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ABSTRACT

The concepts of risk, reliability and return period are fundamental elements 
to the analysis of extreme hydrological events for the fields of water resource 
systems planning, and management as well as for flood and drought risk 
assessment and mitigation. This chapter reviews the main criteria for select-
ing the level of infrastructure protection and for defining hydrologic design 
variables within a risk-based framework, considering both univariate and 
multivariate design conditions. Approaches to hydrologic design under both 
stationary and nonstationary conditions are summarized.

78.1 INTRODUCTION

The concepts of risk, reliability, and return periods are widely used in the 
analysis of extreme events in the field of hydrology as well as for numerous 
other natural hazards including wind loads, sea levels, earthquakes, tempera-
tures, and other phenomena. For example, the U.S. National Flood Insurance 
Program defines the floodplain in terms of the T=100-year flood, which is 
defined as the annual maximum river flood discharge (and associated flood 
elevation) that is exceeded with an annual exceedance probability (AEP) of 
1% (q=0.01). If flood infrastructure were designed to protect against such an 
event, the structure would be 99% reliable, in any given year. If river condi-
tions are expected to remain unchanged (stationary) in the future, we show 
later in this chapter that the reliability of that structure over a 50-year plan-
ning horizon would only be 60.5%, which is much lower than 99%. It is 
important to realize that the discharge with average return period T=100 
years may arrive earlier (or later) than 100 years, because that is only the aver-
age return period, or the average arrival time of the next 100-year flood. 
Under stationary conditions, the return period is a random variable with an 
exponential distribution, so that it is much more likely that the 100-year flood 
will occur in the next 100 years, than in the subsequent 100 years, in fact there 
is a 63.4% chance that the 100-year flood will arrive before the first 100 years 
are over. Similar statements could be made for other natural hazards; how-
ever, the focus of this chapter is on statements of risk, reliability, and return 
periods relating to river discharge. The above statements concerning the 
likelihood of future flood events are the type of concepts which hydrologists 
need to be familiar with and which form the basis of this chapter. 

78.1.1 Selecting the Level of Protection and Effective Risk 
Communication: Reliability versus Average Return Period 

It is extremely important that hydrologists are able to communicate the prob-
ability of flood (and other natural) hazards in a manner which is clearly 
understood by those populations who will actually experience the impacts of 
such hazards. For example, the U.S. Geological Survey (Holmes and Dinicola, 
2010) and other agencies, issue fact sheets, general information announce-
ments, and videos which attempt to communicate and clarify the meaning of 
the T-year flood. One of the goals of this chapter is to describe our current 
understanding of the most effective approaches for communicating flood 

risks. We describe the various reasons why metrics, such as risk and reliabil-
ity over a planning horizon, may be more effective for communicating flood 
risk than the traditional notion of an average return period (also see Read and 
Vogel, 2015; Serinaldi, 2015).

Traditional probabilistic approaches for defining risk, reliability, and return 
periods under stationary hydrologic conditions assume that extreme events 
arise from a serially independent time series with a probability distribution 
whose moments and parameters are fixed over the design life of a project. 
Most existing hydrology texts and handbooks provide a review of hydrologic 
design procedures under stationary conditions (see Stedinger et al., 1993; 
CEH, 1999). Normally, hydrologic design is based on a single random vari-
able X, such as the annual maximum flood (AMF), or the annual minimum 
7-day discharge. Normally X is assumed to arise from a process which is 
independent from 1 year to the next with a probability distribution function 
(PDF) denoted by fx(x) with cumulative distribution function (CDF) denoted 
by Fx(x). A stationary PDF is one whose model parameters are assumed fixed 
over time. See Chapters 21 and 22 for definitions of commonly used PDFs 
and associated CDFs along with further information on how to fit a PDF and 
CDF to observations. 

Consider a hydrologic design problem in which a structure is built to pro-
tect against an extreme event with an annual non-exceedance probability, 
p=Fx(x). The design event for such a structure may be a river discharge for 
flood or low flow control. Such a design discharge is also called the pth 
quantile of X, denoted as xp, which is the value of X with non-exceedance 
probability p. In flood frequency analysis, one often estimates the design 
event xp from a series of annual maximum streamflows (see Chapter 21) in 
which case q=1–p is referred to as the AEP. Choice of an appropriate design 
discharge forms the basis of hydrologic design. In sections 78.2.1 and 78.2.2, 
we describe two general approaches to selection of a design discharge: (1) the 
traditional approach which assumes an AEP equal to q=1–p, and then com-
putes the corresponding design discharge xp and (2) a risk-based decision 
approach which computes the value of xp as the discharge which maximizes 
the net benefits of the proposed water infrastructure. 

78.1.2 Working Hypothesis: Stationarity versus 
Nonstationarity

Once a level of infrastructure is built to protect against a design event xp, in 
any future year, a flood will either exceed that design event with probability 
q=1–p, or not, with probability p. If the flood series is independent in time 
and stationary, then the series of exceedances and non exceedances is said to 
follow a Bernoulli series. Some hydrologic processes are known to exhibit 
temporal persistence such as low flow series (Douglas et al., 2002) and water 
supply failures (Vogel, 1987) both of which can be more accurately modeled 
using a Markov model, instead of a Bernoulli model. Thus the values of AEP 
could change from 1 year to the next for a stationary Markov process. 
However, for a stationary Bernoulli process, the exceedance probability 
associated with the design discharge should remain constant over time. 
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Historically, the most common assumption in flood and drought frequency 
analysis has been that flood and drought series are temporally independent 
and stationary, in which case the non-excedance probability p, and its con-
verse the exceedance probability q=1–p are both constant, over time. 

There is now widespread acceptance in the field of hydrology that most 
hydrologic processes exhibit nonstationary behavior due to changes in land-
use, climate, and water infrastructure. In spite of this nearly widespread 
acceptance combined with the popular quotation that “Stationarity is Dead” 
(Milly et al., 2008), there is still very good reason to employ traditional meth-
ods based on stationary hydrologic processes as emphasized by Matalas 
(2012), Montanari and Koutsoyiannis (2014), and Vogel et al. (2015). This 
chapter documents approaches to hydrologic design problem considering 
both stationary and nonstationary conditions as well as univariate and multi-
variate processes. We emphasize and present an integrated risk-based 
approach to hydrologic design, considering uncertainties arising from all 
relevant sources, which in turn enable hydrologists to consider both station-
ary and nonstationary conditions together.

78.1.3 Selecting the Hydrological Design Variable: 
Univariate versus Multivariate

Many hydrologic design problems involve several random variables, thus a 
focus on river discharge alone may not be sufficient. For example, in the 
design of stormwater, best management practices, such as detention basins, 
hydrologists are concerned with both hydrograph peaks and volumes. 
Similarly modern levee design considers the probability of levee failure and 
overtopping and often uses several design variables in addition to peak dis-
charge (e.g., water levels and duration of the event, flow velocities, levee fra-
gility, etc.). A multivariate context arises when the hydrological load for the 
structure of interest is a function of two or more hydrological variables that 
are correlated with each other (e.g., flood peak and volume). 

Such multivariate concerns and nonstationarity introduce additional 
uncertainty into the process of decision-making. In reference to such multi-
variate hydrologic processes Yue and Rasmussen (2002) describe conditions 
in which a single-variable frequency analysis considering only flood peak or 
volume alone can lead to estimates of flood events, and associated costs, 
which are much greater than necessary. The chapter ends by examining how 
existing approaches may be adapted for use under nonstationary conditions 
and in a multivariate context.

78.2 PROBABILISTIC AND RISk BASED APPROACHES TO 
HYDROLOGIC DESIGN 

This chapter focuses on the application of probabilistic and risk based 
approaches to hydrologic design, yet it is important to realize that other non-
probabilistic approaches exist. For example, in the design of large dams, some 
hydrologists still resort to the use of a deterministic interpretation of envelope 
curves (see section 78.2.1). Castellarin et al. (2005) and Castellarin (2007) pro-
vide a probabilistic interpretation of envelope curves which Vogel et al. (2007) 
extended to enable probabilistic statements to be made regarding estimates of 
the probable maximum flood (PMF). Although deterministic and stochastic 
approaches are available for estimation of extraordinary flood magnitudes 
[National Research Council (NRC) 1988], much greater attention has been 
given to the development of deterministic methods, than stochastic methods, 
for estimating extraordinary flood magnitudes including the probable maxi-
mum flood and the probable maximum precipitation (PMP) (Cudworth, 1989).

Although previous hydrology research relating to hydrologic design 
assumes both a stationary past and future, there is now a nearly pervasive 
awareness of potential nonstationarity in hydrologic processes due to anthro-
pogenic influences on climate, land use, and water infrastructure. The notion 
that “stationary is dead” is now pervasive as indicated by over 1,000 citations, 
to date, of Milly et al. (2008). We should not be so quick to dispense with the 
notion of stationarity given that to date, most of our water infrastructure was 
designed under the assumption of stationary conditions yet there have been 
“very few failures of the nation’s water management infrastructure—that is, 
where the infrastructure failed before its design capacity was exceeded” 
(Stakhiv, 2011). Matalas (2012) provides ample reasons for questioning “the 
degree to which real or perceived nonstationarities in hydrologic processes 
(should) affect the underlying processes and methods of making water plan-
ning and management decisions.” He argues that “the assumption of station-
arity has not yet been pushed to the limit of its operational usefulness in the 
face of a changing climate.” In the following section we outline methods of 
hydrologic planning under both stationary and nonstationary conditions. 
Our approach to nonstationarity involves adapting traditional risk-based 
approaches which have served us well under stationary conditions.

78.2.1 Existing Methods for Hydrologic Design Based 
on Stationarity

Return Periods of Design Events under 
Stationary Conditions
Without loss of generality, we focus on the design of flood-risk mitigation 
measures; analogous concepts hold for other water-related problems and 
hydrological design variables. Although we begin our discussions with a 
background on the use of return periods in hydrologic design, we emphasize 
here and in subsequent sections that risk-based decision making (RBDM) is 
now a well-established methodology which can be used in place of the tradi-
tional design-event approach which selects a particular average T-year event 
usually specified by regulation, and then designs the necessary infrastructure 
to protect against the hydrological event with that specified average return 
period. We further emphasize here that, in spite of the widespread usage of 
return period nomenclature in hydrology, there are good reasons to temper 
their use as a metric of communicating flood risk (Read and Vogel, 2015; and 
Serinaldi, 2015). 

