18-1
18.2 Properties of Hydrological Time Series 18-1
18.3 Time-Series Modeling 18-2
18.4 Modeling of Continuous Time Processes 18-2
18.5 Univariate Modeling 18-2
18.6 Univariate Periodic Modeling 18-4
18.7 Multivariate Modeling 18-6
18.8 Disaggregation Models 18-7
18.9 Nonparametric Models 18-7
18.10 Stochastic Simulation, Forecasting, and Uncertainty ... 18-8

19.1 Introduction 19-1
19.2 Exploratory Methods for Detection of Change 19-2
19.3 Statistical Exploration of Nonstationarity 19-2
19.4 Effect of Nonconstant Error Variation 19-3
19.5 Effect of A Priori Filtering of Time Series 19-4
19.6 Distribution of a Breakpoint 19-4
19.7 Conclusions 19-5

Chapter 20. Spatial Analysis and Geostatistical Methods 20-1

20.1 Introduction 20-1
20.2 Data Types and Methods 20-1
20.3 Spatial analysis 20-1
20.4 Heterogeneous Field Estimation and Simulation 20-3
20.5 Summary 20-7

Acknowledgments 20-7
References 20-7

Chapter 21. Frequency Distributions 21-1

21.1 Introduction 21-1
21.2 Discrete Frequency Distributions 21-1
21.3 Classification of Continuous Frequency Distributions 21-2
21.4 Continuous Frequency Distributions 21-2
21.5 Concluding Remarks 21-9

References 21-10

Chapter 22. Calibration, Parameter Estimation, Uncertainty, Data Assimilation, Sensitivity Analysis, and Validation 22-1

22.1 Introduction 22-1
22.2 Parameter Uncertainty 22-1
22.3 Parameter Estimation 22-3
22.4 Data Assimilation 22-5
22.5 Sensitivity Analysis 22-5
22.6 Validation Techniques 22-10

References 22-11

Chapter 23. Bayesian Methods 23-1

23.1 Introduction 23-1
23.2 The Bayesian Inference Framework 23-1
23.3 Computational Methods 23-4
23.4 Diagnostics to Scrutinize Model Assumptions 23-6
23.5 Applications in Hydrology 23-7
23.6 Conclusions 23-9

Acknowledgments 23-9
References 23-9

Chapter 24. Optimization Approaches for Integrated Water Resources Management 24-1

24.1 Introduction 24-1
24.2 Trends 24-2
24.3 Challenges and Research Gaps 24-4
24.4 Conclusions 24-5
24.5 Acknowledgments 24-5
24.6 Appendix: Literature Trend Analysis 24-5

References 24-5

Chapter 25. Nonparametric Methods 25-1

Introduction 25-1
25.1 Definitions 25-1
25.2 Methods 25-2
25.3 Applications 25-3
25.4 Discussion 25-4

References 25-5
Chapter 26. Predictive Uncertainty Assessment and Decision Making .. 26-1
 26.1 Introduction ... 26-1
 26.2 Forecasting in Hydrology 26-1
 26.3 Motivations for Converting Deterministic to Stochastic Prediction 26-1
 26.4 Predictive Uncertainty 26-2
 26.5 Techniques Aimed at Assessing Predictive Uncertainty .. 26-4
 26.6 Verification of the Estimated Predictive Density .. 26-9
 26.7 Major Reasons Undermining the Operational use of Predictive Uncertainty 26-9
 26.8 Examples of Proper use of Predictive Uncertainty to Improve Decisions 26-13
References .. 26-15

Chapter 27. Risk-Reliability Analysis ... 27-1
 27.1 Introduction ... 27-1
 27.2 Measures of Reliability 27-1
 27.3 Performance Function and Reliability Index ... 27-2
 27.4 Direct Integration Method 27-2
 27.5 First-Order Second-Moment Reliability Methods 27-3
 27.6 Time-Dependent (Dynamic) Reliability Models .. 27-5
 27.7 Time-to-Failure Analysis 27-5
 27.8 Monte Carlo Simulation 27-6
References .. 27-9

Chapter 28. Scaling And Fractals ... 28-1
 28.1 Introduction ... 28-1
 28.2 Scale-Invariant Sets and Functions .. 28-1
 28.3 Some Properties of H-SSSI Processes and Multi-Cascades 28-2
 28.4 Inference of Scaling for Stationary Multifractal Measures 28-4
 28.5 Processes with Limited Scale Invariance ... 28-4
 28.6 Conclusions .. 28-5
Acknowledgments .. 28-5
References .. 28-5

Chapter 29. Nonlinear Dynamics and Chaos .. 29-1
 29.1 Introduction ... 29-1
 29.2 Chaos Theory: A Brief History ... 29-2
 29.3 Chaos Concepts and Identification Methods .. 29-2
 29.4 Issues in Chaos Identification and Prediction 29-5
 29.5 Hydrologic Applications ... 29-7
 29.6 Final Remarks .. 29-7
Acknowledgments .. 29-8
References .. 29-8

Chapter 30. Copula Modeling in Hydrologic Frequency Analysis 30-1
 30.1 Introduction ... 30-1
 30.2 Description of Copula Models .. 30-1
 30.3 Overview of Model Selection .. 30-2
 30.4 Multivariate Quantile and Return Period ... 30-5
 30.5 An Illustration: the Fraser River at Hope .. 30-5
 30.6 Extensions .. 30-7
 30.7 Resources and Further Specific References 30-8
Acknowledgments .. 30-9
References .. 30-9

Chapter 31. Entropy Theory ... 31-1
 31.1 Origin ... 31-1
 31.2 Definition .. 31-1
 31.3 Forms of Entropy .. 31-2
 31.4 Directional Information Transfer Index .. 31-3
 31.5 Entropy under Transformation of Variables .. 31-3
 31.6 Informational Correlation Coefficient ... 31-3
 31.7 Total Correlation .. 31-3
 31.8 Theory of Entropy .. 31-4
 31.9 Methodology for Application ... 31-4
 31.10 Hydrologic Modeling Using Entropy Theory 31-7
References .. 31-8
CONTENTS

Chapter 32. Entropy Production Extremum Principles 32-1
 32.1 Introduction ... 32-1
 32.2 Background and Review 32-1
 32.3 Maximum Entropy Analysis 32-4
 32.4 Review of Applications in Hydrology and Hydraulics ... 32-5
 32.5 Closing Remarks 32-5
References .. 32-5

Chapter 33. Data-Based Mechanistic Modeling 33-1
 33.1 Introduction ... 33-1
 33.2 The Main Stages of DBM modeling 33-2
 33.3 Linear DBM Models 33-3
 33.4 Time Variable and State-Dependent Parameter Models 33-6
 33.5 Hypothetico–Inductive DBM Modeling 33-7
 33.6 DBM Emulation Modeling of High-Order Simulation Models 33-8
 33.7 Conclusion .. 33-11
Reference .. 33-11

Chapter 34. Decomposition Methods 34-1
 34.1 Introduction: Adomian’s Decompositions Method 34-1
 34.2 Regional Flow in an Unconfined Aquifer 34-2
 34.3 Propagation of Nonlinear Kinematic Flood Waves in Rivers 34-2
 34.4 Nonlinear Infiltration in Unsaturated Soils 34-4
 34.5 Summary and Conclusions 34-4
References .. 34-5

Chapter 35. Network Theory 35-1
 35.1 Introduction ... 35-1
 35.2 Network Theory: Concept and History 35-2
 35.3 Network Types 35-3
 35.4 Network Measures 35-4
 35.5 Applications in Hydrology 35-6
 35.6 Closing Remarks 35-8
Acknowledgments ... 35-8
References .. 35-8

Chapter 36. Hydroeconomic Analysis 36-1
 36.1 Introduction ... 36-1
 36.2 Estimating the Economic Value of Water 36-1
 36.3 Water Demand Functions 36-2
 36.4 Considerations in the Design of Hydroeconomic Analysis Studies 36-3
 36.5 Applications and Implementation of Hydroeconomic Analysis for Management and Decision Support 36-5
 36.6 Discussion of Challenges, Limitations, and Future Directions 36-6
 36.7 Conclusions .. 36-7
References .. 36-7

Part 4. Hydrologic Processes and Modeling 37-1

Chapter 37. Weather and Climate 37-3
 37.1 Introduction ... 37-3
 37.2 Hydrologic Engineering and Intersection with Weather and Climate 37-3
 37.3 Weather .. 37-5
 37.4 Observing Weather 37-7
 37.5 Climate .. 37-7
 37.6 Climate Change 37-8
References .. 37-10

Chapter 38. Hydroclimatology: Global Warming and Climate Change 38-1
 38.1 Introduction: The Ambiguity of Climate 38-1
 38.2 Natural and Human Influences on Present-Day Climate 38-1
 38.3 Impacts of Climate Change on the Hydrological Cycle in the twentieth and Twenty-First Centuries 38-2
 38.4 Global Climate Models 38-3
 38.5 Working with Climate Model Projections 38-4
 38.6 Concluding Remarks 38-6
References .. 38-6
Chapter 39. Spatial and Temporal Estimation and Analysis of Precipitation 39-1
39.1 Introduction .. 39-1
39.2 Estimates of Mean Areal Precipitation 39-1
39.3 Missing Precipitation Data Estimation Methods 39-4
39.4 Limitations of Estimation Methods 39-5
39.5 New Methods for Missing Data Estimation 39-5
39.6 Summary of Issues for Missing Precipitation Data Estimation .. 39-6
39.7 Conclusion .. 39-7
References ... 39-8

Chapter 40. Snow Distribution and Snowpack Characteristics 40-1
40.1 Introduction .. 40-1
40.2 Processes Controlling Snow Distribution 40-1
40.3 Spatial Patterns of Snow at Various Scales 40-2
40.4 Snowpack Characteristics ... 40-2
40.5 Discussion and Conclusion ... 40-3
Acknowledgement ... 40-4
References ... 40-4

Chapter 41. Time-Space Modeling of Precipitation 41-1
41.1 Introduction .. 41-1
41.2 Stochastic Modeling of Precipitation 41-1
41.3 Deterministic Numerical Modeling of Time-Space Precipitation ... 41-3
41.4 Remote Sensing for the Modeling of Time-Space Precipitation ... 41-7
References ... 41-10

Chapter 42. Evapotranspiration and Evaporative Demand 42-1
42.1 Introduction and History of Theory 42-1
42.2 Relevant Concepts and Methods .. 42-2
42.3 Outstanding Problems and Directions for Future Work 42-10
Acknowledgements .. 42-14
References ... 42-14

Chapter 43. Rainfall Interception, Detention, and Depression Storage .. 43-1
43.1 Canopy Interception Loss ... 43-1
43.2 Forest Floor Interception Loss .. 43-3
43.3 Detention and Depression Storage 43-3
43.4 Summary ... 43-3
References ... 43-3

Chapter 44. Watershed Geomorphological Characteristics 44-1
44.1 Introduction and Literature Review 44-1
44.2 Watersheds and Drainage Networks 44-2
44.3 Outstanding Problems and Directions for Future Work 44-10
References ... 44-11

Chapter 45. Infiltration Modeling .. 45-1
45.1 Introduction .. 45-1
45.2 Basic Equations For Vertical Infiltration 45-1
45.3 Classical Models For Point Infiltration Into Vertically Homogeneous Soils ... 45-2
45.4 Modeling Of Point Infiltration Into Vertically Nonuniform Soils .. 45-4
45.5 Models for Rainfall Infiltration Over Heterogeneous Areas .. 45-5
45.6 Soil Conservation Service Runoff Curve Number Model 45-6
45.7 Open Problems ... 45-6
References ... 45-7

