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Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic
hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic
streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow
observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in
part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow.
This commentary advances the modern equivalent of SSMs, termed ‘stochastic watershed models’
(SWMs) useful as input to nearly all modern risk based water resource decision making approaches.
SWMs are deterministic watershed models implemented using stochastic meteorological series, model
parameters and model errors, to generate ensembles of streamflow traces that represent the variability
in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited
to accounting for anthropogenic influences, with recent developments in uncertainty analysis and prin-
ciples of stochastic simulation.

� 2017 Published by Elsevier B.V.
1. Introduction

For pedagogic purposes, when introducing a new conceptual
approach to planning for the future, it is instructive to consider
how we routinely plan our personal finances. Consider the per-
sonal problem of planning for retirement to ensure an adequate
source of income until death, say 30 years from now. On the one
hand, one could plan for retirement assuming that future financial
and investment markets will mimic, exactly, the historical market
over the past 30 years. Using only historical financial markets
would result in an adequate income over the next 30 years with
a reliability of just 50%. This result is predicated on stationarity
of the past and future market in which case the future 30-year
market would generally have an equal probability of delivering
higher or lower returns on investment than the historical market.
The Monte-Carlo method was introduced to address this issue
(see [21]) and is now a pervasive approach to personal retirement
planning with proprietary software for personal web-based imple-
mentation; it is currently offered by nearly every major financial
institution. The Monte-Carlo approach to retirement planning is
based on a stochastic representation of the market, enabling eval-
uation of ones retirement nest egg over hundreds of possible future
30-year markets to ensure that with some reliability (typically in
the range of 90–95%) the nest egg will deliver adequate income
over that entire planning horizon. Such an approach to managing
personal financial risk is more generally defined by the concept
of Value-at-Risk [22].

Risk management approaches are now pervasive in the world of
finance, and the concept of Value-at-Risk has emerged as the
industry standard. By analogy, hydrologic risk management
approaches based on Monte-Carlo simulation experiments were
introduced in the middle of the twentieth century along with the
necessary digital computational resources to enable their applica-
tion. The creation of the field of ‘operational hydrology’, or
‘stochastic streamflow modeling’, introduced by Maass et al. [47],
Yevjevich [103], Fiering [19], Matalas [51], Valencia and Schaake
[88] and others, revolutionized water resources planning, design
and management because it enabled hydrologists to generate what
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they believed (under stationarity assumption) to be representative
ensembles of streamflow series over future planning horizons, thus
enabling the exploration of consequences of future hydrologic con-
ditions not experienced historically, along with the application of
modern risk management approaches [46]. Stochastic Streamflow
Models (SSMs) were designed to mimic our historical hydrologic
experience, while simultaneously enabling us to recognize the
range of statistically possible future hydrologic conditions and
the risk of failure associated with water infrastructure. For exam-
ple, with only a single experience of the ‘flood of record’ or the
‘drought of record’, SSMs can provide thousands of possible future
hydrologic scenarios, each with its own flood and/or drought of
record; such exercises provide a much richer set of hydrologic pos-
sibilities with which to evaluate water resource system security.
SSMs also enabled hydrologists to generate streamflow traces over
planning periods which are either longer or shorter than the arbi-
trary length of the available historical records upon which they are
based. Researchers have also incorporated model parameter uncer-
tainty into generated series to represent the limited precision with
which model parameters can be estimated in a stationary world
[91,76,77].

Until the arrival of SSMs, reliability based planning for water
supply was challenging because hydrologists based their plans on
the single n-year drought of record, which under the assumption
of stationarity, has a probability of only 50% of being exceeded
(or not), in future n-year planning horizons (see [92], for a detailed
discussion of this issue). This was analogous to the use of the his-
torical market for planning financial risk prior to the now pervasive
use of Monte-Carlo financial risk software described above.

Over time, SSMs have enabled a much richer understanding of
the reliability, vulnerability and resilience of future water resource
systems [28]. Such computational tools and principles also enabled
a more complete integration of uncertainty into water resource
decision making and have been in common use by the U.S. Army
Corps of Engineers [87] and the U.S. Bureau of Reclamation
[43,66,82], and other agencies, worldwide, for over 50 years. SSMs
were the prerequisite to modern Risk Based Decision Making
(RBDM) approaches. RBDM is a well-established methodology that
can enable determination of an appropriate level of investment
based on the expected benefits and damages avoided versus the
cost of the infrastructure required [58] and is now standard prac-
tice by U.S. Federal agencies (see [8]; and [73]; for references).
Lempert et al. [45] and others have introduced a robust decision
making (RDM) framework for making decisions based on a large
number of imperfect forecasts of the future.

Instead of relying on a single probabilistic forecast of the future,
RBDM and RDM seek robust strategies that are likely to lead to bet-
ter outcomes (at least on average) than would result from planning
with a single scenario for the future. Both approaches employ com-
putational tools that represent the diversity of reasonable futures.
Stakhiv [73] argues that the application of RBDM and RDM
approaches depends critically upon a ‘‘new family of hydrologic
techniques for risk, reliability and uncertainty analysis that could
be used for emerging aspects of climate (and other forms of) uncer-
tainty.” (Also see [64].) Similarly, in an interagency initiative on
water resources management, Brekke et al. [8] argue that ‘‘stochas-
tic modeling can be useful for developing climate scenarios that
include a wide range of potential hydroclimatic conditions. The
expanded variability may allow more robust evaluation of plan-
ning alternatives”.