Assume a series of AMF discharges arise from a stationary process that is 
independent in time; then in each year, an AMF exceeding some design 
threshold event xp will occur with probability q=1–p. Since in this case the 
AMF process is stationary, we expect the exceedance probability of the design 
event xp to be constant over time. The waiting time (also known as the return 
period) to the occurrence of the next AMF which exceeds xp is defined as τ , 
and follows a geometric probability mass function (PMF) so that:

 τ ( )[ ]= = − −1 1P t q q t  t=1, 2, … ,n (78.2.1)

where, τ  and t are the theoretical and observed values of the waiting time 
respectively, n is the planning horizon and q is the exceedance probability. In 
Eq. (78.2.1), the return period is assumed to be a discrete random variable, 
resulting in a geometric PMF; if it were assumed to be a continuous variable 
the resulting PDF of the return period would be exponential. The expected 
waiting time (or average return period) to the next AMF which exceeds xp is 
given by:

 ∑τ τ[ ] [ ]= ⋅ = = =
=

1

1
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T
t

n

 (78.2.1)

The average waiting or recurrence time T is often referred to, incorrectly, as 
the return period. In reality, =1T q is the average return and τ is the return 
period. Furthermore, we note that most hydrology texts do not give a deriva-
tion of why =1T q nor do they distinguish between the properties of τ and T. 
Given the widespread usage of the relation =1T q in hydrology, it is surpris-
ingly difficult to find examples of the derivation in Eqs. (78.2.1) and (78.2.2) 
(Douglas Fernandez and Salas, 1999; Douglas et al., 2001; Wigley, 2009), in 
spite of the fact that Fuller (1914) and Gumbel (1941) first introduced the idea 
of the average return period. 

There are two interpretations of the average return period T under station-
ary conditions. As shown above, T is the average number of years one must 
wait until the occurrence of the next flood with exceedance probability q. 
Cooley (2013) also shows that under stationary conditions, the expected 
number of flood events (exceeding the AMF flood with exceedance probabil-
ity q) is equal to unity over the next T years. 

The variance of the return period is also easily derived from:

 ∑τ τ τ τ[ ] [ ] [ ]=  − = ⋅ = − =
=

12 2 2

1
2 2Var E E t P t

q
p

qt

n

 (78.2.3)

For very rare floods, the non-exceedance probability p is roughly unity, which 
implies that τ[ ] ≈ =1 2 2Var q T , so that the mean and standard deviation of 
the return period are roughly equal. Since the PMF of τ  contains only a single 
parameter, q, the mean of its distribution =1T q is said to be a “sufficient” 
statistic for summarizing the complete probabilistic behavior of the return 
period. This fact is predicated upon the assumption that the values of p and 
its complement q, do not change from 1 year to the next, which is only true 
under stationary conditions. Under nonstationary conditions, the average 
return period is an extremely complex function of properties of the PDF of 
the flood magnitudes and the degree of nonstationarity so that T is no longer 
“sufficient” for describing the behavior of τ  (see Read and Vogel, 2015; 
Serinaldi, 2015).

Return Periods for Dependent or Persistent 
Hydrologic Events 
The average return period can be defined in different ways depending on 
whether the hydrologic design depends on initial project conditions or not. 
Two definitions of return period are possible, the time between two hydro-
logic events of interest, and the unconditional time to the next event of 
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interest. We term these two return periods as the conditional and uncondi-
tional return periods. For example, if one’s interest is in water supply failures, 
droughts, and low streamflow sequences, all of which exhibit temporal cor-
relation, ones interest would focus on the conditional return period (see 
Lloyd, 1970). The definition of return period introduced in (78.2.1–78.2.3) is 
the unconditional return period which is much more widely adopted than the 
conditional return period introduced by Lloyd (1970) and others. In practice, 
the unconditional return period is more useful than the conditional return 
period, because it does not require an assumption regarding initial condi-
tions; hence, it more closely corresponds to design conditions. In other words, 
one does not usually assume that a flood or drought has just occurred, when 
planning for the next flood or drought.

An advantage of the conditional return period is that it has been shown to 
be insensitive to streamflow persistence or correlation (Lloyd, 1970). The same 
cannot be said for the unconditional return period, =1T q , defined above 
which is commonly used in hydrology, so that hydrologic persistence can have 
an important impact on the average return period associated with many 
hydrologic processes which exhibit persistence (see Douglas et al., 2001).

To account for persistence in hydrologic processes on the properties of the 
return period, numerous approaches have been adopted including the use of 
a two-state Markov model (Vogel, 1987; Fernandez and Salas, 1999; Sen, 
1999). Vogel (1987) defined the average return period of a reservoir system 
failure as the expected number of years before the first occurrence of a system 
failure (i.e., flood or drought). Vogel (1987) showed that the average return 
period defined in this way is indeed affected by streamflow persistence. 
Fernandez and Salas (1999) and Sen (1999) developed more general formula-
tions for estimating the average return period of design events in the presence 
of persistence. 

It is not only return periods that are impacted by hydrologic persistence. 
Estimates of hydrologic design events, the subject of Chapters 21 and 22, can 
also be impacted by hydrologic persistence. For example, Potter (1992) 
describes a procedure for accounting for persistence in the determination of 
the probability distribution of annual maximum water levels. Tasker (1983) 
recognized the effect of persistence (temporal correlation) in streamflow 
records on the reliability of design flood estimates and developed a method 
for quantile estimation (see Chapter 21 for further information on quantile 
estimation) using the effective record length, ne, which, in most cases, is less 
than the actual historical record length, n, when persistence is present in the 
streamflow record. Vogel and Kroll (1991) describe a method for accounting 
for both the temporal and spatial correlation of flood and low flow series, 
when ones interest is in extending short streamflow series.

Return Periods of the Flood of Record and 
Envelope Curves
A flood discharge which exceeds all previous flood discharges is said to be 
the flood of record (FOR). Envelope curves are regional plots describing the 
upper bound on the FOR for many watersheds in a region versus drainage area. 
Envelope curves representing the current bound on flood experience have 
limited use because of our inability to assign to them an exceedance probabil-
ity. Castellarin et al. (2005) and Vogel et al. (2007) developed approaches to 
estimate the exceedance probability of the expected regional envelope curve 
as well as an individual regional envelope curve, respectively. 

Since the FOR is of interest in hydrologic investigations which employ 
envelope curves, it is important to understand the theoretical properties of the 
return period associated with an FOR. Wilks (1959) and Gumbel (1960) 
derived various properties of Tr,n, defined as the return period associated with 
the rth order statistic, where r = 1 represents the largest observation in a sample 
of length n. Wilks (1959) and Gumbel (1961) show that the expectation of Tr,n 
associated with the rth order statistic in a sample of size n is given by:

  =
−1,E T n

rr n  for ≥ 2r  (78.2.4)

Interestingly, the average return period associated with the largest observa-
tion (the FOR) is infinite under stationary conditions. From Eq. (78.2.4), 
regardless of how large the FOR is, or how long ago it occurred, on average, 
one will need to wait until eternity, to experience a flood greater than that 
record. This result should raise some questions concerning the suitability of 
using the average return period in flood planning, even under stationary 
conditions (see Read and Vogel, 2015; and Serinaldi 2015; for further discus-
sion). Similarly, from Eq. (78.2.4) all higher order moments of the return 
period associated with the FOR (r = 1) are infinite, though moments do exist 
for floods smaller than the FOR (i.e., ≥ 2r ). 

In contrast to the expectations of the recurrence time of the next FOR 
which is infinite; other measures of central tendency do exist, such as the 
mode, median, and geometric mean of the recurrence time of the FOR... 
Since the moments of the recurrence time of the FOR do not exist, one could 

instead use the mode, median, or quantiles to describe its distribution in lieu 
of its moments for stationary processes. Gumbel (1961) gives the geometric 
mean TG, median Tmedian, and mode Tmode of the waiting time to the next 
record flood as:

 ∑ γ ( )=











≅ + =

=

exp 1 ln 1.78
1

T
j

n nG
j

n

 (78.2.5a)

 ( ) ( )
=

−
≅ + = +2

2 1 ln 2
1
2

1.44 0.5
1

1T n nmedian

n

n  (78.2.5b)

 = +1
2modeT n  (78.2.5c)

Note that in general, < < <modeT n T Tmedian G . Clearly these measures of central 
tendency of the waiting time to an observation which exceeds that of the larg-
est value in a sample of size n vary over a significant range from roughly 0.5n 
to 1.8n.

Risk and Reliability under Stationary 
Conditions
The concept of reliability is one of the most widely used design criteria in 
water resources planning and management. For example, the concept of reli-
ability is widely used in irrigation and water supply planning (Hirsch, 1979; 
Vogel, 1987; Harberg, 1997; Tung, 1999; Loucks, Loucks and van Beek, 2005) 
and many other fields (Kottegoda and Rosso, 1997; Modarres et al., 2009). 
Perhaps some of the earliest work which related the concept of annual reli-
ability to the reliability over an N-year planning period associated with the 
design of flood control structures were introduced by Gumbel (1941), 
Thomas (1948), and Yen (1970). Hashimoto et al. (1982) suggest that reli-
ability alone is not sufficient for understanding the performance of a water 
resource system because it does not reflect the consequences of a failure if it 
should occur. Instead, their now classic paper suggests that the three metrics 
of reliability, resilience, and vulnerability are needed to fully understand water 
resource system performance. Hashimoto et al. (1982) define reliability as the 
probability or likelihood that a system remains in a satisfactory state. 
Reliability is usually defined as the converse of the probability of failure, 
which in the case of AMF discharges, would be the exceedance probability q 
associated with the design event of interest. Thus if the annual probability of 
failure is defined as q, then the annual reliability Ra=1-q=p. Hashimoto et al. 
(1982) emphasize that neither the probability of failure nor reliability reflect 
the consequences of an extreme event. The notions of resilience and vulner-
ability (see Hashimoto et al., 1982 for definitions) are needed to reflect the 
consequences associated with an extreme event.