Chapter 46. Soil Moisture and Vadose Zone Modeling 46-1
46.1 Background .. 46-1
46.2 Continuum-Scale Models for Partially Saturated Flow in the Vadose Zone ... 46-2
46.3 Numerical Vadose Zone and Land Surface Models 46-3
46.4 Soil Moisture Across Spatial-Temporal Scales 46-5
46.5 Inverse Modeling—Soil Hydraulic Properties at the Model Grid Scale ... 46-8
46.6 Summary ... 46-10
References ... 46-11
Chapter 47. Hydrogeologic Characterization 47-1
 47.1 Introduction ... 47-1
 47.2 Borehole Samples and Groundwater Monitoring ... 47-1
 47.3 Investigation Borehole Drilling 47-1
 47.4 Cone Penetrometry, Permeametry, and Electrical Conductivity Logging ... 47-2
 47.5 Electrical Resistivity Survey 47-2
 47.6 Hydraulic Methods for in situ Conductivity Measurement 47-2
 47.7 Characterization of the Hydraulic Gradient and Flow Rates 47-3
 47.8 Recharge Estimation 47-3
 47.9 Summary .. 47-3
References .. 47-3

Chapter 48. Groundwater Modeling 48-1
 48.1 Introduction ... 48-1
 48.2 Groundwater Model Development 48-1
 48.3 Grid Generation .. 48-2
 48.4 Model Calibration 48-3
 48.5 Case study: Groundwater Modeling in Baton Rouge, Southeastern Louisiana 48-3
 48.6 Summary .. 48-5
Acknowledgments ... 48-7
References .. 48-7

Chapter 49. Watershed Runoff, Streamflow Generation, and Hydrologic Flow Regimes 49-1
 49.1 Introduction ... 49-1
 49.2 Dominant Runoff Generation Mechanisms 49-3
 49.3 Infiltration Equations 49-6
 49.4 Factors Affecting Runoff 49-6
 49.5 Poorly Understood Factors Affecting Runoff Generation 49-7
Acknowledgments ... 49-11
References .. 49-11

Chapter 50. Snowmelt Runoff Generation and Modeling 50-1
 50.1 Introduction ... 50-1
 50.2 Snow Accumulation Processes 50-1
 50.3 Energy Budget of Snow Pack and Snowmelt 50-2
 50.4 Simulation of Snow Accumulation Processes 50-3
 50.5 Heat and Water Transfer in Melting Snow Cover 50-3
 50.6 Spatial Variability of Snow Cover 50-4
 50.7 Constructing General Model of Snowmelt Runoff Generation 50-4
 50.8 Case studies .. 50-6
References .. 50-9

Chapter 51. Glacial Melting and Runoff Modeling 51-1
 51.1 Introduction ... 51-1
 51.2 Remote Sensing .. 51-1
 51.3 Application of Remote Sensing in Glacier Quantification 51-1
 51.4 Glaciated versus Nonglaciated Watersheds 51-3
 51.5 Application in Streamflow Measurement 51-3
 51.6 Conclusion .. 51-4
References .. 51-4

Chapter 52. Reservoir and Channel Routing 52-1
 52.1 Introduction ... 52-1
 52.2 Reservoir Routing 52-1
 52.3 River Routing .. 52-2
 52.4 The Classical Muskingum Flood Routing Method 52-3
 52.5 Nash Cascade Model for River Routing 52-4
 52.6 Other Linear Storage Models 52-4
 52.7 Linear Diffusion Analogy Routing Method 52-5
 52.8 Nonlinear Routing Methods 52-5
 52.9 Flow Routing Using Hydraulic Methods 52-6
 52.10 Basis for The Development of Simplified Momentum Equations 52-7
 52.11 Simplified Hydraulic Flood Routing Methods 52-7
 52.12 Kalinin–Milyukov Method 52-9
 52.13 Variable Parameter Muskingum Stage Routing Method 52-12
Chapter 53. Waterlogging and Salinization

53.1 Introduction .. 53-1
53.2 Salinity Features and Impacts 53-1
53.3 Irrigation Induced Rises of the Watertable 53-2
53.4 Irrigation Induced Land Salinization 53-3
53.5 Land Salinization Control 53-4
53.6 Salt Balance and Leaching Calculations 53-4
53.7 Monitoring and Mapping 53-5
53.8 Remedial Measures ... 53-5
53.9 New Challenges .. 53-6
53.10 Concluding Remarks .. 53-6
References ... 53-7

Chapter 54. Surface Water–Groundwater Interactions: Integrated Modeling of a Coupled System

54.1 Introduction .. 54-1
54.2 Surface Water Models .. 54-2
54.3 Subsurface Models ... 54-4
54.4 Soil Plant Models ... 54-5
54.5 Coupling Methods .. 54-6
54.6 Scale Issues .. 54-7
54.7 Data Requirements ... 54-9
54.8 Integrated Models and Watershed Applications 54-10
54.9 Conclusions ... 54-10
References ... 54-12

Chapter 55. Seawater Intrusion in Coastal Aquifers: Concepts, Mitigation, and Simulation

55.1 Introduction .. 55-1
55.2 Assumptions and Approaches for Modeling Seawater Intrusion .. 55-1
55.3 Mitigation of Seawater Intrusion 55-3
55.4 Case Study: The Nile Delta Aquifer 55-3
55.5 Conclusions ... 55-9
References ... 55-9

Chapter 56. Regional Land Subsidence Caused by the Compaction of Susceptible Aquifer Systems Accompanying Groundwater Extraction

56.1 Introduction .. 56-1
56.2 Detection and Assessment 56-2
56.3 Analysis and Simulation 56-7
Acknowledgments .. 56-9
References ... 56-9

Chapter 57. Hydraulic Fracturing and Hydrologic Impacts

57.1 Introduction .. 57-1
57.2 Hydraulic Fracturing Process 57-2
57.3 Risk of Groundwater Contamination 57-4
57.4 Potential for Induced Seismicity 57-6
57.5 Concluding Remarks .. 57-7
References ... 57-8

Chapter 58. Catchment Classification and Regionalization

58.1 Introduction .. 58-1
58.2 Catchment Classification: A Review 58-2
58.3 Classification Based on Chaos Theory 58-2
58.4 Classification Based on Network Theory 58-4
58.5 Closing Remarks ... 58-5
58.6 Acknowledgments ... 58-7
References ... 58-7
Chapter 59. Rainfall-Runoff Modeling .. 59-1
 59.1 Introduction ... 59-1
 59.2 A Brief History ... 59-1
 59.3 Computation of Runoff Volume ... 59-1
 59.4 Determination of Peak Discharge ... 59-3
 59.5 Runoff Hydrograph .. 59-3
 59.6 Computation of Runoff Hydrograph by Hydraulic Approaches 59-6
 59.7 Conclusion ... 59-8
References .. 59-8

Chapter 60. Continuous Watershed Modeling ... 60-1
 60.1 Introduction ... 60-1
 60.2 Historical Development ... 60-2
 60.3 Concepts and Methods .. 60-3
 60.4 Outstanding Problems/Needs ... 60-7
 60.5 Future Directions ... 60-8
References .. 60-10

Chapter 61. Calibration and Evaluation of Watershed Models 61-1
 61.1 Introduction ... 61-1
 61.2 Calibration and Evaluation .. 61-2
 61.3 Elements of a Calibration/Evaluation Strategy 61-2
 61.4 Historical Perspective ... 61-2
 61.5 Model Calibration & Evaluation Protocol 61-3
 61.6 Strategies for Calibration ... 61-3
 61.7 Desirable Properties of a Successful Calibration 61-4
 61.8 Preparation Phase ... 61-4
 61.9 Calibration Phase .. 61-8
 61.10 Evaluation Phase .. 61-8
 61.11 Discussion and Conclusions ... 61-9
References .. 61-9

Chapter 62. Feasibility, Engineering, and Operations Models: Using the Decision Environment to Inform the Model Design 62-1
 62.1 Introduction ... 62-1
 62.2 The Decision Environment .. 62-1
 62.3 USACE Decision Environment Schemas ... 62-2
 62.4 Precision Dimensions of Decision Support 62-2
 62.5 Process Representation ... 62-3
 62.6 Information Content Scale ... 62-5
 62.7 Case Study: Picayune Strand-Restoration Project 62-5
 62.8 Future Research .. 62-6
 62.9 Summary ... 62-6
References .. 62-7

Part 5. Sediment and Pollutant Transport ... 63-1

Chapter 63. Water Quality ... 63-3
 63.1 Introduction ... 63-3
 63.2 Water Pollution .. 63-3
 63.3 Water Quality Standards and Water Use Designations 63-3
 63.4 Restoration of Water Quality .. 63-5
 63.5 Sensor-Based Water Quality Monitoring Technologies 63-8
References .. 63-9

Chapter 64. Soil Erosion ... 64-1
 64.1 Introduction ... 64-1
 64.2 Erosion by Wind .. 64-1
 64.3 Erosion by Water .. 64-1
 64.4 Gravity-Induced Erosion ... 64-2
 64.5 Tillage Erosion .. 64-3
 64.6 Snowmelt Erosion ... 64-3
 64.7 Irrigation-Induced Erosion ... 64-3
 64.8 Erosion by Wind-Driven Rain .. 64-3
 64.9 Erosion Assessment .. 64-4
 64.10 Erosion Assessment—Field and Laboratory Measurements 64-4
Chapter 71. Transport of Biochemicals and Microorganisms

71.1 Introduction ... 71-1
71.2 Biochemicals and Microorganisms .. 71-1

References .. 71-1
Chapter 77. Regional Flood Frequency Modeling 77-1
 77.1 Introduction: The Regional Framework 77-1
 77.2 Regional Estimation Procedures ... 77-1
 77.3 Delineation of Homogeneous Regions and Homogeneity Testing 77-1
 77.4 Regional Transfer Methods .. 77-3
 77.5 One-Step Regional Methods .. 77-4
 77.6 Nonlinear Models in Regional Flood Frequency Modeling 77-4
 77.7 Multivariate Regional Flood Frequency Modeling 77-5
77.8 Nonstationary Regional Flood Frequency Approaches .. 77-5
77.9 Regional Flood Frequency Analysis Based On Seasonality Measures 77-6
77.10 Combination of Local and Regional Approaches ... 77-6
77.11 Daily Streamflow Estimation at Ungauged Sites ... 77-6
77.12 Discussion and New Directions .. 77-7
References .. 77-7

Chapter 78. Risk, Reliability, and Return Periods and Hydrologic Design 78-1
78.1 Introduction ... 78-1
78.2 Probabilistic and Risk Based Approaches to Hydrologic Design 78-2
78.3 Multivariate Probabilistic and Risk-Based Approaches to Hydrologic Design .. 78-7
References .. 78-9

Chapter 79. Drought Characteristics ... 79-1
79.1 Introduction ... 79-1
79.2 Drought, Aridity, and Water Scarcity ... 79-2
79.3 Drought Occurrences in the World ... 79-3
79.4 Drought Properties Based on Statistical Techniques 79-3
79.5 Numerical Characterization of Drought Properties 79-4
79.6 Indices for Drought Characterization .. 79-6
79.7 Outstanding Problems and Direction of Future Work 79-8
Acknowledgments ... 79-10
References .. 79-10