Clearly a fundamental requirement for nearly every RBDM sim-
ulation study addressing water security, are methods for generat-
ing ensembles of streamflow traces which can characterize future
hydrologic conditions. Unfortunately, as is described below, most
SSMs originally designed for RBDM are no longer adequate because
they do not capture changing hydrologic conditions due to anthro-
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pogenic influences. Milly et al. [53] argue that ‘‘we need to find
ways to identify nonstationary probabilistic models of relevant
environmental variables and to use those models to optimize
water systems. The challenge is daunting.”

The following section documents the fragmented state of the art
associated with stochastic modeling of nonstationary hydrologic
processes which serves as justification for a new approach to the
development of nonstationary SSMs advanced here, termed
Stochastic Watershed Models (SWMs). SWMs combine advances
in deterministic watershed models (DWMs), uncertainty analysis
for DWMs and stochastic streamflow modeling, together, to pro-
vide a comprehensive set of tools for hydrologic risk management
under nonstationary conditions. SWMs are simply deterministic
watershed models implemented in a stochastic mode (see [18])
using (possibly nonstationary) stochastic meteorological series
for the purpose of generating ensembles of representative stream-
flow traces that represent the trend and variability in possible
future flows as is illustrated in Fig. 1. Interestingly, using DWMs
in this manner can also lead to novel insights into existing prob-
lems. For example, when ones goal is to calibrate a DWM for the
purpose of generating representative streamflow traces, ones view
of the role of model error, parameter error and input data errors
evolve [39], enabling development of new approaches to model
calibration, model hypothesis testing and most importantly
improving our ability to ensure future water security.
2. What happened to the field of stochastic streamflow
modeling?

Two arguments exist for the apparent demise of SSMs (1) an
unrealistic reliance, focus and diversion of attention to purely
deterministic approaches in planning frameworks and (2) the
inability of traditional SSMs to account for the nonstationary
hydrologic behavior now of interest. Koutsoyiannis et al. [38] argue
that ‘‘Engineering hydrologists understood early that the design of
engineering projects based on deterministic approaches would lar-
gely be a hopeless task and appreciated the usefulness of proba-
bilistic approaches. Yet, during the last two decades, hydrology,
following other geophysical disciplines, changed perspective and
invested its hopes in deterministic descriptions and models.”

A second argument for the demise of SSMs relates to the inabil-
ity of nearly all traditional models to capture changes in stream-
flow regimes resulting from a variety of anthropogenic and
climatic influences. This is in spite of our now pervasive under-
standing that human activity and influence is an integral compo-
nent of the hydrologic system [52,53,95].

One emerging approach to handle hydrologic change is to adapt
stationary SSMs to accommodate hydrologic change. Another
approach is to adapt existing DWMs for use as SSMs, which is
the central focus of this commentary. A new generation of SSMs
termed Stochastic Watershed Models (SWMs) are advanced in this
commentary for considering the integrated impacts of changes in
climate, land use, water withdrawals, and other factors, within
the context of water resource planning for ensuring water security.
This section sets the stage for an introduction to a new generation
of SSMs for handling nonstationary hydrologic processes, termed
Stochastic Watershed Models, by summarizing past efforts to
develop SSMs under nonstationary conditions.
2.1. A very brief review of the field of stochastic streamflow modeling

The field of stochastic hydrology began around the same time as
digital computational resources became available in the 1960’s and
may be attributed to numerous hydrologists including, but not lim-
ited to Hurst, Fiering, Thomas, Yevjevich, and Beard, who intro-
or hydrologic risk management, Water Security (2017), http://dx.doi.org/
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Fig. 1. Illustration of the implementation of M Monte-Carlo experiments using a stochastic watershed model to generate M sets of streamflow traces from M sample
realizations of: climate inputs, watershed model parameters and watershed model error.
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duced many of the early versions of SSMs along with associated
applications. A broad overview of stationary SSMs are nicely sum-
marized in a variety of textbooks: Salas et al. [65], Loucks et al.
[46], Bras and Rodriguez-Iturbe [7], and Hipel and McCleod [30]
and recent review articles by Hao and Singh [27] and Sveinsson
and Salas [83]. The following discussion briefly reviews the original
purpose of and software developed for implementing SSMs and
then reviews the relatively few recent efforts to develop SSMs for
nonstationary hydrologic processes.
2.1.1. Purpose of stochastic streamflow models and stochastic
watershed models