Historically, some hydrologists have referred to the probability of failure q, 
as the risk of an event. However, more recently, in the context of ecological, 
health, and other risk assessment studies, the term risk has been defined as 
the product of the probability of an event and its consequences. Since that 
definition of risk is now much more commonly used in most fields, we rec-
ommend no longer referring to the probability of failure as the risk of an 
event. Instead, we focus on the related concept of reliability of a project over 
its planning horizon n. 

Most hydrology textbooks contain expressions which relate the reliability 
of a water project over an n-year planning horizon, Rn, to its annual reliability 
Ra. One can relate the annual reliability Ra, to the n-year reliability, Rn, as fol-
lows. The n-year reliability Rn is simply the probability of no flood event for 
the first n-years, which can be derived from the PDF of the return period τ  in 
Eq. (78.2.1) as follows:

 ∑τ τ τ ( )[ ] [ ] [ ]= ≥ = − ≤ = − = = − =
=

1 1 1
1

R P n P n P t q Rn
t

n
n

a
n  (78.2.6)

Note that Eq. (78.2.6) assumes that flood events in each year are independent; 
if the hydrologic process of interest exhibits serial correlation Eq. (78.2.1) no 
longer applies (see previous section on dependent or persistent processes). 
We recommend the use of the concept of n-year reliability Rn for future plan-
ning, because it reflects the likelihood of failure over the entire planning 
horizon of interest and is used in many other fields (see Table 1 in Read and 
Vogel, 2015). 

When a hydrologist performs a design based on the T-year flood, its reli-
ability over the next n-year planning period is obtained from Eq. (78.2.6) as:

 = −





1 1R

Tn

n

 (78.2.7)

The above relationships between the annual reliability and the reliability 
over an n-year planning period were first introduced by Thomas (1948) and 
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further analyzed by Gumbel (1941) and Yen (1970). Those relationships 
depend upon the fundamental assumption that flood flows are independent 
and identically distributed variables. These relations are in widespread use as 
evidenced by their inclusion in both hydrology handbooks (Chow, 1964; 
IACWD, 1982; Stedinger et al., 1993; Tung, 1999) as well as in many textbooks 
(Bras, 1990; Viessman and Lewis, 2003; Mays, 2005) and journal papers 
(Gumbel, 1941; Thomas, 1948; Yen, 1970; Wigley, 2009; Salas and Obeysekera, 
2014; Read and Vogel, 2015).

One concern with using the average return period T to denote risk of 
flooding is that it does not capture the impact of the planning horizon on the 
project of interest, as does the concept of reliability over a planning horizon 
Rn. Note that according to Eq. (78.2.7) the reliability is only 60.5% when the 
design event is based on the 1% exceedance (q = 0.01) event (T = 100-year 
flood) for n = 50-year project life. Considering that the design life of much of 
our water infrastructure is greater than 50 years, and that reliability decreases 
as project life increases for a given design average return period T, careful 
attention should be given to how the reliability is impacted by the planning 
horizon for structures which have been designed on the basis of an average 
return period. 

Other fields concerned with hazard planning ensure a much higher reli-
ability over typical planning horizons than corresponding reliabilities associ-
ated with the 100-year flood so commonly used in hydrologic planning (see 
Table 1 in Read and Vogel, 2015). For example, earthquake design regulations 
suggest protection against a “less than 2% chance of failure (collapse) 
occur(ring) in a 50-year project life” (National Earthquake Hazard Reduction 
Program, 2010). This level of protection corresponds to a reliability over 50 
years of 98% and a corresponding design earthquake magnitude with an aver-
age return period of T = 2,475 years. By comparison, traditional flood fre-
quency analysis which often bases designs on an average return period of T = 
100 years corresponds to reliabilities of 78%, 61%, and 37% over a range of 
n = 25, 50, and 100 year planning horizons, respectively.

When designing for protection against a flood with an average return 
period T, of interest is the reliability over a design life equal to its average 
return period n = T, in which case one obtains:

 = −





= 1 1R

Tn T

T

 (78.2.8)

Yen (1970) points out that in the limit, as →∞T , → ==
1 0.368R
en T  which is an 

extremely low reliability when compared with other fields of engineering.
Analogous to the conditional and unconditional return periods discussed 

earlier, the reliability over an n-year planning horizon, Rn, can be defined 
using either a conditional or unconditional approach. Douglas et al. (2002), 
and Fernandez and Salas (1999) use a two state Markov model to derive 
expressions for the unconditional n-year reliability Rn, for events which 
exhibit serial persistence. Similarly, Sen (1999) uses a two state Markov model 
to derive expressions for the conditional n-year reliability Rn, for events which 
exhibit serial persistence.

Risk-Based Decision Making under Stationary Conditions
Risk-Based Decision Making is a well-established methodology that 
determines appropriate levels of infrastructure based on the expected dam-
ages avoided versus the cost of the infrastructure required (National Research 
Council, 2000; Tung, 2005) and is now standard practice by U.S. Federal agen-
cies (see Stakhiv 2011 for references). RBDM can be used in place of the tra-
ditional design-event approach which selects a particular average T-year 
event usually specified by regulation or experience, and then designs the 
necessary infrastructure to protect against the hydrological event with that 
specified average return period. Instead, the goal of RBDM is to choose a level 
of infrastructure protection that minimizes the total expected annual cost 
(including flood damage costs) of the infrastructure, which is labeled “Annual 
Installation Cost” in Fig. 78.1. Alternatively, RBDM may maximize the project 
net benefits.

Thus an RBDM process may lead to flood-risk mitigation measure against 
a flood event either larger or smaller than, say, the 100-year flood, which is a 
common design event considered in the traditional analyses.

One of the most common approaches to performing RBDM for sequential 
decision problems is to use a decision tree. A decision tree is the graphical 
equivalent of a stochastic dynamic program which is a well developed math-
ematical programming method used in the areas of operations research, 
industrial engineering, and management science. A decision tree describes 
the sequence of possible decisions for numerous alternatives along with their 
probabilistic and economic outcomes. It is a very powerful approach because 
it combines a graphical representation of the overall set of alternatives and 
decisions, with a framework for making risk-based decisions. Decision trees 

are described in most introductory textbooks in statistical decision theory 
and decision sciences as well as in most textbooks on water resource systems 
analysis (Loucks and Van Beek, 2005). 

78.2.2 Probabilistic and Risk-Based Hydrologic Design 
under Nonstationary Conditions

Olsen et al. (1998) first described the theoretical properties of the various 
hydrologic design indices described in the previous section, under nonsta-
tionary conditions. Several investigators have sought to extend the results of 
Olsen et al. (1998) including the concepts of return period and reliability to 
nonstationary conditions. Interestingly, probably due to the tremendous 
attention and need to understand how to adapt to climate change, most of the 
key developments extending hydrologic design indices to nonstationary 
conditions have appeared primarily in the statistical and climate change lit-
erature (Wigley, 1988; 2009; Katz, 1993; Olsen et al., 1998; Parey et al., 2007; 
Cooley, 2009; Katz, 2010; Parey et al., 2010; Cooley, 2013). Salas and 
Obeysekara (2014) and Read and Vogel (2015) provide further extensions to 
the work of Cooley (2013) and Olsen et al. (1998), focusing on water resource 
applications of the various measures of return period and reliability which we 
summarize as follows.

Return Periods of Design Events under 
Nonstationary Conditions
Recall from the previous section on stationary methods that we defined the 
annual non-exceedance probability associated with a particular flood event as 
p=Fx(x) along with its associated AEP q=1–p. If flood magnitudes are nonsta-
tionary and either increase or decrease systematically through time the 
exceedance probabilities q, will correspondingly increase or decrease over 
time to form a series , , ,...,1 2 3q q q qt. Under nonstationary conditions, the time 
to the occurrence of the next flood t, follows the distribution:

 τ[ ]= = = − − − −τ −( ) (1 )(1 )(1 )...(1 )1 2 3 1P t f t q q q q qt t  (78.2.9)

Equation (78.2.9) is the PMF of the unconditional waiting time, recurrence 
time, or return interval until the occurrence of the first flood to exceed the 
design flood. Equation (78.2.9) describes a nonhomogeneous geometric ran-
dom variable (see Mandelbaum et al., 2007), which is completely analogous to 
the homogeneous geometric variable described in Eq. (78.2.1). When the 
non-exceedance probabilities in Eq. (78.2.9) are all equal, as is the case for 
stationary series, then Eq. (78.2.9) reduces to the homogeneous geometric 
result for stationary series in Eq. (78.2.1). Salas and Obeysekara (2014) 
describe two separate cases that must be treated independently, one in which 
magnitudes of floods are increasing and one in which they are decreasing. 
Since increasing floods are the primary concern in hydrologic engineering 
design and for brevity, we only summarize the case of increasing floods here 
(see Salas and Obeysekara, 2014; for the case of decreasing floods).

For the case of increasing floods, there will eventually be a year tmax, in 
which the AEP of the flood qt, is unity so that Eq. (78.2.9) becomes:

 ∏τ = = = −τ
=

−

[ ] ( ) (1 )
1

1

P t f t q qt y
y

t

 t=1,2,…,tmax (78.2.10)
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Figure 78.1 The Risk-Based design method for flood management. [Source: Tung, 2005.]
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conditions. Salas and Obeysekera (2014) suggest that under nonstationary 
conditions, the n-year reliability Rn is given by:

  ∏( )= −
=

1
1

R qn t
t

n

 (78.2.17)

As was shown in Section 78.2.1, under stationary conditions, when the AEP 
is constant, the n-year and annual reliabilities are related via =R Rn a

n. 