Chapter 80. Low Flow and Drought Analysis .. 80-1
80.1 Introduction ... 80-1
80.2 Need for Low Flow Hydrology Research ... 80-1
80.3 Factors Affecting Low Flows ... 80-2
80.4 Low Flow Indices ... 80-2
80.5 Methods of Low Flow Estimation in Ungaged Catchments 80-4
80.6 Drought Analysis ... 80-4
80.7 Conclusion. ... 80-9
References .. 80-9

Part 7. Systems Hydrology .. 81-1

Chapter 81. Isotope Hydrology ... 81-3
81.1 Introduction ... 81-3
81.2 Isotopes .. 81-3
81.3 Groundwater Dating .. 81-5
81.4 Sampling Methods and Isotope Measurements .. 81-7
81.5 Isotope Applications in Hydrology ... 81-8
References .. 81-12

Chapter 82. Lake Hydrology ... 82-1
82.1 Introduction ... 82-1
82.2 Origin of Lakes .. 82-1
82.3 Water Balance of Lakes ... 82-1
82.4 Thermal Regime of Lakes ... 82-2
82.5 Ice Growth on Lakes .. 82-4
82.6 Circulation Processes in Lakes ... 82-4
References .. 82-5

Chapter 83. Urban Hydrology .. 83-1
83.1 Introduction ... 83-1
83.2 The Effects of Urbanization ... 83-2
83.3 Other Aspects of Urban Hydrology ... 83-3
83.4 Conclusion. ... 83-3
References .. 83-4

Chapter 84. Agricultural Hydrology ... 84-1
84.1 Introduction ... 84-1
84.2 Water Movement in the Root Zone ... 84-1
84.3 Evaporation and Transpiration ... 84-3
References .. 84-4
Chapter 85. Forest Hydrology 85-1
 85.1 Introduction ... 85-1
 85.2 Historical Development 85-1
 85.3 Principles of Forest Hydrology 85-2
 85.4 Research Methods 85-3
 85.5 Key Findings in Forest-Stream Water Quantity and Quality Relationships ... 85-4
 85.6 Future Directions 85-5
References .. 85-5

Chapter 86. Coastal Hydrology 86-1
 86.1 Introduction ... 86-1
 86.2 Overview of Coastal Processes 86-1
 86.3 Movement of Water and Sediment in Coastal Areas 86-2
 86.4 Mathematical Models of Water and Sediment Movement 86-6
 86.5 Summary and Outlook 86-7
Acknowledgments .. 86-8
References .. 86-8

Chapter 87. Wetland Hydrology 87-1
 87.1 Introduction ... 87-1
 87.2 Importance of Hydrology on Wetland Functioning 87-1
 87.3 Hydroperiod .. 87-2
 87.4 Wetland Hydrologic Terms 87-2
 87.5 Wetland Water Budget 87-3
 87.6 Wetland Hydraulics 87-5
 87.7 Modeling Groundwater-Surface Water Interactions ... 87-6
 87.8 Wetland Hydrology at the Watershed Scale 87-7
 87.9 Anthropogenic and Climate Change Impacts on Wetlands 87-7
Summary ... 87-7
References .. 87-8

Chapter 88. Arid Zone Hydrology 88-1
 88.1 Introduction ... 88-1
 88.2 Precipitation .. 88-1
 88.3 Condensation .. 88-1
 88.4 Infiltration .. 88-1
 88.5 Runoff .. 88-2
 88.6 Transmission Losses 88-3
 88.7 Change in Storage (ΔS)-Groundwater Recharge 88-3
 88.8 Evapotranspiration 88-4
 88.9 Conclusion ... 88-6
References .. 88-6

Chapter 89. Karst .. 89-1
 89.1 Introduction ... 89-1
 89.2 Investigation and Characterization of Karst 89-4
 89.3 Summary ... 89-10
Acknowledgements .. 89-11
References .. 89-11

Chapter 90. Cryospheric Hydrology: Mountainous Environment ... 90-1
 90.1 Introduction ... 90-1
 90.2 Alpine Runoff .. 90-1
 90.3 Monsoon Dominated Asian Mountain Ranges 90-1
 90.4 Glacier Runoff as a Resource 90-1
 90.5 Glacier Melting Processes 90-4
 90.6 Glacier Melt Modeling 90-5
 90.7 Drainage and Storage Characteristics 90-5
 90.8 Diurnal and Seasonal Variations in Glacier Meltwater 90-6
 90.9 Cryospheric Hydrology and Climate Change 90-7
 90.10 Glacier Lake Outburst Floods 90-9
 90.11 Summary ... 90-10
References .. 90-10
Chapter 91. Hydrology of Transportation Systems 91-1
 91.1 Pathways in Nature .. 91-1
 91.2 Scales of Movement and Accumulation Processes 91-2
 91.3 Soil and Groundwater ... 91-3
 91.4 Streams ... 91-4
 91.5 Lakes ... 91-5
References ... 91-6

Chapter 92. Large-Scale and Global Hydrology 92-1
 92.1 Introduction .. 92-1
 92.2 The Distribution of Water on Earth 92-1
 92.3 The Global Water Cycle ... 92-1
 92.4 Numerical Modeling and Data Assimilation 92-2
 92.5 Global Water Cycle Variability, Predictability, and Change 92-4
Acknowledgements .. 92-5
References ... 92-6

Part 8. Hydrology of Large River and Lake Basins 93.1

Chapter 93. Amazon River Basin .. 93-3
 93.1 Main Geographical Features 93-3
 93.2 Amazon Hydrological Processes 93-3
 93.3 Environment, Economics and Potentialities of the Basin 93-5
 93.4 Impact of Anthropic Activities in the Basin 93-6
 93.5 Amazon Basin in the Context of its Water Footprint and Environmental Role ... 93-6
References ... 93-6

Chapter 94. Paraná (Rio de la Plata) River Basin 94-1
 94.1 Introduction .. 94-1
 94.2 Geographical Features and Main Regions 94-1
 94.3 Climate ... 94-1
 94.4 Hydrological Features and Water Use 94-2
 94.5 Variability and Trends ... 94-2
References ... 94-4

Chapter 95. Orinoco River Basin ... 95-1
 95.1 Introduction .. 95-1
 95.2 Regional Geological and Topographical Setting 95-1
 95.3 Hydroclimatic Conditions .. 95-1
 95.4 The Main Stem and its Major Tributaries 95-2
 95.5 Floodplains and Seasonal Sediment Regime 95-2
 95.6 Delta ... 95-3
 95.7 Regional Vegetation .. 95-4
 95.8 Human Impacts ... 95-4
 95.9 Concluding Remarks ... 95-4
References ... 95-4

Chapter 96. Nile River Basin ... 96-1
 96.1 Introduction .. 96-1
 96.2 Climate .. 96-3
 96.3 Hydrology of the Nile Basin .. 96-4
References ... 96-9

Chapter 97. Congo River Basin ... 97-1
 97.1 Introduction .. 97-1
 97.2 The State of Hydrological Monitoring 97-1
 97.3 Climate Regimes .. 97-2
 97.4 Catchments Characteristics and Hydrological Similarities 97-2
 97.5 Hydrogeochemical Processes and Sediment Transport 97-4
 97.6 Hydrological Modeling ... 97-4
 97.7 Climate and Land Use Change 97-5
 97.8 Conclusion .. 97-5
Acknowledgement ... 97-5
References ... 97-5
Chapter 98. Zambezi River Basin .. 98-1
 98.1 Introduction ... 98-1
 98.2 Physical Characterization .. 98-1
 98.3 Main Features .. 98-1
 98.4 Climate ... 98-3
 98.5 Runoff Regime .. 98-3
 98.6 Past Hydrological Studies ... 98-4
 98.7 Hydrological Data .. 98-5
 98.8 Climate Change Impacts on Basin Hydrology 98-6
Acknowledgments ... 98-6
References .. 98-6

Chapter 99. Euphrates and Tigris River Basin .. 99-1
 99.1 General Characteristics of the Basin 99-1
 99.2 Hydrology and Water Resources 99-1
 99.3 Water Resources Developments in the Basin 99-3
 99.4 Environmental Concerns ... 99-3
 99.5 Climate Change Impacts on Basin Hydrology 99-3
Acknowledgment ... 99-3
References .. 99-4

Chapter 100. Yangtze River Basin ... 100-1
 100.1 Introduction ... 100-1
 100.2 Climate and Hydrology .. 100-2
 100.3 Station Network and Water Conservancy Projects 100-4
 100.4 Significant Water Issues .. 100-5
 100.5 Research on the Yangtze River Basin 100-5
 100.6 Concluding Remarks ... 100-5
References .. 100-6

Chapter 101. Yellow River Basin .. 101-1
 101.1 Introduction ... 101-1
 101.2 Climate and Hydrology .. 101-3
 101.3 Station Network and Water Conservancy Projects 101-4
 101.4 Significant Water Issues .. 101-5
 101.5 Research on the Yellow River Basin 101-5
 101.6 Concluding Remarks ... 101-6
References .. 101-6

Chapter 102. Mekong River ... 102-1
 102.1 Introduction ... 102-1
 102.2 Upper Mekong River (Langcang Jiang) 102-3
 102.3 Lower Mekong River ... 102-5
 102.4 Floods and Flood Forecasting 102-6
 102.5 Mekong Delta .. 102-8
 102.6 Biodiversity .. 102-8
 102.7 Agriculture and Aquaculture 102-8
 102.8 Mekong River Commission 102-9
 102.9 Environmental Threats .. 102-9
 102.10 Closing Remarks .. 102-9
References .. 102-9

Chapter 103. Yenisei River Basin ... 103-1
 103.1 Introduction ... 103-1
 103.2 Central and Lower Sections of the Yenisei 103-1
 103.3 Upper Section of the Yenisei 103-1
 103.4 Fluvial System of the Angara River 103-1
References .. 103-4

Chapter 104. Lena River Basin .. 104-1
 104.1 Introduction ... 104-1
References .. 104-4

Chapter 105. Brahmaputra River Basin .. 105-1
 105.1 Introduction ... 105-1
 105.2 Climate ... 105-1
<table>
<thead>
<tr>
<th>Chapter 112. St. Lawrence River Basin</th>
<th>112-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>112.1 Introduction</td>
<td>112-1</td>
</tr>
<tr>
<td>112.2 Characteristics of the St. Lawrence River and its Basin</td>
<td>112-1</td>
</tr>
<tr>
<td>112.3 Hydrological Characteristics of the River</td>
<td>112-4</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>112-5</td>
</tr>
<tr>
<td>References</td>
<td>112-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 113. River Rhine Basin</th>
<th>113-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>113.1 Introduction</td>
<td>113-1</td>
</tr>
<tr>
<td>113.2 Climate</td>
<td>113-1</td>
</tr>
<tr>
<td>113.3 Water Balance in the Rhine Basin</td>
<td>113-4</td>
</tr>
<tr>
<td>113.4 Long-Term Variability of Hydrometeorological Variables in the Rhine Basin</td>
<td>113-4</td>
</tr>
<tr>
<td>113.5 Discharge Characteristics in Longitudinal Profile</td>
<td>113-5</td>
</tr>
<tr>
<td>113.6 The Runoff Regime of the Rhine</td>
<td>113-6</td>
</tr>
<tr>
<td>113.7 Changes in the Runoff Characteristics of Rhine Since the Beginning of the Twentieth Century</td>
<td>113-9</td>
</tr>
<tr>
<td>113.8 Changes in the Runoff Regime of the Upper Rhine</td>
<td>113-10</td>
</tr>
<tr>
<td>113.9 Changes in the Runoff Regime of the Middle and Lower Rhine</td>
<td>113-10</td>
</tr>
<tr>
<td>113.10 Development in Extreme Runoff Situations: Flood</td>
<td>113-10</td>
</tr>
<tr>
<td>113.11 Development in Extreme Runoff Situations: Low Water</td>
<td>113-10</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>113-10</td>
</tr>
<tr>
<td>References</td>
<td>113-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 114. Danube River Basin</th>
<th>114-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>114.1 Introduction</td>
<td>114-1</td>
</tr>
<tr>
<td>114.2 History of the River System</td>
<td>114-1</td>
</tr>
<tr>
<td>114.3 Climate, Drainage Characteristics, and Hydrology</td>
<td>114-2</td>
</tr>
<tr>
<td>114.4 Problem faced</td>
<td>114-3</td>
</tr>
<tr>
<td>114.5 Scope of Future Development (2 pages)</td>
<td>114-5</td>
</tr>
<tr>
<td>References</td>
<td>114-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 115. Ob River Basin</th>
<th>115-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>115.1 Introduction</td>
<td>115-1</td>
</tr>
<tr>
<td>115.2 Ob River Basin and Discharge Data</td>
<td>115-1</td>
</tr>
<tr>
<td>115.3 Streamflow Characteristics and Change</td>
<td>115-1</td>
</tr>
<tr>
<td>115.4 Water Temperature and Thermal Regime</td>
<td>115-4</td>
</tr>
<tr>
<td>References</td>
<td>115-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 116. Po River Basin</th>
<th>116-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>116.1 River Basin Morphology and Geology, Geometry of The River Network</td>
<td>116-1</td>
</tr>
<tr>
<td>116.2 Climate and Meteorology: Genesis of Extreme Events and Droughts</td>
<td>116-1</td>
</tr>
<tr>
<td>116.3 Monitoring Networks</td>
<td>116-3</td>
</tr>
<tr>
<td>116.4 Hydrological Balance in the Po River Basin. Exploitation of Water Resources and Sustainability</td>
<td>116-3</td>
</tr>
<tr>
<td>116.5 The River Regime. Variability, Seasonality, Long-Term Patterns</td>
<td>116-3</td>
</tr>
<tr>
<td>116.6 History of Po River Floods</td>
<td>116-3</td>
</tr>
<tr>
<td>116.7 Flood Hazard Mitigation Along the Course of the Po River</td>
<td>116-4</td>
</tr>
<tr>
<td>116.8 Conclusions</td>
<td>116-4</td>
</tr>
<tr>
<td>References</td>
<td>116-4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 117. River Thames Basin</th>
<th>117-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>117.1 Introduction</td>
<td>117-1</td>
</tr>
<tr>
<td>117.2 The Thames Basin</td>
<td>117-1</td>
</tr>
<tr>
<td>117.3 Hydrometric Measurement in the Thames Basin</td>
<td>117-1</td>
</tr>
<tr>
<td>117.4 Droughts and Alleviation Measures</td>
<td>117-2</td>
</tr>
<tr>
<td>117.5 Floods and Flood Risk</td>
<td>117-3</td>
</tr>
<tr>
<td>117.6 Research and Forecasting Initiatives</td>
<td>117-3</td>
</tr>
<tr>
<td>117.7 Trends in Runoff Patterns</td>
<td>117-4</td>
</tr>
<tr>
<td>117.8 Concluding Remarks</td>
<td>117-4</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>117-4</td>
</tr>
</tbody>
</table>
xxvi CONTENTS

<table>
<thead>
<tr>
<th>Chapter 124. Marine Chemistry</th>
<th>124-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 124. Marine Biology and Resources</td>
<td>124-5</td>
</tr>
<tr>
<td>Chapter 124. Ecological Problems</td>
<td>124-5</td>
</tr>
<tr>
<td>Chapter 124. Oil pollution of the Sea</td>
<td>124-6</td>
</tr>
<tr>
<td>Chapter 124. Seismic Activity</td>
<td>124-7</td>
</tr>
<tr>
<td>Chapter 124. Desertification</td>
<td>124-7</td>
</tr>
<tr>
<td>Chapter 124. Conclusions</td>
<td>124-7</td>
</tr>
</tbody>
</table>

Acknowledgements .. 124-7
References .. 124-7

Chapter 125. Design Rainfall .. 125-1

125.1 Purpose of Design Rainfalls 125-1
125.2 Constructing Databases of Rainfall to Derive Design Rainfalls 125-2
125.3 AMS vs PDS ... 125-3
125.4 Appropriate Probability Distributions 125-3
125.5 Regionalization ... 125-4
125.6 Deriving Sub-Daily and Sub-Hourly IDF Relationships 125-5
125.7 Scaling Relationships in Design Rainfalls 125-5
125.8 Developing Design Rainfall Grids 125-6
125.9 Uncertainty in Design Rainfall Estimates 125-6
125.10 Design Temporal Patterns 125-6
125.11 Design spatial patterns ... 125-7
125.12 Implications of Temperature Linked Non-Stationarity on the Design Rain ... 125-8

Acknowledgements .. 125-9
References .. 125-9

Chapter 126. Probable Maximum Precipitation 126-1

126.1 Introduction .. 126-1
126.2 Deterministic Method of Estimation of PMP 126-1
126.3 Probabilistic Method of Estimation of PMP 126-10
126.4 Generalized Versus Basin-Specific PMP Estimates 126-13
126.5 All-season Versus Seasonal PMP Estimates 126-13
126.6 Orographic Effects .. 126-13
126.7 Spatial Variation of PMP .. 126-13
126.8 Developing Design Rainfall Grids—Development of PMS 126-14
126.9 Seasonal Variation of PMP 126-16
126.10 Cautionary notes on the Procedures for Estimation of New Set of PMP ... 126-16

References .. 126-17

PART 9. Applications and Design 127-1

Chapter 127. Runoff Prediction in Ungauged Basins 127-3

127.1 The Prediction in Ungauged Basins Problem 127-3
127.2 Best Practice Recommendations for Predicting Runoff in Ungauged Basins ... 127-3
127.3 Prediction of Floods in Ungauged Basins 127-4
127.4 Prediction of Low Flows in Ungauged Basins 127-5
127.5 Prediction of Runoff Hydrographs in Ungauged Basins 127-6
127.6 Where To Go From Here .. 127-7

Acknowledgements .. 127-9
References .. 127-9

Chapter 128. Stochastic Streamflow Simulation and Forecasting ... 128.1

128.1 Introduction .. 128.1
128.2 Stochastic Simulation of Streamflow 128.1
128.3 Nonparametric Time Series Models 128.2
128.4 Multisite Streamflow Simulation 128.3
128.5 Nonstationary Streamflow Simulation 128.3
128.6 Streamflow Forecasting .. 128.4
128.7 Stochastic Weather Generators 128.4
128.8 Software and Resources 128.5

References .. 128.5
Chapter 129. Flood Forecasting and Flash Flood Forecasting—
“Special Considerations in Hydrologic Modeling for
the Expressed Purpose of Flood and Flash
Flood Forecasting” .. 129-1
129.1 Introduction .. 129-1
129.2 Real-Time Data Requirements and Forecasts and Data Quality Control . 129-1
129.3 Computational Efficiency and Latency Requirements 129-3
129.4 Data Assimilation and/or Adjusting Model Inputs, States, And Outcomes . 129-3
129.5 Use of Future Weather 129-3
129.6 Requirements for Regulation Information ... 129-3
129.7 Flood-Control and Water-Supply Reservoirs 129-4
129.8 Reliability and Stability Requirements ... 129-4
129.9 Understanding and Conveying Uncertainty ... 129-4
129.10 Lead Time Considerations and Requirements 129-4
129.11 Temporal (Time Step) Requirements .. 129-4
129.12 Dissemination and Coordination with Customer, Partners, and the
General Public .. 129-4
129.13 Applications Related to Flash Flooding ... 129-4
129.14 Special Temporal (Time Step) Requirements 129-4
129.15 Automated Data-Analysis Requirements ... 129-5
129.16 Automated Data Assimilation ... 129-5
129.17 Ungaged Watershed Application ... 129-5
129.18 Identification of Highly Vulnerable/at Risk Locations 129-5
References ... 129-5

Chapter 130. Reservoir Operation Design ... 130-1
130.1 Introduction .. 130-1
130.2 Reservoir Planning and Design ... 130-1
130.3 Reservoir Operation .. 130-3
130.4 Future Trends in Reservoir Operation Design 130-6
130.5 Conclusions .. 130-6
References ... 130-7

Chapter 131. Floodplain Management ... 131-1
131.1 Responses to Flood Risk .. 131-1
131.2 Evolution of Floodplain Management Practices 131-2
131.3 Concepts and Methods .. 131-2
131.4 Certification in Floodplain Management ... 131-3
131.5 Summary of Issues and Needed Advances ... 131-3
References ... 131-3

Chapter 132. Storm Water Management, Best Management
Practices, and Low-Impact Development 132-1
132.1 Introduction .. 132-1
132.2 The Need for Stormwater Management ... 132-2
132.3 Specific BMPs .. 132-3
132.4 Analysis .. 132-4
132.5 Safety .. 132-4
References ... 132-4

Chapter 133. Flood Proofing and Infrastructure Development 133-1
133.1 Introduction to Flood Proofing and Infrastructure Development 133-1
Acknowledgement ... 133-9
References ... 133-9

Chapter 134. Environmental Flows .. 134-1
134.1 Introduction .. 134-1
134.2 Evolution of Environmental Flows Concept 134-2
134.3 Trade-offs in Development and Conservation 134-2
134.4 Estimation of Environmental Flows ... 134-2
134.5 Methodologies for Assessment of Environmental Flows Requirement ... 134-3
134.6 Implementation of EF .. 134-6
134.7 Environmental Flows in IWRM .. 134-7
134.8 Future Challenges .. 134-7
References ... 134-7
Chapter 135. Drainage and Culvert Design

135.1 Introduction .. 135-1
135.2 Fundamentals of Design 135-4
135.3 Design Procedure 135-6
135.4 Potential Impact of Climate Change on Culvert Design and Operation 135-6
135.5 Sustainable Design 135-6
References .. 135-6

Chapter 136. Wetland and River Restoration

136.1 Introduction .. 136-1
136.2 Definitions .. 136-1
136.3 The Restoration Process 136-2
136.4 Approaches to Wetland And River Restoration 136-3
136.5 Advancing The Science and Practice of Stream and Wetland Restoration .. 136-6
Acknowledgement .. 136-7
References .. 136-7

Chapter 137. Institutional Framework for Water Management

137.1 Sustainable Integrated Water Management. 137-1
137.2 Water Management in Texas: An Illustrative Case Study 137-1
137.3 Water Management Communities 137-1
137.4 Federal Agency Programs 137-3
137.5 State Water Resources Planning 137-4
137.6 Water Allocation 137-4
137.7 Environmental Management 137-5
137.8 Flood Mitigation 137-6
137.9 Institutional Aspects of Computer Modeling. 137-6
137.10 Conclusions ... 137-7
References .. 137-7