Use of the Traditional Decision-Making 
Process under Nonstationary Conditions
Given the tremendous interest in the subjects of climate change, urbanization 
and their subsequent impact on hydrologic processes, a risk-based decision 
framework under nonstationary conditions is of vital importance. Perhaps 
the most common example of nonstationarity in hydrologic design involves 
impacts of urbanization. See Chapter 132 “Storm Water Management, Best 
Management Practices, and Low-impact Development” and Chapter 149 
“Human Impacts on Hydrology” for further background on deterministic 
approaches for handling urbanization and other forms of nonstationarity. 

Using a traditional decision-making process under nonstationary condi-
tions, a trend is first evaluated for statistical significance separately from the 
economic project evaluation. First, a hypothesis test is performed and the 
statistical significance α of the trend is estimated. If α is below some 
prespecified critical value, usually αcritical=0.05, the economic analysis is per-
formed to evaluate the economic viability of a proposed flood management 
plan. If α exceeds the critical value the trend may be dismissed and the eco-
nomic analysis is often not performed. 

Normally, under either stationary, or nonstationary conditions, two possi-
ble economic analyses are considered, one which is based solely on an arbi-
trary design event, such as the 100-year flood, and an RBDM approach which 
would choose a level of infrastructure to protect against that design event 
which maximizes the net benefits of adaptation (the estimated damages 
avoided less the cost of the proposed adaptation). In either case, whether an 
RBDM approach or a fixed design event is employed, an economic analysis of 
nonstationary conditions would normally be performed only if a trend was 
found to be statistically significant. If the analysis concluded that no trend is 
evident, the consequences of under-preparation would normally, neither be 
computed nor ever even considered in a traditional analyses. The reminder of 
this section describes the critical need to adapt existing RBDM approaches for 
use under nonstationary conditions, because the added uncertainty concern-
ing the existence (or not) of a trend needs to be considered in the RBDM 
process. 

There is a wide range of possible situations which exist relating to uncer-
tainty in future flood projections as well as the myriad of consequences asso-
ciated with either protecting or not protecting against projected flood 
damages. A full RBDM analysis is needed in order to integrate all relevant 
information (both costs and benefits) concerning future regrets which result 
from various sources of economic, social, natural, and other forms of uncer-
tainty. For example, within a flood control context, “regret” would be defined 
as the difference between the flood damages corresponding to a particular 
project design and the minimum damages if one had perfect information 
about the future. See Rosner et al. (2013) for a nonstationary RBDM analysis 
which considers the concept of regret. Also see Stakhiv (2011) for a discussion 
and references to a “no regrets” approach to RBDM in water resources.

A Risk-Based Approach to Flood Management 
under Nonstationary Conditions 
Flood (or drought, or other water resources) management decisions in a non-
stationary world are inherently sequential decisions, which depend critically 
on the uncertainty inherent in future projections of flood scenarios and their 
corresponding consequences. Nevertheless, there are remarkably few exam-
ples of the application of RBDM to nonstationary water resource problems in 
the scientific literature. There are also very few examples of the use of decision 
trees under nonstationary conditions. This is particularly surprising because 
nonstationary decision processes are sequential decision processes which are 
subject to uncertain economic outcomes, and a decision tree or a stochastic 
dynamic program are the natural approaches to apply to such decision prob-
lems. Fiering and Matalas (1990) provide one of the earliest examples of a 
sequential statistical decision process for evaluating various alternatives in the 
context of nonstationarity (climate change). Chao and Hobbs (1997) give a 
brief history of decision analysis applications to climate change; and apply a 
mathematical version of a decision tree known as a stochastic dynamic pro-
gram for evaluating breakwater adaptation under possible climate change 
impacts on Lake Erie. Hobbs et al. (1997) were the first to apply a decision tree 
approach to water resources management under climate change, and recently 
the method has been resurrected (see Gersonius et al., 2013).

Similarly, the CDF of the return period τ for the nonstationary case 
becomes:

 ∑ ∏∑ ∏τ ( )( )≤ = = = − = − −τ τ
= =

−

= =

[ ] ( ) (1 ) 1 1
1 1

1

1 1

P t F t f y q q q
y

t

y t
t

y

y

t

y
y

t

 t=1, 2,…, tmax

 (78.2.11)
where, Fτ(1) = p1 and Fτ(tmax) = 1. Salas and Obeysekera (2014) describe sev-
eral possible forms of nonstationarity which have different implications con-
cerning the use of the above expressions and the behavior of tmax. If 
nonstationarity continues and the exceedance probabilities qt continue to 
increase, they will eventually reach the upper limit of unity at tmax. However, 
if the exceedance probabilities asymptotically approach unity, or if for some 
reason the nonstationarity ends, then there will be no upper limit to the dis-
tribution of τ in which case →∞maxt .

Analogous to the above expressions, Mandelbaum et al. (2007) introduced 
the nonhomogeneous geometric probability distribution within the context of 
birth and death processes. They provide a convenient recursive expression for 
computing ft(t) from Ft(t–1):

 
( )
( )

=
− −

τ

τ1 1
q f t

F tt  (78.2.12)

where Fτ(0) = 0. Mandelbaum et al. (2007) also show how Eq. (78.2.12) can be 
used to define the structure of future sequences of exceedance probabilities 
which arise from various forms of the PDFs ft(t) and CDF Ft(t).

Analogous to the expressions for the moments of the return period for 
stationary conditions in Eqs. (78.2.2) and (78.2.3), the PDF of the return 
period τ in Eq. (78.2.10) can be used to derive the moments of the return 
period under nonstationary conditions so that:

 ∑ ∏∑τ[ ]= = ⋅ = ⋅ −τ
= =

−

=

( ) (1 )
1 1

1

1

max max

T E t f t t q q
t

t

t y
y

t

t

t

 (78.2.13)

Cooley (2013) provides a useful computational simplification of Eq. (78.2.13) as

 ∏∑τ[ ]= = + −
==

1 (1 )
11

max

T E qy
y

t

t

t

 (78.2.14)

Similarly, Salas and Obeysekera (2014) suggest computing the variance of the 
return period τ using the fact that τ τ τ[ ] [ ]=  −2 2Var E E so that

 ∏∑ ∏∑τ σ[ ] = = ⋅ − − + −
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 (78.2.15)

Recall, that under stationary conditions the coefficient of variation of the 
return period τ is roughly equal to unity for rare floods, so that the mean 
return period provides an excellent summary measure of the distribution of 
future return periods. 

Parey et al. (2007; 2010) and Cooley (2013) discuss another interpretation 
of the return period as the number of years one must wait until the expected 
number of events is unity. Cooley (2013) shows that both definitions are 
equivalent under stationary conditions. Let N be the number of exceedances 
that occur in the T years beginning with year y=1 and ending with year y=T. 
Under stationary conditions, N follows a binomial distribution, but that is no 
longer the case under nonstationary conditions. Cooley (2013) shows that 
under nonstationary conditions, when the expected number of flood events 
to exceed the T year event is equal to 1, T can be computed as the upper limit 
in the following sum:

 ∑( )( )[ ] = = −
=

1 1 ,
1

E N F x y
y

T

 (78.2.16)

where, F(x,y) is the nonstationary CDF of the AMF series, x, where y repre-
sents the year. Read and Vogel (2015) found that for a nonstationary lognor-
mal model, the definition of T in Eq. (78.2.16) led to nearly identical results 
as the traditional definition of T given in Eqs. (78.2.13) and (78.2.14), for a 
broad range of hydrologic conditions, thus we do not discuss the definition in 
Eq. (78.2.16) further. 

Risk and Reliability under Nonstationary Conditions
Under stationary conditions, the relationships between the n-year reliability 
Rn, annual reliability Ra, and planning horizon n are given in Eq. (78.2.6) and 
between n-year reliability Rn, average return period T, and planning horizon 
n are given in Eq. (78.2.7). Such relations are in widespread usage, thus one 
expects that analogous relationships could be useful under nonstationary 
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considers societal regret associated with under-preparation against future 
flood risks. 

Concerns about NHST are crucial to the fields of geophysics, climate sci-
ence, and water resources engineering, where the trend analysis could have an 
impact on major infrastructure decisions. Remarkably, it is only very recently 
and rarely that researchers have raised concern over the importance and 
impacts of Type II errors in the climate and hydrologic sciences (Ziegler et al., 
2003, 2005; Cohn and Lins, 2005; Trenberth, 2008; Morin, 2011; Vogel et al., 
2013). Some journals have even banned the use of NHST (Trafimow and 
Marks, 2015). Though many studies have discussed the importance of consid-
ering Type II errors in the analysis of trends and other hypotheses, they did 
not consider the resulting impacts on infrastructure decisions and societal 
preparedness, as was considered by Rosner et al. (2014) and is discussed 
below. A Type II error in the context of an infrastructure decision implies 
under-preparedness, which is often an error which is much more costly to 
society than the Type I error (over-preparedness) which the NHST focuses on.

The physical implication of a Type I or over-preparedness error in adapta-
tion decisions for flood management is wasted money on unneeded infra-
structure. The physical repercussions of a Type II or under-preparedness 
error, on the other hand, are major flood damages due to inadequate protec-
tion. Decision makers are poorly served by statistical and/or decision meth-
ods that do not carefully consider both sources of error.

There is a continuing need to acknowledge the tremendous uncertainty 
associated with our ability to discern trends from other natural phenomenon 
such as persistence (see Cohn and Lins, 2005) as well as complications due to 
seasonality, censoring, and other issues (see Chapter 11 in Helsel and Hirsch, 
2002). One of the main arguments against Null-Hypothesis Significance 
Testing (NHST) is its adherence to a single critical value αcritical (often chosen 
equal to 0.05). Use of NHST implicitly places disproportionate emphasis on 
the Type I error probability α, while the power 1-β is rarely reported, despite 
the importance of Type II underdesign error probabilities, for example, in 
flood management applications. 