138.1 Introduction .. 138-1
138.2 Peak Water ... 138-2
138.3 Comparison of Peak Production in Oil and Water 138-3
138.4 Water Transfers and the Concept of Virtual Water 138-4
138.5 Water Footprints 138-6
138.6 Soft Water Paths 138-7
138.7 Conclusions ... 138-7
References .. 138-8

Chapter 139. Transboundary Water Management

139.1 Introduction .. 139-1
139.2 Water Conflict 139-1
139.3 Sources of Water Conflict 139-2
139.4 International Water Conflicts versus National Water Conflicts 139-2
139.5 Resolving Water Conflicts 139-2
139.6 The Importance of Institutional Capacity 139-3
139.7 Hydro-Hegemony 139-3
139.8 International Water Law 139-3
139.9 Third Party Involvement 139-3
139.10 Future Directions and Ways to Address New Problems 139-4
139.11 Conclusion .. 139-4
Acknowledgement .. 139-4
References .. 139-4

Chapter 140. Integrated River Basin Management

140.1 Integrated River Basin Management: A Framework and Process 140-1
140.2 Elements of IRBM 140-1
140.3 Historical Development 140-2
140.4 Institutional Arrangements for IRBM 140-2
140.5 Technical Concepts and Methods 140-4
140.6 Case Studies .. 140-5
140.7 Summary ... 140-6
References .. 140-7
Chapter 141. Conflict Resolution 141-1
141.1 Conflict Exists Everywhere 141-1
141.2 Game Theoretic Models for Conflict Analysis 141-1
141.3 Graph Model for Conflict Resolution 141-1
141.4 Fair Water Allocation .. 141-2
141.5 Compliance Models ... 141-4
141.6 Agent-Based Modeling and Simulation 141-5
141.7 Summary ... 141-5
References .. 141-5

Chapter 142. Long-distance Water Transfers 142-1
142.1 Introduction ... 142-1
142.2 Transfers Among Basins, Regions and Countries—Achievements and Concerns 142-1
Further Thoughts ... 142-6
References .. 142-6

Chapter 143. The Indian River-Linking Program 143-1
143.1 Introduction ... 143-1
143.2 India's Water Resources and the River-Linking Plan 143-1
143.3 Prognosis and Implication 143-5
143.4 Conclusions .. 143-8
Acknowledgment ... 143-8
Reference ... 143-8

Chapter 144. Irrigation Scheduling and Management 144-1
144.1 Introduction ... 144-1
144.2 Soil-Plant-Atmosphere Interaction 144-2
144.3 On-farm Irrigation Scheduling 144-7
144.4 Canal Irrigation Scheduling 144-7
144.5 Conclusions ... 144-8
144.6 Research Needs .. 144-8
References .. 144-8

Chapter 145. Rainwater Harvesting and Groundwater Recharge ... 145-1
145.1 Introduction ... 145-1
145.2 Ancient Methods of Water Harvesting 145-1
145.3 Watershed Development 145-2
145.4 Rainwater-Harvesting Structures 145-3
145.5 Assessment of Rainwater Harvesting Using Remote Sensing and GIS 145-7
145.6 Rainwater Harvesting Studies a Global Perspective 145-7
References .. 145-9

Chapter 146. Reuse-Reclaimed Water in Managed Aquifer Recharge 146-1
146.1 Introduction ... 146-1
146.2 Treatment Mechanisms in Natural Systems 146-2
146.3 Managed Aquifer Recharge 146-2
146.4 Water Quality Considerations for Managed Aquifer Recharge .. 146-3
146.5 Surface Spreading .. 146-3
146.6 Injection Wells .. 146-4
146.7 Recovery of Reclaimed Water through Aquifer Storage and Recovery 146-5
146.8 Subsurface Geochemical Processes 146-6
146.9 Summary ... 146-6
References .. 146-6

Chapter 147. River Bank Filtration 147-1
147.1 Introduction ... 147-1
147.2 River Hydrology .. 147-1
147.3 Potential of River Bank Filtration 147-2
147.4 Simulating RBF Quality 147-3
147.5 Optimizing Distance of Well from the River 147-6
147.6 River Bank Filtration Sites 147-6
147.7 Summary ... 147-7
References .. 147-7
Chapter 153. Extraterrestrial Water

153.1 Introduction ... 153-1
153.2 The Origin of the Earth's Water .. 153-1
153.3 Water in our Solar System ... 153-1
153.4 Water Beyond our Solar System ... 153-3
153.5 Summary ... 153-4

References ... 153-4

Chapter 154. Water Security

154.1 Availability of Freshwater around the World 154-1
154.2 Current State of Water Affairs .. 154-1
154.3 Water Security—the Discourse .. 154-3
154.4 Global Availability of Groundwater .. 154-3
154.5 Water Security as Part of Economic Security 154-4
154.6 Managing Water in a Changing World 154-4
154.7 Meeting the Water Gap: Unlocking the Potential of Green Water... 154-4

Conclusion ... 154-5
Acknowledgments .. 154-5
References ... 154-5

Chapter 155. Social Hydrology

155.1 Water and Human Beings .. 155-1
155.2 What is Social Hydrology? ... 155-3
155.3 Great Hydraulic Mission .. 155-4
155.4 Nature's Talk Back ... 155-4
155.5 Evolution of Social Hydrology as a New Discipline 155-6
155.6 Challenges Ahead in Water Management 155-7
155.7 Recent Trends and Developments in Social Hydrology 155-8
155.8 Climate Change and Future Issues in Social Hydrology 155-8
155.9 Future Direction in Social Hydrology 155-9

References ... 155-10

Chapter 156. Grand Challenges Facing the Hydrologic Sciences

156.1 Introduction .. 156-1
156.2 Quality-Differentiated Water Management 156-1
156.3 Conversion Strategy ... 156-2
156.4 Scoping the Greater Hydrologic System 156-2
156.5 Scoping Water Needs ... 156-3
156.6 Emerging Infrastructure Needs ... 156-3
156.7 Information Systems ... 156-4
156.8 Prioritization .. 156-4
156.9 Selected Priority Challenges ... 156-5
156.10 From Research to Reality ... 156-6
156.11 Summary and Conclusions ... 156-6

Acknowledgements .. 156-6
References ... 156-6
Contributors

Benjamin Abban
Department of Civil and Environmental Engineering
University of Tennessee
Knoxville, Tennessee

M. C. Acreman
Centre for Ecology and Hydrology
Crowmarsh Gifford
Wallingford, United Kingdom

Lauren Adams
Center for Watershed Sciences
University of California, Davis
Davis, California

Pradeep Aggarwal
Isotope Hydrology Section
Division of Physical and Chemical Sciences
Department of Nuclear Sciences and Applications
International Atomic Energy Agency (IAEA)
Vienna, Austria

Mohammad Z. Al-Hamdan
Universitas Space Research Association
NASA/ Marshall Space Flight Center
National Space Science Technology Center
Huntsville, Alabama

Doug Alsdorf
Byrd Polar and Climate Research Center
The Ohio State University
Columbus, Ohio

Devendra M. Amaty
USDA Forest Service Center for Forested Wetlands Research
Cordova, South Carolina

Daniel P. Ames
Department of Civil and Environmental Engineering
Brigham Young University
Provo, Utah

Burakon Dmitry Anatolyevich
Department of Environmental Engineering
Krasnoyarsk State Agrarian University
Krasnoyarsk, Russia

Michael Anderson
California Department of Water Resources
Division of Flood Management
Hydrology and Flood Operations Office
Sacramento, California

Mazdak Arabi
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Luis J. Araguas-Araguas
Isotope Hydrology Section
Division of Physical and Chemical Sciences
Department of Nuclear Sciences and Applications
International Atomic Energy Agency (IAEA)
Vienna, Austria

Mustafa M. Aral
School of Civil and Environmental Engineering
Georgia Institute of Technology
Atlanta, Georgia

Bhavna Arora
Earth Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, California

M. Babbar-Sebens
School of Civil and Construction Engineering
Oregon State University
Corvallis, Oregon

Daniel W. Baker
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Emanuele Baratti
Department DICEAM
University of Bologna
Bologna, Italy

Donald E. Barke
Department of Civil and Environmental Engineering
University of New Orleans
New Orleans, Los Angeles

Henry Barousse
Louisiana Department of Transportation and Development (Retired)

Robert Bastian
U.S. Environmental Protection Agency
Washington, D.C.

Peter Rauz-Gottweis
Department of Environmental Engineering
Technical University of Denmark
Lyngby, Denmark

Hiroyuki Kato Beaudoin
Earth System Science Interdisciplinary Center
University of Maryland
College Park, Maryland

Kati Bell
Global Practice Leader - Water Reuse
MWH Global
Brentwood, Tennessee

Jorge Luis Belx
BBG - Federal Institute of Hydrology
Koblenz, Germany

Lars Bengtsson
Department of Water Resources Engineering
Lund Institute of Technology
Lund University
Lund, Sweden

Ronnei Berndtsson
Department of Water Resources Engineering
and Center for Middle Eastern Studies
Lund University
Lund, Sweden

Daniela Biondi
Institute of Hydraulic Construction
University of Bologna
Bologna, Italy
CONTRIBUTORS

Brian P. Bledsoe
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Günter Blöschl
Institute of Hydraulic Engineering
Centre for Water Resource Systems
Institut für Wasserbau und Ingenieurhydromologie
Technische Universität Wien
Wien, Austria

Istvan Bogardi
Department of Civil Engineering
Izmir Institute of Technology
Izmir, Turkey

D. Bolton
NASA/GSFC, Hydrological Sciences Branch
Greenbelt, Maryland

André Bouchard
Hydrology and Ecohydraulic Section
Meteorological Service of Canada
Québec, Canada

Armando Brath
Department DICAM
University of Bologna
Bologna, Italy

Juan Martin Bravo
Instituto de Pesquisas Hidráulicas
Universidade Federal do Rio Grande do Sul
IPHI-UFRGS
Porto Alegre, Brazil

Donald H. Burn
Department of Civil and Environmental Engineering
University of Waterloo
Waterloo, Canada

Aaron R. Byrd
Hydrologic Systems Branch
Coastal and Hydraulics Laboratory
Engineer Research Development Center
U.S. Army Corps of Engineers
Vicksburg, Mississippi

Ximing Cai
Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois

Darryl Carlyle-Moses
Department of Geography and Environmental Studies
Thompson Rivers University
Kamloops, Canada

Attilio Castellarin
DICAM - Corruzioni Idrauliche, Università degli Studi di Bologna
Bologna, Italy

Serena Ceola
Department DICAM
University of Bologna
Bologna, Italy

C. P. Cetinkaya
Dokuz Eylül University
Water Resources Management Research and Application Center (SUMER)
Izmir, Turkey

Maria A. Charina
Water Problems Institute of the Russian Academy of Sciences
Moscow, Russia

Futok Chehama
Institut national de la recherche scientifique
Centre Éau-Terre-Environnement
Québec, Canada

Ji Chen
Department of Civil Engineering
The University of Hong Kong
Hong Kong, People's Republic of China

Yang Cheng
Department of Civil and Environmental Engineering
Syracuse University
Syracuse, New York

Nannan Cheng
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau
Institute of Soil and Water Conservation
Chinese Academy of Sciences and Ministry of Water Resources
Northwest Agriculture and Forest University
Yangling, People's Republic of China