There is very little attention given to the power of trend tests in the water 
and climate literature. Lettenmaier (1976) first introduced to the water 
resources literature analytical expressions for the power of a hypothesis test 
based on ordinary least squares (OLS) linear regression in the context of 
trend detection in water quality management. Bowling et al (2000) per-
formed a similar analysis to determine the minimum detectable difference or 
the smallest trend one could discern to be statistically significant. 
Interestingly, even though exact analytical expressions exist for computing 
the power of a trend test based on OLS regression we found it quite difficult 
to locate textbooks or primer papers which document such analyses. This is 
especially surprising given the widespread use of linear regression for per-
forming trend analyses. Examples of primer papers on the power studies for 
trend detection based on linear regression are common in the medical sci-
ences (Dupont and Plummer, 1990; 1998) though we could only find a few 
examples of analytical power studies in the water literature (Lettenmaier, 
1976; Bowling et al., 2000; Ziegler et al., 2003; 2005; Vogel et al., 2013; 
Prosdocimi et al., 2014; Rosner et al., 2014). 

Remarkably, of the hundreds and possibly thousands of studies which have 
examined trends in hydroclimatic variables, we could only find a few studies 
which computed either the probability of Type II errors or the power. For 
example, Ziegler et al. (2005) used GCMs to predict trends in annual precipi-
tation on the Mississippi basin, and then performed Monte Carlo simulations 
to determine the minimum length of record which would be needed to detect 
trends of those magnitudes. They found that between 82 and 143 years would 
be required to detect a trend corresponding to Types I and II error probabili-
ties of α=0.05 and β=0.10, respectively. Ziegler et al. (2003; 2005) employed 
the simple analytical approximation to the power of a t-test introduced earlier 
by Lettenmaier (1976). Morin (2011) performed a similar analysis using 
Monte Carlo simulations to estimate the minimum magnitude of change in 
annual precipitation at over 9,000 stations globally, that could be detected 
over a 50-year period. He reports minimum detectable trends given Types I 
and II error probabilities of α=0.05 and β=0.50. 

Although Vogel et al. (2011) and Rosner et al. (2014) employ a simple 
nonlinear model (fit using linear regression) to characterize trends in flood 
levels as a function of time, they and others recommend use of physical 
covariates for explaining trends in hydrologic processes. More complex trend 
analyses are possible by incorporating other covariate predictors of the trend 
such as precipitation (Prosdocimi et al., 2014); climatic indices (Kwon et al., 
2008; Steinschneider and Lall, 2015), large scale atmospheric or oceanic 
spatial fields (Renard and Lall, 2014) and/or trends in other moments 
(Villarini et al., 2009). Vogel et al. (2011, see appendix) found that an expo-
nential model obtained by relating the logarithm of instantaneous annual 

A critical challenge in the application of decision trees to the problem of 
RBDM under nonstationary conditions involves estimation of the necessary 
probabilities associated with various outcomes (branches of decision tree). 
Hobbs et al. (1997) demonstrate use of a Bayesian approach to analyzing the 
necessary probabilities in the decision tree for evaluating alternative adapta-
tion strategies for climate change for the Great Lakes. Similarly, Manning et al. 
(2009) describe a Bayesian analysis consisting of aggregating predictions from 
suites of model predictions, such as Global Circulation Models (GCMs) or 
Regional Climate Models (RCMs).

Another approach for applying an RBDM using a decision tree under 
nonstationary conditions would be to integrate the uncertainty inherent in 
projections of future trends. Such an analysis must incorporate the uncer-
tainty associated with our ability to detect changes in flood series. Rosner 
et al. (2013) introduced an RBDM approach for use under nonstationary 
conditions, using a decision tree, with the outcome probabilities based on 
Type I and Type II error probabilities associated with statistical trend 
hypothesis test outcomes. Their approach integrates numerous consider-
ations including: a nonstationary GEV model of flood frequency, the uncer-
tainty inherent in the trend detection process, natural hydroclimatic 
uncertainty and a detailed economic analysis associated with the various 
infrastructure alternatives under consideration. The resulting process 
enables the decision maker to ask the question when enough information is 
available to warrant making a particular flood management adaptation deci-
sion under nonstationary conditions.
Integration of Trend Detection and Decision-Making 
Adaptation planning in the context of flood management under nonstation-
ary conditions depends critically on trend detection and a subsequent trend 
model; hence, it is important to understand the limitations and concerns 
surrounding tests of statistical significance of trends. Studies which seek to 
identify trends in flood series are now widespread. All of the many previous 
flood studies we have reviewed which have sought to determine whether a 
trend exists in flood series, have employed a null hypothesis, Ho, of no trend 
and most have chosen an associated significance level of α=0.05. A signifi-
cance level of 0.05 implies that if there really is no trend (that is assumption 
of Ho), we will only (mistakenly) report trends 5% of the time. The societal 
consequences of making such a mistake is that we will prepare for a trend, 
when it does not exist, which we term over-preparedness. Shouldn’t society 
also be interested in the likelihood of under-preparedness? Surely there are 
situations in which society will regret having been under-prepared for conse-
quences of events which could have been avoided. See Vogel et al. (2013) for 
a complete discussion of this issue.

Null hypothesis analysis, termed Null-Hypothesis Significance Testing 
(NHST), focuses only on our understanding of conditions of no trend, 
because all such hypothesis tests were derived under conditions of no trend. 
Thus the alternative hypothesis, HA, when trends do exist, is usually ignored 
along with its probability of occurrence known as the probability of a Type II 
error which is termed β. The decision matrix for the general trend detection 
decision problem is depicted in Fig. 78.2. Statisticians would define the term 
“power” of this hypothesis test as the likelihood of detecting a trend, when it 
exists. Of particular concern to us are the likelihood of Type II errors, which 
is both out of our control, and involves significant associated societal conse-
quences because they imply no societal response is necessary when one is 
warranted (see Vogel et al., 2013). 

A true RBDM approach would avoid the need to define a critical value for 
either the Type I or Type II error probabilities. Numerous fields, including 
psychology, economics, social sciences, meteorology, and medical research, 
have called into question the value of NHST tests due to its focus on its 
dependence upon a single, often arbitrary, significance level (Cohen, 1994; 
Nicholls, 2000; Ziliak and McCloskey, 2008). Such concerns over the use of 
NHST are now widespread, though remarkably, none of those studies we 
have reviewed well on the most important criticism of all, that of ignoring 
the probability of Type II errors, a concern of paramount interest when one 

No trend (Ho) Trend (HA)

No societal response 1 – α
β

Type II error
(under-preparedness)

Societal response
1 – β

Power

α
Type I error

(over-preparedness)

Figure 78.2 Decision matrix for the General Trend Detection Decision Problem, 
with Null Hypothesis, Ho, and Alternate Hypothesis, HA, shown.
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78.3.1 Return Periods of Multivariate Design Events

The theory of copulas offers a convenient and useful approach for mathemat-
ically representing the dependence structure of correlated hydrological design 
variables without making assumptions about their multivariate structure. The 
nonparametric nature of copulas is in part why they are now so widely used 
in hydrology and the geosciences, for the bivariate and multivariate frequency 
analysis of extreme events (see Li et al., 2012 for wind events, and Corbella 
et al., 2012 for ocean events and Chapter 30). Still, there is no unique or 
widely accepted definition of multivariate return periods in the scientific 
community. While the expected return period is univocally defined in a uni-
variate environment and can be expressed as in Eqs. (78.2.2) and (78.2.13), for 
stationary and nonstationary processes, respectively, there are several differ-
ent definitions of expected joint return periods (JRPs) for the multivariate 
context (see Salvadori et al., 2011; Gräler et al., 2013; Requena et al., 2013;  
Serinaldi, 2015).

Here we describe the expected JRPs for the bivariate case. The primary 
return period ( )∪ *, *,T x yX Y  associated with the probability associated with the 
exceedance of either one of the two variables, that is, the bivariate event 

( ) [ ]= > ∪ >∪ *, * * *E x y x x y y  (OR case), and the return period ( )∩ *, *,T x yX Y  
related to the probability of exceedance for both variables, that is the bivariate 
event ( ) [ ]= > ∩ >∩ *, * * *E x y x x y y  (AND case). ( )∪ *, *,T x yX Y  and 

( )∩ *, *,T x yX Y  can be expressed as follows for annual series of X and Y:
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(78.3.2b)

For these expected JRP’s the following inequalities relative to marginal 
expected return periods TX(x*) and TY(y*) hold:

 ≤  ≤  ≤∪ ∩( *, *) min ( *), ( *) max ( *), ( *) ( *, *), ,T x y T x T y T x T y T x yX Y X Y X Y X Y

(78.3.2c)

Salvadori and De Michele (2004) introduced a secondary return period, or 
Kendall’s return period, in order to identify in a multivariate context a uni-
variate critical threshold (see also Volpi and Fiori, 2014):

 ( ) =
−

1
1 ( )

T t
K tK , with ( ) = ≤ Pr ( , ),K t F x y tX Y  (78.3.3)

where, K(t) is the Kendall’s distribution function associated with FX,Y. TK(t) 
corresponds to the mean interarrival time of any event ( )= > ,,E F x y tt

X Y , 
and therefore does not depend on a particular pair (x*,y*) and is defined for 
any value of t.

For a given pair (x,y), the following general inequality holds (see also 
Gräler et al., 2013):

 ≤ ≤∪ ∩
, ,T T TX Y K X Y  (78.3.4)

The application of a traditional design event-based approach to hydrologi-
cal design in a bivariate (or multivariate) context would require the selection 
of a particular design return period (e.g. 100 years) and definition (i.e.,  

∨
,TX Y

∧
,TX Y  or TK) of the JRP, which results in the identification of an infinite set 

of events (x,y) in the xy space, that is, the curves illustrated in the examples of 
Fig. 78.3 (adapted from Requena et al., 2014). The hydrological design would 
then refer to a single bivariate (or multivariate) event, or a set of events associ-
ated with the selected JRP, and, following this rationale, the return level of 
structural failure would then be assumed to be equal to that of the selected 
hydrological design events. The literature provides guidelines for selecting 
multivariate design events (see Salvadori et al., 2011; Corbella and Stretch, 
2012; Volpi and Fiori, 2012; Gräler et al., 2013).