Ekaterina V. Chaprina
Water Problems Institute of the Russian Academy of Sciences
Moscow, Russia

Theodore G. Cleveland
Associate Professor
Department of Civil, Environmental, and Construction Engineering
Texas Tech University
Lubbock, Texas

Walter Collischonn
Instituto de Hydraulic Research
Universidade Federal do Rio Grande do Sul
IPHI-UFRGS
Porto Alegre, Brazil

Zhentao Cong
Department of Hydraulic Engineering
Tsinghua University
Beijing, People's Republic of China

James Connaughton
Richmond, California

Corrado Corradini
Department of Civil and Environmental Engineering
Facolta di Ingegneria
University of Perugia
Perugia, Italy

Alva Couch
Department of Computer Science
Tufts University
Medford, Massachusetts

Norman H. Crawford
Hydrocomp, Inc.
Menlo Park, California

James F. Cruise
Department of Civil and Environmental Engineering
University of Alabama in Huntsville
Huntsville, Alabama

Allegra da Silva
CDM Smith
Denver, Colorado

Baptiste Dafflon
Earth Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, California

Kumer Pial Das
Department of Mathematics
Lamar University
Beaumont, Texas

Claas Davidsen
Department of Environmental Engineering
Technical University of Denmark
Lyngby, Denmark

Rodrigo Canduro Dias de Paiva
Instituto de Hydraulic Research
Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Zhi-Qiang Deng
Department of Civil and Environmental Engineering
Louisiana State University
Baton Rouge, Los Angeles

Georgia Destouni
Department of Physical Geography and Quaternary Geology
Stockholm University
Stockholm, Sweden
Michael DeWeese
National Weather Service
North Central River Forecast Center
Chanhassen, Minnesota

Daniel H. Doctor
Eastern Geology and Paleoclimate Science Center
U.S. Geological Survey
Reston, Virginia

Alessio Domenghetti
Department DISCAM
University of Bologna
Bologna, Italy

A. S. Donigian, Jr.
AGS TERRA Consultants
Mountain View, California

Charles W. Downer
CEERD-HFH
Coastal and Hydraulics Laboratory
Vicksburg, Mississippi

André Duizer
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Jim Dumont
Water Infrastructure Specialist
Salt Spring Island, Canada

Dipankar Dwivedi
Earth Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, California

Walter L. Elsberry
Department of Civil and Environmental Engineering
University of Alabama in Huntsville
Huntsville, Alabama

A. Erkan
Hydrologic Research Laboratory
Department of Civil and Environmental Engineering
University of California
Davis, California

Alvar Escrivá-Bou
Davis, California

James S. Famiglietti
NASA Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Karen Fang
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, Australia

Liping Fang
Department of Mechanical and Industrial Engineering
Faculty of Engineering and Architectural Science
Ryerson University
Toronto, Canada

Bonifacio Fernandez and Jorge Gironás
P.U. Católica de Chile
Santiago, Chile

Stefan Finsterle
Earth Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, California

Faith A. Fitzpatrick
Fluvial Geomorphology
USGS WI Water Science Center
Middleton, Wisconsin

Darrell Fontane
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Donald K. Frevert
Retired Hydraulic Engineer and Team Leader
Bureau of Reclamation
Denver, Colorado

Devin L. Galloway
U.S. Geological Survey
Indianapolis, Indiana

Timothy S. Gambrel
Mississippi River Science and Technology Office and Mississippi River Commission
Mississippi Valley Division
U.S. Army Corps of Engineers
Vicksburg, Mississippi

Christian Genest
Department of Mathematics and Statistics
McGill University
Montréal, Canada

Timothy R. Ginn
Department of Civil and Environmental Engineering
University of California
Davis, California

Jorge Gironás
Departamento de Ingeniería Hidráulica y Ambiental
Centro de Investigación para la Gestión Integrada de Desastres Naturales (CIGIDEN)
Centro de Desarrollo Urbano Sustentable (CEDESU)
Centro Multidisciplinario de Cambio Global
Pontificia Universidad Católica de Chile
Santiago, Chile

Peter H. Gleick
Pacific Institute
Oakland, California

Narendra Kumar Gontia
College of Agricultural Engineering and Technology
Junagadh Agricultural University
Junagadh, India

Jonathan L. Goodall
Department of Civil and Environmental Engineering
University of Virginia
Charlottesville, Virginia

David C. Goodrich
USDA-ARS
Southwest Watershed Research Center
Tucson, Arizona

R. S. Govindaraju
Delon and Elizabeth Hampton Hall of Civil Engineering
Purdue University
West Lafayette, Indiana

Robert E. Griffin
Atmospheric Science Department
Earth System Science Program
University of Alabama in Huntsville
Huntsville, Alabama

Neil S. Grigg
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Andrew D. Gronewold
NOAA (Great Lakes Environmental Research Laboratory)
University of Michigan (Civil and Environmental Engineering)
NOAA-GLERL
Ann Arbor, Michigan

Georges Gaume
Commission Internationale du bassin Congo-Oubangui-Sangha
Kinduass-Gombe, Democratic Republic of the Congo

Orhan Gunduz
Dokuz Eylul University
Department of Environmental Engineering
Izmir, Turkey

H. V. Gupta
Department of Hydrology and Water Resources
University of Arizona
Tucson, Arizona

Semyon M. Guziy
Institute “Krasnoyarskgidroproekt”
Krasnoyarsk State Agricultural University
Krasnoyarsk branch of JSC “SBENYCU”
Krasnoyarsk, Russia
CONTRIBUTORS

Alan F. Hamlet
Dept. of Civil and Environmental Engineering and Earth Sciences
University of Notre Dame
Notre Dame, Indiana

Cameron Handside
Earth System Science Center
University of Alabama in Huntsville
Huntsville, Alabama

Mohamed M. Hantush
National Risk Management Research Laboratory
U.S. Environmental Protection Agency
Cincinnati, Ohio

Unesch Hantush
Department of Geology
University of Dayton
Dayton, Ohio

Bekki Ward Harjo
Senior Hydrologist, National Weather Service
Arkansas Red Basin River Forecast Center
Tulsa, Oklahoma

Nilgun Harmanlioglu
Water Resources Institute
Dokuz Eylul University
Izmir, Turkey

Julien J. Haroun
School of Mechanical, Aerospace and Civil Engineering
The University of Manchester
Manchester, United Kingdom

Robert Hartman
HIC, NWS
Sacramento, California

Hongming He
Institute of Soil and Water Conservation
Chinese Academy of Sciences and Ministry of Water Resources
Yangling, People's Republic of China

Janet Herman
University of Virginia
Charlottesville, Virginia

Kith W. Hipel
Department of Systems Design Engineering
University of Waterloo
Waterloo, Canada

Yoshinari Hiroshiro
Faculty of Engineering
Department of Civil Engineering
Kyushu University
Fukuoka, Japan

Michael T. Hobbs
National Integrated Drought Information System
NOAA Earth System Research Laboratory
Boulder, Colorado

Robert R. Holmes, Jr.
U.S. Geological Survey
Bozeman, Montana

Jeffrey S. Horsho
Department of Civil and Environmental Engineering
Utah State University
Logan, Utah

Chi Hua Huang
National Soil Erosion Research Laboratory
West Lafayette, Indiana

Denis Arthur Hughes
Institute for Water Research
Rhodes University
Grahamstown, South Africa

Bai Hui
University of California, Davis
Center for Watershed Sciences
One Shields Avenue
Davis, California

Justin Huntington
Desert Research Institute
Division of Hydrologic Sciences
Western Regional Climate Center
Reno, Nevada

John C. Imhoff
AQuA TERRA Consultants
Oxley, Colorado

K. Ishida
Hydrologic Research Laboratory
Department of Civil and Environmental Engineering
University of California
Davis, California

Sharad K. Jain
Water Resources Systems Division
National Institute of Hydrology
Roorkee, India

L. Douglas James
Fairfax, Virginia

A. W. Jayawardena
Department of Civil Engineering
The University of Hong Kong
Hong Kong, People's Republic of China

Kenji Jinno
Kyushu University
Munakata City, Japan

Fiona Johnson
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, Australia

V. Jothiprakash
Department of Civil Engineering
Indian Institute of Technology Bombay
Mumbai, India

Tijana Jovanovic
Department of Civil and Environmental Engineering
The Pennsylvania State University
State College, Pennsylvania

Latif Kalin
School of Forestry and Wildlife Sciences
Auburn University
Auburn, Alabama

Jagath Kaluarachchi
College of Engineering
Professor of Civil and Environmental Engineering
Utah State University
Logan, Utah

R. Karlheiden
Biological and Agricultural Engineering Department
Texas A&M University
College Station, Texas

Laila Kasuri
Chevy Chase, Maryland

Dmitri Kavetski
School of Engineering
University of Newcastle
Callaghan, Australia

M. Levent Kavvas
Department of Civil and Environmental Engineering
University of California
Davis, California

Akira Kawamura
Department of Civil and Environmental Engineering
Tokyo Metropolitan University
Tokyo, Japan

Justin Huntington
Desert Research Institute
Division of Hydrologic Sciences
Western Regional Climate Center
Reno, Nevada

John C. Imhoff
AQuA TERRA Consultants
Oxley, Colorado

K. Ishida
Hydrologic Research Laboratory
Department of Civil and Environmental Engineering
University of California
Davis, California

Sharad K. Jain
Water Resources Systems Division
National Institute of Hydrology
Roorkee, India

L. Douglas James
Fairfax, Virginia

A. W. Jayawardena
Department of Civil Engineering
The University of Hong Kong
Hong Kong, People's Republic of China

Kenji Jinno
Kyushu University
Munakata City, Japan

Fiona Johnson
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, Australia

V. Jothiprakash
Department of Civil Engineering
Indian Institute of Technology Bombay
Mumbai, India

Tijana Jovanovic
Department of Civil and Environmental Engineering
The Pennsylvania State University
State College, Pennsylvania

Latif Kalin
School of Forestry and Wildlife Sciences
Auburn University
Auburn, Alabama

Jagath Kaluarachchi
College of Engineering
Professor of Civil and Environmental Engineering
Utah State University
Logan, Utah

R. Karlheiden
Biological and Agricultural Engineering Department
Texas A&M University
College Station, Texas

Laila Kasuri
Chevy Chase, Maryland

Dmitri Kavetski
School of Engineering
University of Newcastle
Callaghan, Australia

M. Levent Kavvas
Department of Civil and Environmental Engineering
University of California
Davis, California

Akira Kawamura
Department of Civil and Environmental Engineering
Tokyo Metropolitan University
Tokyo, Japan
Soksamnang Keo
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau
Institute of Soil and Water Conservation
Chinese Academy of Sciences and Ministry of Water Resources
Northwest Agriculture and Forest University
Yangling, People’s Republic of China

Greg Kerr
Office of Water Programs
University of Wyoming
Laramie, Wyoming

Martin Koubert
Agricultural and Biological Engineering
Purdue University
West Lafayette, Indiana

Jongho Kwon
Department of Civil Engineering
McMaster University
Hamilton, Canada

C. Prakash Khedun
Department of Biological and Agricultural Engineering
Texas A&M University
College Station, Texas

Max Kibogo
Department of Civil Engineering
College of Engineering, Design, Art and Technology (CEDAT)
Makerere University
Kampala, Uganda

Thomas R. Kjeldsen
Department of Architecture and Civil Engineering
University of Bath
Bath, United Kingdom