However, this approach involves several degrees of subjectivity (e.g., ambi-
guities in the JRP definitions, infinite events associated with the same JRP, 
different probabilities of occurrence for these events) and, more importantly, 
the assumption of equivalence between the selected JRP and the expected 
return period for the failure of the structure, which may not hold leading to 
under or overdesigning (see Salvadori and de Michele, 2004; Gräler et al., 
2013). The most recent studies for hydrological design in a multivariate con-
text apply a radically different perspective, switching from a design event-
based approach to a structure-based approach (see Volpi and Fiori, 2014).

maximum streamflow to its year of occurrence provided an excellent 
approximation for thousands of river gages across the continental U.S. (See 
Prosdocimi et al. (2014) for a similar analysis in the United Kingdom.) Even 
for highly nonlinear trends, OLS regression can often provide a good 
approximation to trends by employing the ladder of powers to “linearize” the 
relationship (Helsel and Hirsch, 2002). Helsel and Hirsch (2002) provide a 
detailed background on trend tests and how to improve their power, given 
the tremendous challenges associated with distinguishing between trends, 
seasonality, and persistence. Regression is an attractive approach to model-
ing trends because it provides a graphical summary display of the results, 
prediction intervals for trend extrapolations are easily derived, analytical 
expressions for the Type II error probabilities are available and rigorous 
statistical tests are available for evaluating overall model integrity and resid-
ual behavior.

Yue et al. (2002), Yue and Pilon (2004), Onoz and Bayazit (2003), and 
Morin (2011) have examined the power of the Mann–Kendall test and other 
nonparametric trend tests, using Monte Carlo analysis. To our knowledge, no 
published study has provided analytical expressions for the power of the 
Mann–Kendall test; however, Kendall reports analytical expressions for the 
probability distribution of the Mann–Kendall statistic under both the null 
and alternative hypothesis, so it is surprising that none of the existing water 
literature exploits that fact. It is also interesting to note that Morin (2011) 
found that for his particular application, the power results of the linear regres-
sion and the Mann–Kendall were nearly identical, though results of only one 
technique was reported in the paper.

78.3 MULTIVARIATE PROBABILISTIC AND RISk-BASED 
APPROACHES TO HYDROLOGIC DESIGN

Above, our focus was on hydrologic design when a single hydrological vari-
able could be used to describe the return period or reliability associated with 
system of interest. Such a univariate framework is useful for many practical 
hydrologic applications which depend solely on peak flood discharges (e.g., 
hydraulic design of bridge openings and culverts) or critical low flow dis-
charges. Yet hydrological loads for structural design often depend on multiple 
hydrological variables that are significantly correlated to each other (see  
Grimaldi et al., 2011). Common examples include flood risk mitigation prob-
lems in which hydraulic routing processes are important, such as in the design 
of detention/retention basins, as well as dam sluice gates and spillways, where 
there is a need to characterize the entire flood hydrograph both in terms of 
flood peak discharges and volumes (see Requena et al., 2014). In reference to 
such multivariate hydrologic processes, Yue and Rasmussen (2002) concluded 
that “under a given return period, the flood peak/volume value given by the 
single frequency analysis is greater than those by the joint distribution. This 
implies that if one neglects the close correlation between flood peak and 
volume, and carries out single-variable frequency analysis on flood peak or 
volume only, the severity of a flood event may be overestimated. If a hydro-
logic engineering design is based on the results from the single-variable fre-
quency analysis, then this overevaluation will lead to an increased cost. 
Hence, single-variable frequency analysis cannot provide a sufficient probabi-
listic assessment of a correlated multivariate event.”

In traditional multivariate frequency analyses, correlated variables are 
modelled using standard bivariate or multivariate distributions (see Matalas 
and Langbein, 1962; Stedinger, 1983; Hosking and Wallis, 1988; Castellarin 
et al., 2005). However, this approach assumes (1) the same marginal prob-
ability distribution for all variables involved in the analysis and (2) a linear 
dependence between the PDFs; which have both been shown to be of lim-
ited practical applicability (e.g., Favre et al., 2004; Klein et al., 2010). These 
assumptions can be relaxed by resorting to the use of copula-based distribu-
tions (see Chapter 30) which are now widely used in hydrology as evidenced 
by the expanding literature on floods, precipitation, and droughts (see 
Genest and Favre, 2007; Zhang and Singh, 2007; Chen et al., 2013; Li et al., 
2013; Sadri and Burn, 2014). With no loss of generality we focus on the 
bivariate case, when the theory of copulas is based on Sklar’s theorem  
(Sklar, 1959):

 [ ] [ ]= ≤ ∧ ≤ =( , ) Pr ( ) ( ) ( ), ( ),F x y X x Y y C F x F yX Y X Y  (78.3.1)

where, FX,Y(x,y) is the joint cumulative distribution function of random vari-
ables X and Y, with marginal PDFs FX(x) and FY(y), respectively, and 
C:[0,1]2→[0,1] is the copula function. Equation (78.3.1) does not require any 
assumptions concerning the marginal PDFs. The copula function enables the 
user to represent nonlinear dependencies between variables X and Y, for 
example, higher extremes more correlated than lower extremes (for details on 
copulas see Favre et al., 2004; Genest and Favre, 2007; Salvadori et al., 2007). 
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According to Eq. (78.3.5) and (78.3.6), calculating TZ(z*) only requires 
identification of the region ( )( ) = ≤ * , *D z g x y zZ  and evaluation of the 
above integral. For the sake of comparison, Fig. 78.3 (adapted from Requena 
et al., 2013) illustrates the infinite sets of bivariate events in the xy space asso-
ciated with mean return periods of 5, 10, 50, 100, and 500 years, according to 
definitions Eqs. (78.3.2a), (78.3.2b), (78.3.3) and (78.3.6).

Unfortunately, in many cases of practical interest, the function g(x,y) can be 
very complex and its evaluation needs to be based on simulated experiments. 
In those cases, the solution to the multivariate structure-based design can be 
obtained through Monte Carlo procedures structured as follows (see Requena 
et al., 2013; Volpi and Fiori, 2014): (1) generate a long series of synthetic pairs 
(x,y) with joint probability density function fX,Y(x,y); (2) compute the corre-
sponding values of the design parameter z=g(x,y); (3) evaluate the univariate 
PDF of the design parameter FZ(z) based on the computed series; and (4) 
select the design parameter zT with return level equal to T.

78.3.3 Multivariate Risk-Based Design under 
Nonstationary Conditions

Multivariate risk-based design under nonstationary conditions is still an open 
research topic. To our knowledge, the hydrological scientific literature pres-
ents only one study addressing this very issue (see Bender et al., 2014). Bender 
et al. (2014) present a multivariate flood frequency analysis focusing on flood 
peaks and volumes, Q and V, for a streamgauge of the river Rhine and they 
show the impacts in terms of AND JRP [i.e., Eq. (78.3.2b)], and associated 

78.3.2 Hydrologic and Hydraulic Design Using 
Multivarate Events 

Following Volpi and Fiori (2014), consider the design parameter Z (e.g., the 
size of a spillway, the elevation of a levee, etc.) or a quantity related to it, which 
measures the effects of the hydrological load on the structure; while X and Y 
are the pair of hydrological variables which identify the hydrological load on 
the structure (e.g., the peak discharge and the volume of a hydrograph). Let 
us suppose that Z depends on both hydrological variables X, Y through 
the structure function g(.), i.e., Z = g(X,Y), which mathematically expresses the 
interactions among the structure and the hydrological loads acting on it. The 
PDF of Z can be derived as:

 ∫ ( )( ) = ⋅ ⋅,,F z f x y dx dyZ X YDZ
, where (78.3.5a) 

 ( )= ≤ ,D g x y zZ  and ( ) ( )=
∂

∂ ∂
,

,
,

2
,f x y

F x y
x yX Y

X Y  , (78.3.5b)

provided that fX,Y(x,y) exists. From Eq. (78.3.5), if Z>z* determines a structure 
failure and X and Y are annual hydrological variables (i.e., annual maxima of 
flood peak and volume), the mean time elapsing between two successive 
structure failures can be expressed as:

 ( )
( )

=
−

* 1
1 *

T z
F zZ

z
 (78.3.6)

It can be easily shown that the structure-based and design event-based 
approaches coincide for the univariate case, i.e., when z=g(x).
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Figure 78.3 Example of multivariate design of a dam spillway as a function of design hydrograph volume, V, and discharge peak, Q: regions in the QV space associated with expected 
return period of 5, 10, 50, 100, and 500 years according to the definition of the structure-based return period TZ (Eq. 78.3.6, bold line) and ∨

,TX Y (OR case, Eq. 78.3.2a dashed line panel 
a), ∧

,TX Y  (AND case, Eq. 78.3.2b, dashed line panel b) and TK (Kemdall, Eq. 78.3.3, dashed line panel c) JRPs. [Source: Adapted from Fig. 10 in Requena et al., 2013, p. 3034.]

78_Singh_ch78_p78.1-78.10.indd   8 01/07/16   4:29 PM



REFERENCES    78-9 

OXFORD: Elsevier, United Kingdom, 2011, pp. 479–517, ISBN: 978-0-444-
53199-5.

Gumbel, E. J., The calculated risk in flood control, Applied Science Research, 
The Hague, The Netherlands, Vol 5A, 1955, pp. 272–280.

Gumbel, E. J., The return period of flood flows, Annals of Mathematical 
Statistics, 12 (2): 163–190, 1941.

Gumbel, E. J., “The return period of order statistics,” Annals of the Institute 
of Statistical Mathematics, 12 (3): 249–256, 1961.

Harberg, R. J., Planning and Managing Reliable Urban Water Systems, 
American Water Works Association, Denver, Co, 1997.

Hashimoto, T., J. R. Stedinger, and D. P. Loucks, “Reliability, resiliency, and 
vulnerability criteria for water resource system performance evaluation,” 
Water Resources Research, 18 (1): 114–20, 1982.

Helsel, D. R. and R. M. Hirsch, Statistical methods in water resources, 
Techniques of Water-Resources Investigations, Book 4, Chapter A3, U.S. 
Geological Survey, Reston, VA, 2002.

Hirsch, R. M., “Synthetic hydrology and water supply reliability,” Water 
Resources Research, 15 (6): 1603–1615, 1979.

Hobbs, B. F., P. T. Chao, and B. N. Venkatesh, “Using decision analysis to 
include climate change in water resources decision making,” Climatic Change, 
37: 177–202, 2007.