Barbara A. Kleiss
USACE-Mississippi Valley Division
Vicksburg, Mississippi

Randal Koster
Global Modeling and Assimilation Office
NASA Goddard Space Flight Center
Greenbelt, Maryland

Andrey Kostianoy
P.P. Shirshov Institute of Oceanology
Russian Academy of Sciences
Moscow, Russia

Demetris Koutrouliannis
Department of Water Resources and Environmental Engineering
National Technical University of Athens
Heronios Polytechneiou
Zographou, Greece

Peter Krabbe
BIG - Federal Institute of Hydrology
Koblenz, Germany

Valentina Krysanova
Potsdam Institute for Climate Impact Research
Potsdam
Germany

Lev Kirshmont
Laboratory of Water Cycle
Water Problems Institute
Russian Academy of Sciences
Moscow, Russia

George Kuczera
School of Engineering
University of Newcastle
Callaghan, Australia

Bhishon Kumar
Ex Professional Staff
Isotope Hydrology Section
International Atomic Energy Agency (IAEA)
Vienna, Austria
Ex Head
Hydrological Investigations Division
National Institute of Hydrology
Roorkee, India

Zhagniec W. Kandrzejewicz
Institute of Agricultural and Forest Environment
Polish Academy of Sciences
Poznan, Poland

John Labadie
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

David Labat
Geosciences Environnement Toulouse
Toulouse, France

Venkataraman (Vinukat) Lakshmi
Department of Earth and Ocean Sciences
University of South Carolina
Columbia, South Carolina

Uppanu Lall
Department of Earth and Environmental Engineering
Department of Civil Engineering and Engineering Mechanics
Columbia Water Center
International Research Institute for Climate and Society
Columbia University
New York

Alain Laraque
Directeur de Recherche en Hydrologie
GET - UMR CNRS / IRD / UPS - UMR 5563 du CNRS, UMR234 de l’IRD
Toulouse, France

Magnus Larson
Department of Water Resources Engineering
Lund Institute of Technology
Lund University
Lund, Sweden

Stanley A. Leake
U.S. Geological Survey
Tucson, Arizona

Chiara Lepore
Ocean and Climate Physics
Lamont-Doherty Earth Observatory
Palisades, New York

L. Ruby Leung
Atmospheric Sciences and Global Change Division
Pacific Northwest National Laboratory
Richland, Washington

Benjamin Lord
Raleigh, North Carolina

Yuju Lu
State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau
Institute of Soil and Water Conservation
Chinese Academy of Sciences and Ministry of Water Resources
Northwest Agriculture and Forest University
Yangling, People’s Republic of China

Jay R. Lund
Center for Watershed Sciences
Department of Civil and Environmental Engineering
University of California
Davos, California

Gil Mahe
IRD, Laboratoire Hydro Sciences
Montpellier, France

D. R. MAILLAPULI
Agricultural and Food Engineering Department
Indian Institute of Technology Kharagpur
Kharagpur, India

Terry Marsh
Centre for Ecology & Hydrology
Wallington, United Kingdom

Philip Marsh
Water Science Wilfrid Laurier University
Waterloo, Canada

José Pedro Matos
Laboratoire de constructions hydrauliques (LCH)
Ecolepolytechniquefédérale de Lausanne (EPFL)
Lausanne, Switzerland
Larry W. Mays
Arizona State University
Tempe, Arizona

Richard H. McCuen
Civil and Environmental Engineering Department
University of Maryland
College Park, Maryland

Steven G. McNulty
Eastern Forest Environmental Threat Assessment Center
Southern Research Station, USDA Forest Service
Raleigh, North Carolina

Alihosn Majeed
Department of Civil and Environmental Engineering
The Pennsylvania State University
State College, Pennsylvania

Tarık Merabiene
Department of Civil and Environmental Engineering
College of Engineering
University of Sharjah
Sharjah, United Arab Emirates

Venkatesh Merwade
Lyles School of Civil Engineering
Purdue University
West Lafayette, Indiana

Srikanta Mishra
Water Problems Institute of the Russian Academy of Sciences
Moscow, Russia

Ilona E. Mladenova
NASA/GSFC, Hydrological Sciences Branch
Greenbelt, Maryland

Binayak P. Mohanty
Biological and Agricultural Engineering
Texas A&M University
College Station, Texas

Kazuro Momii
Faculty of Agriculture
Kagoshima University
Korimoto, Japan

Alberto Montanari
Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali
University of Bologna
Bologna, Italy

B. Morbidelli
Department of Civil and Environmental Engineering
Pergusa University
Pergusa, Italy

Rasuul Mukhopadhyay
National Practice Leader | Water Resources
North American Infrastructure
Jacobs Engineering Group, Inc.
Dallas, Texas

Daren Musabih
Department of Water Resources Engineering
Lund Institute of Technology
Lund University
Lund, Sweden

Kei Nakagawa
Nagasaki University
Graduate School of Fisheries Science and Environmental Studies
Nagasaki University
Nagasaki, Japan

Mohamed K. Nasser
Department of Civil and Environmental Engineering
University of California
Davis, California

Grey S. Nearing
NASA/GSFC
Hydrological Sciences Branch
Greenbelt, Maryland

W. W. Ng
Department of Civil Engineering
Lakehead University
Thunder Bay, Canada

John Nielsen-Gammon
Department of Atmospheric Sciences
Texas A&M University
College Station, Texas

Jun Niu
College of Water Resources and Civil Engineering
China Agricultural University
Beijing, People’s Republic of China

Robert K. Niven
School of Civil Engineering and Geosciences
Newcastle University
Newcastle upon Tyne, United Kingdom

P. E. O’Connell
School of Civil Engineering and Geosciences
Newcastle University
Newcastle upon Tyne, United Kingdom

Greg O’Donnell
School of Civil Engineering and Geosciences
Newcastle University
Newcastle upon Tyne, United Kingdom

Robert Oschepke
United States Army Corps of Engineers (Retired)

Fred L. Ogden
Department of Civil and Architectural Engineering and
Haub School of Environment and Natural Resources
University of Wyoming
Laramie, Wyoming

N. Olara
Department of Civil and Architectural Engineering
University of Wyoming
Laramie, Wyoming

C. S. P. Ojha
Department of Civil Engineering
Indian Institute of Technology Roorkee
Roorkee, India

Taha B. M. J. Ouarda
Institute Center for Water and Environment (iWATER)
Masdar Institute of Science and Technology
Abu Dhabi, United Arab Emirates

Hisashi Ozawa
Graduate School of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima, Japan

Umed S. Panu
Department of Civil Engineering
Lakehead University
Thunder Bay, Canada

Simon Michael Papalexiou
Department of Water Resources and Environmental Engineering
National Technical University of Athens
Herion Polytechniou
Zographou, Greece
Thanos Papapaniolaou
Department of Civil and Environmental Engineering
University of Tennessee
Knoxville, Tennessee

Sandra Pavlovic
University Corporation for Atmospheric Research
Boulder, Colorado

Patra Plakova
Institute of Hydrology
Slovak Academy of Sciences
Bratislava, Slovakia

Angela Pelc
Department of Civil and Environmental Engineering
University of Alabama
Tuscaloosa, Alabama

Mauri Polto
Department of Environmental Science
Nichols College
Dudley, Massachusetts

Silvio J. Pereira-Cardenal
COWI A/S
Lyngby, Denmark

Magnus Persson
Department of Water Resources Engineering
Lund Institute of Technology
Lund University
Lund, Sweden

Masih Permal
Department of Hydrology
Indian Institute of Technology Roorkee
Roorkee, India

Jacob Petersen-Perlman
Oregon State University
Corvallis, Oregon

Christa D. Peters-Lidard
Hydrological Sciences Laboratory
NASA Goddard Space Flight Center
Greenbelt, Maryland

Hai V. Pham
Department of Civil and Environmental Engineering
Louisiana State University
Baton Rouge, Louisiana

Mikolaj Piniewski
Warsaw University of Life Sciences
Warsaw, Poland

Paulo Régis Monteiro Pontes
Instituto de Pesquisas Hidráulicas
Universidade Federal do Rio Grande do Sul
IPH-UFRGS
Porto Alegre, Brazil

Erik C. Porse
UCLA Institute of the Environment and Sustainability
Los Angeles, California

Nawal Raj Pradhan
CEERD-HEH
Cisatul and Hydraulic Laboratory
Vicksburg, Mississippi

James Pratie
Hydrologic Engineer
Bureau of Reclamation
Upper Colorado Regional Office
Denver Federal Center
Denver, Colorado

K. S. H. Prasad
Department of Civil Engineering
Indian Institute of Technology Roorkee
Roorkee, India

Roland K. Price
UNESCO-IHE, Institute for Water Education
Delft, The Netherlands

Fernando Falco Pruski
Department of Agricultural Engineering
Federal University of Viçosa
Viçosa, Brazil

Manuel Pulido-Velazquez
Research Institute of Water and Environmental Engineering (IIAMA)
Universitat Politècnica de València
Valencia, Spain

Narendra Singh Raghuvanshi
Agricultural and Food Engineering Department
Indian Institute of Technology Kharagpur
Kharagpur, India

Ataur Rahman
Water and Environmental Engineering
School of Computing, Computing and Mathematics
Western Sydney University
Penrith, Australia

Balaji Rajagopalan
Department of Civil, Environmental and Architectural Engineering
University of Colorado
Boulder, Colorado

H. D. Ranik
Department of Soil and Water Engineering
College of Agricultural Engineering and Technology
Junagadh Agricultural University
Junagadh, India

Liliang Ren
International Office
Hohai University
Nanjing, People's Republic of China

Ben Renard
School of Engineering
University of Newcastle
Callaghan, Australia

Pedro J. Ribeiro
National Weather Service
North Central River Forecast Center
Chanhassen, Minnesota

Mebdi Rezaiianzadeh
School of Forestry and Wildlife Sciences
Auburn University
Auburn, Alabama

Niels Riegs
DHI
Hørsholm, Denmark

Matthew Rudell
Hydrological Sciences Laboratory
NASA Goddard Space Flight Center
Greenbelt, Maryland

Renata del Giudice Rodriguez
CAPES Foundation
Ministry of Education of Brazil, Brasilia,
Distrito Federal, Brazil

A. Charles Rowney
Longwood, Florida

Albert J. Ruguamu
Makerere University
College of Engineering, Design Art and Technology
Department of Civil and Environmental Engineering
Kampala, Uganda

Udeshika Sakkama
Research Assistant at the Institute of Water Policy
Lee Kuan Yew School of Public Policy
National University of Singapore
Singapore

Jose D. Salas
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Samuel Sandoval-Solis
University of California Davis
Dept. LAWR
Davis, California

Sankar Sarkar
Physics and Applied Mathematics Unit
Indian Statistical Institute
Kolkata, India
Arup K. Sarma
Department of Civil Engineering
Indian Institute of Technology Guwahati
Guwahati, India

Shinji Sato
Department of Civil Engineering
University of Tokyo
Tokyo, Japan

John Schaeke
Annapolis, Maryland

William A. Schaeffelberg
CEWR-HEC
Hydrologic Engineering Center
Davis, California

Anton Schleiss
Laboratoire de constructions hydrauliques (LCH)
Ecolepolytechniquefédérale de Lausanne (EPFL)
LCH - ENAC - EPFL
Lausanne, Switzerland

Sergio E. Serrano
Department of Civil and Environmental Engineering
Temple University
Philadelphia, Pennsylvania