Holmes, R. R. Jr. and K. Dinicola, “100-Year flood–it’s all about chance,” 
U.S. Geological Survey General Information Product, 106: 1, 2010.

Hosking, J. R. M. and J. R. Wallis, “The effect of intersite dependence on 
regional flood frequency-analysis,” Water Resources Research, 24 (4):  
588–600, 1988.

IACWD (Interagency Committee on Water Data), Guidelines for deter-
mining flood flow frequency, Bulletin 17B, Office of Water Data Coordina-
tion, U.S. Geological Survey, Reston, VA, 1982.

Katz, R. W., “Towards a Statistical Paradigm for Climate Change,” Climate 
Research, 2: 167–175, 1993. 

Katz, R. W., “Statistics of extremes in climate change,” Climatic Change, 100: 
71–76, 2010.

Klein, B., M. Pahlow, Y. Hundecha, and A. Schumann, “Probability analysis 
of hydrological loads for the design of flood control systems using copulas,” 
Journal of Hydrologic Engineering (ASCE), 15: 360–369, 2010.

Kottegoda, N. T. and R. Rosso, Statistics, Probability, and Reliability for Civil 
and Environmental Engineers, McGraw-Hill, New York, 1997.

H-H, Kwon, C. Brown, and U. Lall, “Climate informed  flood frequency 
analysis and prediction in Montana,” Geophysical Research Letters, 35, L05404, 
doi:10.1029/2007GL032220, 2008.

Lettenmaier, D. P., “Detection of trends in water quality data from records 
with dependent observations,” Water Resources Research, 12: 1037–1046, 1976.

Li, C., V. P. Singh, and A. K. Mishra, “A bivariate mixed distribution with a 
heavy-tailed component and its application to single-site daily rainfall simula-
tion,” Water Resources Research, 49 (2): 767–789, 2013.

Li, N., X. Liu, W. Xie, J. Wu, and P. Zhang, “The return period analysis of 
natural disasters with statistical modeling of bivariate joint probability 
distribution,” Risk Analysis, 33 (1): 134–145, 2013.

Lloyd, E. H., “Occurrence interval in the presence of persistence,” Journal 
of Hydrology, 10 (3): 291–298, 1970.

Loucks, D. P. and E. van Beek, Water Resource Systems Planning and 
Management: An Introduction to Methods, Models and Applications, UNESCO, 
WL – Delft Hydraulics, 2005, p 680, Paris, France.

Mandelbaum, M., M. Hlynka, and P. H. Brill, Nonhomogeneous geometric 
distributions with relations to birth and death processes, TOP, , 15:281–296, 
DOI 10.1007/s11750-007-0018-z, 2007. 

Manning, L. J., J. W. Hall, H. J. Fowler, C. G. Kilsby, and C. Tebaldi, “Using 
probabilistic climate change information from a multimodel ensemble for 
water resources assessment,” Water Resources Research, 45 (11): 1–13, 2009. 

Matalas, N. C. and W. B. Langbein, “Information content of the mean,” 
Journal of Geophysical Research, 67 (9): 3441–3448, 1962.

Matalas, N. C., “Comment on the announced death of stationarity,” Journal 
of Water Resources Planning and Management, 138: 311–312, 2012, 
doi:10.1061/(ASCE)WR.1943-5452.0000215.

Mays, L. W., Water Resources Engineering, John Wiley & Sons, Second Edi-
tion,  842. 2011.

P. C. D. Milly, J. Betancourt, M. Falkenmark, R.M. Hirsch, Z. W. Kundze-
wicz, D. P. Lettenmaier, R. J. Stouffer “Climate change—stationarity is dead: 
Whither water management?” Science, 319 (5863): 573–574, 2008.

Modarres, M., M. Kaminsky, and V. Krivtsov, Reliability Engineering and 
Risk Analysis: A Practical Guide, CRC Press, Taylor and Francis, London, 2009.

Morin, E., “To know what we cannot know: global mapping of minimal 
detectable absolute trends in annual precipitation,” Water Resources Research, 
47 (7): 1–9, 2011.

design events (q, v), of different hypotheses on the stationarity/nonstationar-
ity of the dependence structure between Q and V, as well as of the position, 
scale, and shape parameters of the Generalized Extreme Value distributions 
(see Chp. XXX in this volume) adopted for representing the Q and V 
marginals.

REFERENCES

Bender, J., T. Wahl, and J. Jensen, “Multivariate design in the presence of 
non-stationarity,” Journal of Hydrology, 514: 123–130, 2014, http://dx.doi.
org/10.1016/j.jhydrol.2014.04.017.

Bowling, L. C., P. Storck, and D. P. Lettenmaier, “Hydrologic effects of 
logging in western Washington, United States,” Water Resources Research,  
36 (11): 3223–3240, 2000.

Bras, R. L., Hydrology: An Introduction to Hydrologic Science, Addison-
Wesley, Reading, MA., 1990, p. 643.

Castellarin, A., “Probabilistic envelope curves for design-flood estimation 
at ungaged sites,” Water Resources Research, 43: W04406, 2007. 

Castellarin, A., R. M. Vogel, and N. C. Matalas, “Probabilistic behavior of a 
regional envelope curve,” Water Resources Research, 41: W06018, 2005, 
doi:10.1029/2004WR003042.

CEH, Flood Estimation Handbook, five printed volumes, Centre for Ecol-
ogy & Hydrology, U.K., 1999, ISBN: 9781906698003.

Chao, P. T. and B. F. Hobbs, “Decision analysis of shoreline protection 
under climate change uncertainty,” Water Resources, 33 (4): 817–829, 1997.

Chen, L., V. P. Singh, S. Guo, A. K. Mishra, and J. Guo, “Drought analysis 
using copulas,” Journal of Hydrologic Engineering, 18 (7): 797–808, 2013.

Chow, V. T., Handbook of Applied Hydrology, McGraw Hill, New York, 1964.
Cohen, J., “The earth is round (p < .05),” American Psychologist, 49 (12): 

997–1003, 1994.
Cohn, T. A. and H. F. Lins, “Nature’s style: Naturally trendy,” Geophysical 

Research Letters, 32 (23): 1–5, 2005.
Cooley, D., “ Extreme value analysis and the study of climate change: a 

commentary on Wigley 1988,” Climate Change, 97: 77–83, 2009. 
Cooley, D., Return periods and return levels under climate change, Chapter 

4,  AghaKouchak, A., D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, 
Extremes in a Changing Climate: Detection, Analysis and Uncertainty, edited 
by AghaKouchak, A., D. Easterling, K. Hsu, S. Schubert, and S. Sorooshian, 
Springer Science + Business media, Dordrecht, 2013. 

Corbella, S. and D. Stretch, “Multivariate return periods of sea storms for 
coastal erosion risk assessment,” Natural Hazards and Earth System Sciences, 
12: 2699–2708, 2012, doi:10.5194/nhess-12-2699-2012.

Cudworth, A. G., Flood Hydrology Manual: A Water Resources Technical 
Publication, Bureau of Reclamation, Denver, CO, 1989, p. 243.

Douglas, E. M., R. M. Vogel, and C. N. Kroll, “Impact of streamflow 
persistence on hydrologic design,” Journal of Hydrologic Engineering, ASCE, 7 
(3): 220-227, 2002.

Dupont, W. D. and W. D Plummer Jr., “Power and sample size calculations: 
a review and computer program,” Controlled Clinical Trials, 11: 116–128, 1990.

Dupont, W. D. and W. D Plummer, “Power and sample size calculations for 
studies involving linear regression,” Controlled Clinical Trials, 19: 589–601, 1998.

Favre, A-C., S. El Adlouni, L. Perreault, N. Thiemonge, and B. Bobee, “Mul-
tivariate hydrological frequency analysis using copulas,” Water Resources 
Research, 40: 1–12, 2004.

Fernandez, B. and J. Salas, “Return period and risk of hydrologic events. I: 
Mathematical formulation, Journal of Hydrologic Engineering, 4 (4):  
297–307, 1999.

Fiering, M. B. and N. C. Matalas, “Decision-making under uncertainty,” 
Climate Change and U.S. Water Resources, edited by P. E. Waggoner, John 
Wiley & Sons, New York, 1990.

Fuller, W. E., “Flood flows,” Transactions of the American Society of Civil 
Engineers, 77: 564-617, 1914.

Genest, C. and A. C. Favre, “Everything you always wanted to know about 
copula modeling but were afraid to ask,” Journal of Hydrologic Engineering 
(ASCE), 12: 347–368, 2007. 

Gersonius, B., R. Ashley, A. Pathirana, and C. Zevenbergen, “Climate 
change uncertainty: building flexibility into water and flood risk infrastruc-
ture,” Climatic Change, 116: 411–423, 2013.

Gräler, B., M. J. van den Berg, S. Vandenberghe, A. Petroselli, S. Grimaldi, 
B. De Baets, and N. E. C. Verhoest, “Multivariate return periods in hydrology: 
a critical and practical review focusing on synthetic design hydrograph 
estimation,” Hydrology and Earth System Sciences, 17: 1281–1296, 2013, 
doi:10.5194/hess-17-1281-2013.

Grimaldi, S., S. C. Kao, A. Castellarin, S. M. Papalexiou, A. Viglione, F. 
Laio, H. Aksoy, et al., Statistical hydrology, Treatise on Water Science, 

78_Singh_ch78_p78.1-78.10.indd   9 01/07/16   4:29 PM



78-10    RISk, RELIABILITY, AND RETURN PERIODS AND HYDROLOGIC DESIGN

tropical moisture exports,” Water Resources Research, 51: 1472–1492, 2015, 
doi:10.1002/2014WR016664.

Tasker, G. D., “Effective record length for the T-year event,” Journal of 
Hydrology, 64: 39–47, 1983. 

Thomas, H. A., “Frequency of minor floods,” Journal of the Boston Society 
of Civil Engineers, 35 (1): 425–442, 1948.

Trafimow, D. and M. Marks, Editorial, Basic and Applied Social Psychology, 
37: 1–2, 2015.

Trenberth, K. E., “Attribution of climate variations and trends to human 
influences and natural variability,” WIREs Climate Change, 2: 925–930, 2011.

Tung, Y-K., “Flood defense systems design by risk-based approaches,” 
Water International, 30 (1): 50–57, 2005. 

Tung, Y-K., Risk/Reliability-Based Hydraulic Engineering Design, Chapter 7, 
Hydraulic Design Handbook, edited by L. Mays, McGraw Hill, New York, 1999.

Viessman, W. Jr. and G. L. Lewis, Introduction to Hydrology, 5th ed.,Prentice 
Hall, Upper Saddle River, New Jersey 2003. 

Villarini, G., J. A. Smith, F. Serinaldi, J. Bales, P. D. Bates, and W. F. Krajew-
ski, “Flood frequency analysis for nonstationary annual peak records in an 
urban basin,” Advances in Water Resources, 32: 1255–1266, 2009.

Vogel, R. M., “Reliability indices for water supply systems,” Journal of Water 
Resources Planning and Management, 113 (4): 563–579, 1987.

Vogel, R. M. and C. N. Kroll, “The value of streamflow record augmenta-
tion procedures in low flow and flood-flow frequency analysis,” Journal of 
Hydrology, 125: 259–276, 1991.

Vogel, R. M., N. C. Matalas, J. F. England, and A. Castellarin, “An assess-
ment of exceedance probabilities of envelope curves,” Water Resource 
Research, 43: W07403, 2007, doi:10.1029/2006WR005586.

Vogel, R. M., C. Yaindl, and M. Walter, “Nonstationarity: flood magnifica-
tion and recurrence reduction factors in the United States,” Journal of Ameri-
can Water Resources Association, 47 (3): 464–474, 2011.

Vogel, R. M., A. Rosner, and P. H. Kirshen, “Likelihood of societal 
preparedness for global change—trend detection,” Natural Hazards and Earth 
System Sciences, Brief Communication, 13: 1–6, 2013.

Vogel, R. M., U. Lall, X. Cai, B. Rajagopalan, P. Weiskel, R. P. Hooper, and 
N. C. Matalas, “Hydrology: the interdisciplinary science of water,” Water 
Resources Research 51, 2015, doi:10.1002/2015WR017049.

Volpi, E. and A. Fiori, “Hydraulic structures subject to bivariate hydrologi-
cal loads: return period, design, and risk assessment,” Water Resources 
Research, 50: 885–897, 2014, doi:10.1002/2013WR014214.

Volpi, E. and A. Fiori, “Design event selection in bivariate hydrological 
frequency analysis,” Hydrological Sciences Journal, 57: 1506–1515, 2012, doi:1
0.1080/02626667.2012.726357.

Wigley, T. M. L., “The effect of changing climate on the frequency of 
absolute extreme events,” Climatic Change, 97: 67–76, 2009 (reprinted from 
his 1988 article in Climate Monitor).

Wilks, S. S., “Recurrence of extreme observations,” Journal of the Australian 
Mathematical Society, 1: 106–112, 1959.

Yen, B. C., “Risks in hydrologic engineering projects,” Journal of the 
Hydraulics Division, ASCE, 96 (4): 959–966, 1970.

Yue, S. and P. Rasmussen, “Bivariate frequency analysis: discussion of some 
useful concepts in hydrological application,” Hydrological Processes, 16: 
2881–2898, 2002.

Yue, S. and P. Pilon, “A comparison of the power of the t test, Mann- Kendall 
and bootstrap tests for trend detection,” Hydrological Sciences Journal, 49 (1): 
21–37, 2004.

Yue, S., P. Pilon, and G. Cavadias, “Power of the Mann-Kendall and Spear-
man’s rho tests for detecting monotonic trends in hydrological series,” Journal 
of Hydrology, 259: 254–271, 2002.

Zhang, L. and V. P. Singh, “Trivariate flood frequency analysis using the 
Gumbel–Hougaard copula,” Journal of Hydrologic Engineering (ASCE), 12: 
431–439, 2007. 

Ziegler, A. D., J. Sheffield, E. P. Maurer, B. Nijssen, E. F. Wood, and D. P. 
Lettenmaier, “Detection of intensification in global- and continental-scale 
hydrological cycles: temporal scale of evaluation,” Journal of Climate, 16 (3): 
535–547, 2003. 

Ziegler, A. D., E. P. Maurer, J. Sheffield, B. Nijssen, E. F. Wood, and D. P. 
Lettenmaier, “Detection time for plausible changes in annual precipitation, 
evapotranspiration, and streamflow in three Mississippi river sub-basins,” 
Climatic Change, 72: 17–36, 2005.

Ziliak, S. T. and D. N. McCloskey, The Cult of Statistical Significance: How 
the Standard Error Costs Us Jobs, Justice, and Lives, University of Michigan 
Press: Ann Arbor, 2008.

Montanari, A. and D. Koutsoyiannis, “Modeling and mitigating natural 
hazards: Stationarity is immortal!” Water Resources Research, 50: 9748–9756, 
2014, doi:10.1002/ 2014WR016092.

National Earthquake Hazard Reduction Program (NEHRP) Recommended 
Seismic Provisions for New Buildings and Other Structures, Federal Emergency 
Management Agency, Washington, D.C., 2010, pp. 1–406.

National Research Council (NRC), Estimating Probabilities of Extreme 
Floods: Methods and Recommended Research, National Academy Press, 
Washington, D.C., 1988, p. 139.

National Research Council, Risk Analysis and Uncertainty in Flood Damage 
Reduction Studies, The National Academies Press, Washington, D.C., 2000. 

Nicholls, N., “The insignificance of significance testing,” Bulletin of the 
American Meteorological Society, 81 (5): 981–986, 2000.

Olsen, J. R., J. H. Lambert, and Y. Y. Haimes, “Risk of extreme events under 
nonstationary conditions,” Risk Analysis, 18 (4): 497–510, 1998.

Onoz, B. and M. Bayazit, “The power of statistical tests for trend detection,” 
Turkish Journal of Environmental Engineering Science, 27: 247–251, 2003.

Parey, S., F. Malek, C. Laurent, and D. Dacunha-Castelle, “Trends and 
climate evolution: statistical approach for very high temperatures in France,” 
Climatic Change, 81: 331–352, 2007.

Parey, S., T. T. H. Hoang, and D. Dacunha-Castelle, “Different ways to 
compute temperature return levels in the climate change context,” Environ-
metrics, 21: 698–718, 2010. 

Potter, K. W., “Estimating the probability of annual maximum water levels 
on the Great Lakes,” Journal of Great Lakes Research, 18 (1): 229–235, 1992.

Prosdocimi, I., T. R. Kjeldsen, and C. Svensson, “Non-stationarity in annual 
and seasonal series of peak flow and precipitation in the U.K.,” Natural 
Hazards and Earth System Sciences, 14: 1125–1144, 2014.

Read, L. and R. M. Vogel, “Risk, reliability, and return periods under non-
stationarity,” Water Resources Research (under review), 2015.

Renard, B. and U. Lall, “Regional frequency analysis conditioned on large-
scale atmospheric or oceanic fields,” Water Resources Research, 50: 9536–9554, 
2014, doi:10.1002/ 2014WR016277.

Requena, A. I., L. Mediero, and L. Garrote, “A bivariate return period based 
on copulas for hydrologic dam design: accounting for reservoir routing in risk 
estimation,” Hydrology and  Earth System Sciences, 17: 3023–3038, 2013, 
doi:10.5194/hess-17-3023-2013.

Rosner, A., R. M. Vogel, and P. H. Kirshen, “A risk based approach to flood 
management in a nonstationary world,” Water Resources Research, 50: 1928-
1942, 2014, doi:10.1002/2013WR014561.

Sadri, S. and D. H. Burn, “Copula-based pooled frequency analysis of 
droughts in the Canadian Prairies,” Journal of Hydrologic Engineering, 19 (2): 
277–289, 2014.

Salas, J. D. and J. Obeysekera, “Revisiting the concepts of return period and 
risk for nonstationary hydrologic extreme events,” Journal of Hydrologic Engi-
neering, 19: 554–568, 2014.

Salvadori, G. and C. De Michele, “Frequency analysis via copulas: theoreti-
cal aspects and applications to hydrological events,” Water Resources Research, 
40: W12511, 2004, doi:10.1029/2004WR003133.

Salvadori, G., C. De Michele, and F. Durante, “On the return period and 
design in a multivariate framework,” Hydrology and Earth System Sciences, 15: 
3293–3305, 2011, doi:10.5194/hess-15-3293-2011. 

Salvadori, G., C. De Michele, N. T. Kottegoda, and R. Rosso, Extremes  
in Nature: An approach Using Copulas, Springer, Dordrecht, The Nether-
lands, 2007.

Sen, Z., “Simple risk calculations in dependent hydrological series,” Hydro-
logical Sciences Journal, 44 (6): 871–878, 1999.

Serinaldi, F., “Dismissing return periods!” Stochastic Environmental 
Research and Risk Assessment, 29: 1179–1189, 2015, doi 10.1007/ 
s00477-014-0916-1.

Sklar, A., “Fonctions de Répartition à n Dimensions et Leurs Marges,” Publi-
cations de l’Institut de Statistique de L’Université de Paris, Vol. 8, 1959,  
pp. 229–231.

Stakhiv, E. Z., “Pragmatic approaches for water management under climate 
change uncertainty,” Journal of American Water Resources Association, 47 (6): 
1183–1196, 2011, doi:10.1111/j.1752-1688.2011.00589.x.

Stedinger, J. R., “Estimating a regional flood frequency distribution,” Water 
Resources Research, 19: 503–510, 1983.

Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou, Frequency analysis 
of extreme events, Chapter 18, Handbook of Hydrology, edited by David  
R. Maidment, McGraw-Hill, New York, N.Y., 1993.

Steinschneider, S. and U. Lall, “A hierarchical Bayesian regional model for 
nonstationary precipitation extremes in Northern California conditioned on 

78_Singh_ch78_p78.1-78.10.indd   10 01/07/16   4:29 PM