Yury V. Shauko
Candidate of Physics and Mathematics
Scientific Researcher of the Institute of Computational Modelling of Siberian Branch of Russian Academy of Sciences, Krasnoyarsk

Ashish Sharma
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, Australia

Jack Sharp
University of Texas
Austin, Texas

Mohsen Sherif
Civil and Environmental Engineering Department
College of Engineering
UAE University
United Arab Emirates

Haiyun Shi
State Key Laboratory of Hydroscience and Engineering
Tínghua University
Beijing, People's Republic of China

Joel S. Sholtz
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Lucas Siegfried
Santa Cruz, California

Vijay P. Singh
Department of Biological and Agricultural Engineering & Zachry Department of Civil Engineering
Texas A&M University
College Station, Texas

Bellie Swakumar
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, Australia

Brian E. Skahill
CEERD-HFH
Coastal and Hydraulics Laboratory
Vicksburg, Mississippi

Lambert K. Smedema
Independent Irrigation/Drainage Consultant
Arlem, The Netherlands

S. Sorourshian
University of California
Irvine, California

Jery R. Stedinger
School of Civil and Environmental Engineering
Cornell University
Ithaca, New York

R. Subbaiah
Department of Soil and Water Engineering
College of Agricultural Engineering and Technology
Junagadh Agricultural University
Junagadh, India

Caroline A. Sullivan
School of Environment, Science and Engineering
Marine Ecology Research Centre
Southern Cross University
New South Wales, Australia

Go Sun
Eastern Forest Environmental Threat Assessment Center
Southern Research Station, USDA Forest Service
Raleigh, North Carolina

Liquin Sun
Department of Civil Engineering
The University of Hong Kong
Hong Kong, People's Republic of China

Öli G. B. Svínsson
Landvörður (The National Power Company of Iceland)
Reykiavík, Iceland

David G. Tarboton
Department of Civil and Environmental Engineering
Utah State University
Logan, Utah

Ashish Thakor
Darbhanga College of Engineering
Darbhanga, India

Reed Thayer
Center for Watershed Sciences
University of California Davis, California

Mark Thyer
School of Engineering
University of Newcastle
Callaghan, Australia

Ezio Todini
Institute of Hydraulic Construction
University of Bologna
Bologna, Italy

Glenn Tootle
The University of Alabama
Department of Civil, Construction and Environmental Engineering (CCCEE)
Tuscaloosa, Alabama

Cecilia Tortajada
Third World Centre for Water Management
Mexico

Shivam Tripathi
Indian Institute of Technology Kanpur
Kanpur, India

Frank Y.-C. Tsai
Louisiana State University
Department of Civil and Environmental Engineering
Baton Rouge, Los Angeles

Raphael M. Tsikamanga
Department of Natural Resources Management & CB-HYDRONET
Faculty of Agronomic Sciences
University of Kinshasa
Kinshasa, Democratic Republic of the Congo

Yewou-Koung Tung
Taiwan, People's Republic of China

Kambalad Tissupova
Department of Water Resources Engineering
Lund University
Lund, Sweden
Julie A. Vano
Research Applications Laboratory
National Center for Atmospheric Research

Jennifer C. Veilleux
Oregon State University
Corvallis, Oregon

Daniele Veneziano
Department of Civil and Environmental Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts

R. Vignesh
Department of Civil Engineering
Indian Institute of Technology Bombay
Mumbai, India

Gabriele Villarini
IIHR-Hydroscience and Engineering
The University of Iowa
Civil and Environmental Engineering
Iowa City, Iowa

Richard M. Vogel
Department of Civil and Environmental Engineering
Tufts University
Medford, Massachusetts

Harold W. Wainwright
Earth Sciences Division
Lawrence Berkeley National Laboratory
Berkeley, California

Glenn Warner
Department of Natural Resources and the Environment
The University of Connecticut
Storrs, Connecticut

Wallace A. Wilson
ASFPFM Foundation

Fitsum M. Woldemeskel
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, Australia

Aaron T. Wolf
Oregon State University
Corvallis, Oregon

Ming-xiu Woo
School of Geography and Earth Sciences
McMaster University
Hamilton, Canada

Ralph A. Wurbs
Zachry Department of Civil Engineering
Texas A&M University
College Station, Texas

Yi Xiao
Department of Systems Design Engineering
University of Waterloo
Waterloo, Canada

David Yang
Tsinghua University
Beijing, People's Republic of China

Daqing Yang
National Hydrology Research Center
Environment Canada
Saskatoon, Canada

Xiaoli Yang
State Key Laboratory of Hydrology
Water Resources and Hydraulic Engineering
Hohai University
Nanjing, People's Republic of China

Soojung Yi
University of California
Davis, California

Peter C. Young
Systems and Control Group
Lancaster Environment Centre
Lancaster University
Lancaster, United Kingdom

S. Yu
Witze Moscow University
Moscow, Russia

Fei Yuan
State Key Laboratory of Hydrology
Water Resources and Hydraulic Engineering
Hohai University
Nanjing, People's Republic of China

Edith Zagona
Research Professor
Department of Civil, Architectural and Environmental Engineering
University of Colorado
Boulder, Colorado

Kaveh Zamani
Research Professor
Department of Civil, Environmental and Architectural Engineering
University of Colorado
Boulder, Colorado

Ilya Zaslavsky
Spatial Information Systems Laboratory
San Diego Supercomputer Center
University of California, San Diego
La Jolla, California

Qiang Zhang
Department of Water Resources and Environment
Sun Yat-sen University
Guangzhou, People's Republic of China

Lan Zhang
Assistant Professor
Department of Civil Engineering
University of Akron
Akron, Ohio

Igor S. Zonn
Engineering Scientific-Production Center for Water Economy Reclamation & Ecology
Moscow, Russia

Daqing Yang
National Hydrology Research Center
Environment Canada
Saskatoon, Canada

Xiaoli Yang
State Key Laboratory of Hydrology
Water Resources and Hydraulic Engineering
Hohai University
Nanjing, People's Republic of China

Soojung Yi
University of California
Davis, California

Peter C. Young
Systems and Control Group
Lancaster Environment Centre
Lancaster University
Lancaster, United Kingdom

S. Yu
Witze Moscow University
Moscow, Russia

Fei Yuan
State Key Laboratory of Hydrology
Water Resources and Hydraulic Engineering
Hohai University
Nanjing, People's Republic of China

Edith Zagona
Research Professor
Department of Civil, Architectural and Environmental Engineering
University of Colorado
Boulder, Colorado

Kaveh Zamani
Research Professor
Department of Civil, Environmental and Architectural Engineering
University of Colorado
Boulder, Colorado

Ilya Zaslavsky
Spatial Information Systems Laboratory
San Diego Supercomputer Center
University of California, San Diego
La Jolla, California

Qiang Zhang
Department of Water Resources and Environment
Sun Yat-sen University
Guangzhou, People's Republic of China

Lan Zhang
Assistant Professor
Department of Civil Engineering
University of Akron
Akron, Ohio

Igor S. Zonn
Engineering Scientific-Production Center for Water Economy Reclamation & Ecology
Moscow, Russia
International Advisory Board

Chair: Richard H. McCuen
Department of Civil & Environmental Engineering
University of Maryland
Maryland

Andras Bardossy
Lehrstuhl für Hydrologie und Geohydrologie
Institute für Wasser- und Umweltsystemmodellierung
Universität Stuttgart
Stuttgart, Germany

Ronny Berndtsson
Department of Water Resources Engineering & Center for Middle Eastern Studies
Lund University
Lund, Sweden

Corrado Corradini
Department of Civil and Environmental Engineering
University of Perugia
Perugia, Italy

James F. Cruise
Department of Civil and Environmental Engineering, University of Alabama
Huntsville, Alabama

João Pedroso de Lima
Department of Civil Engineering
University of Coimbra
Coimbra, Portugal

M. Fiorentino
Department of Environmental Engineering and Physics
University of Basilicata
Potenza, Italy

R. S. Govindaraju
Delon and Elizabeth Hampton Hall of Civil Engineering
Purdue University
West Lafayette, Indiana

Nilgun B. Harmançioğlu
Dokuz Eylül University
Water Resources Management
Research & Application Center (SUMER)
İzmir, Turkey

Sharad Kumar Jain
Water Resources Systems Division
National Institute of Hydrology
Roorkee, India

M. Levent Kavvas
Department of Civil and Environmental Engineering
University of California
Davis, California

Yev Kuchment
Laboratory of Hydrological Cycle
Water Problems Institute of the Russian Academy of Sciences,
Moscow, Russia

Venkat Laxmi
Department of Earth and Ocean Sciences
University of South Carolina
Columbia, South Carolina

Upmanu Lall
Department of Earth and Environmental Engineering and Department of Civil Engineering and Engineering Mechanics
Columbia Water Center
International Research Institute for Climate and Society
Columbia University
New York

P. E. O’Connell
School of Civil Engineering and Geosciences
Newcastle University
New Castle upon Tyne, United Kingdom

C. S. P. Ojha
Department of Civil Engineering
Indian Institute of Technology Roorkee
Roorkee, India

U. S. Pana
Department of Civil Engineering
Lakehead University
Ontario, Canada

Fernando Falco Pruski
Agricultural Engineering Department
Federal University of Viçosa
Viçosa, Minas Gerais State, Brazil

Liliang Ren
State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering
Hohai University
Nanjing, China

Dan Rosbjerg
Department of Environmental Engineering
Technical University of Denmark
Copenhagen, Denmark

Jose D. Salas
Department of Civil and Environmental Engineering
Colorado State University
Fort Collins, Colorado

Sergio E. Serrano
Department of Civil & Environmental Engineering
Temple University
Philadelphia, Pennsylvania

Ashish Sharma
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, New South Wales, Australia

Bellie Sivakumar
School of Civil and Environmental Engineering
The University of New South Wales
Sydney, Australia

Witold Strupczewski
Water Resources Department
Institute of Geophysics
Polish Academy of Sciences
Warsaw, Poland

Ezio Todini
University of Bologna
Bologna, Italy

Dawen Yang
Department of Hydraulic Engineering
Tsinghua University
Beijing, China

Qiang Zhang
Department of Water Resources and Environment
Sun Yat-sen University
Guangzhou, China
Practitioner Advisory Board

Chair: R. D. Singh
National Institute of Hydrology
Roorkee
India

Aaron R. Byrd
Research Hydraulic Engineer & Branch Chief
Hydrologic Systems Branch
Coastal and Hydraulics Laboratory
Engineer Research Development Center
U.S. Army Corps of Engineers
Vicksburg, Mississippi

Anthony S. Donigian, Jr.
AQUA TERRA Consultants
Mountain View, California

Donald K. Frevert
Retired Hydraulic Engineer and Team Leader
Bureau of Reclamation
Denver, Colorado

Randall (Randy) W. Gentry
Argonne National Laboratory
Environmental Science Division
Argonne, Illinois

Mohamed M. Hantush
Research Hydrologist
National Risk Management Research Laboratory
U.S. Environmental Protection Agency
Cincinnati, Ohio

T. Moramarco
National Research Council, Institute for Hydrogeological Protection,
Perugia, Italy

John W. Mueller
State Conservation Engineer
USDA-NRCS
Temple, Texas

B. Mukhopadhyay
Richards, Texas

J. Obeysekara
Hydrologic & Environmental Systems Modeling
South Florida Water Management District