The purpose of an SSM (and thus an SWM) is to generate many
representative synthetic streamflow sequences that are possible
realizations of what could occur in the future [19,51,75]). The mul-
tiple synthetic streamflow series derived from SSMs (and SWMs)
can be used in a very wide range of water resource planning,
design and management activities including: reservoir operations,
irrigation scheduling, hydropower operations, drought analysis,
flood control, and environmental flows; as well as studies of the
behavior of estimators of drought frequency and severity and other
hydrologic statistics.
2.1.2. Stochastic streamflow modeling software packages
Due to the need to use SSMs in water resource planning and

design for a wide array of activities (see [65]) several software
packages were developed by U.S. federal agencies and others. A
recent summary of the wide range of SSMs used in practice can
be found in Sveinsson and Salas [83]. Examples of four SSM soft-
ware packages include HEC-4 [87], SPIGOT developed by Grygier
and Stedinger [23], Grygier and Stedinger [24], SAMS (Stochastic
Analysis Modeling and Simulation) developed by the United States
Bureau of Reclamation and Colorado State University [43,66,82],
and CASTALIA developed by Efstratiadis et al. [15]. HEC-4, SPIGOT,
SAMS and CASTALIA only consider lagged values of streamflow as
Please cite this article in press as: R.M. Vogel, Stochastic watershed models f
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explanatory variables, without considering the other multivariate
watershed, biophysical and climatic factors which impact stream-
flow as is the central goal here.
2.1.3. Nonstationary stochastic streamflow models
A review of the literature reveals a relatively immature literature

on theuse anddevelopment of SSMswithin anonstationary context.
This section summarizes existing approaches to handling nonsta-
tionarity within the context of stochastic streamflow modeling
including: (1) application of either a stationary long-memory or
shiftingmeanSSMwhichcan capture someof the featuresof nonsta-
tionary hydrologic processes, (2) the use of a stationary SSM using a
conditionalMonteCarlo simulation approach referred to as ‘position
analysis’ (PA) or ‘ensemble streamflow prediction’ (ESP), (3)
introduction of SSMmodel parameters and/ormoments which vary
as a function of covariates, (4) nonparametric and quasi-
nonparametric resampling algorithms, and (5) the use of DWMs in
a stochastic mode, which we term stochastic watershed models,
the approach recommended here.
2.1.3.1. Application of a stationary SSM in a nonstationary con-
text. Sveinsson and Salas [83] and Salas et al. [67] have suggested
applying a stationary SSM within a nonstationary context, by
removal of the historical anthropogenic influences from the
streamflow observations to make the streamflow series stationary
prior to fitting an appropriate stationary SSM. This approach is
similar to the common approach of detrending or removal of peri-
odicities prior to fitting of a stationary SSM. Another approach is to
employ a stationary SSM which can exhibit properties of nonsta-
tionary processes. For example, SSMs which exhibit long-term per-
sistence are capable of generating streamflows which exhibit
abrupt shifts, long-term periodicity and even trends similar to
those that have been observed in some historical records (see for
example [60,36]. Even some short-memory models such as the
shifting mean model (see Sveinsson et al. [81]) can exhibit abrupt
or hydrologic risk management, Water Security (2017), http://dx.doi.org/
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shifts and trends. An example of the application of a stationary SSM
which exhibits long-term persistence within a nonstationary con-
text is the ARMA(2,1)-lognormal model utilized by Stedinger and
Crainiceanu [74].
2.1.3.2. Position analysis and ensemble streamflow predic-
tion. Another promising approach to the use of stationary SSMs
in a nonstationary context is the use of very short term planning
horizons and ensemble streamflow forecasts using either ‘position
analysis’ (PA) [31] or Ensemble Streamflow Predictions (ESP) [14].
Both PA and ESP produce conditional ensemble streamflow fore-
casts yet differ critically in how the forecasts are used. PA uses
the forecasts to model the influence of human activities such as
reservoir storage, environmental releases, water shortages, and
hydropower. Both ESP and PA are conditioned on initial conditions
which generally exhibit seasonal or other nonstationary behavior,
enabling the use of a stationary SSM within a nonstationary con-
text. Hirsch [32], Tasker and Dunne [86] and Henley et al. [29]
illustrate how PA may be applied within a drought context. Henley
et al. [29] illustrate how PA can be conditioned upon drivers of cli-
mate and climate change. ESP employs short-term streamflow
forecasts, each a possible realization of streamflow, conditioned
upon a particular system and/or state variables and has found
widespread use by the National Weather Service in improving
flood management activities (see for example [102,17].
2.1.3.3. SSM parameters and/or moments which vary as a function of
covariates. There are now many examples of studies which have
combined expressions which describe the time-varying nature of
model parameters and/or streamflow moments with stationary
hydrologic models to enable a nonstationary representation of
streamflow (see review by [34]). Although most such studies have
been within the context of nonstationary flood frequency analysis,
Sveinsson and Salas [83] have suggested this approach be applied
to convert a stationary SSM into a nonstationary SSM.
2.1.3.4. Nonparametric and quasi-nonparametric resampling algo-
rithms. The nonparametric bootstrap has been adapted to enable
stochastic simulation of nonstationary hydrologic processes driven
by atmospheric [54] and oceanic indices [44]. Bootstrap resam-
pling algorithms for generating stochastic streamflow traces from
precipitation, temperature and other climatic records have also
been combined with decomposition of hydroclimatic time series
in the frequency domain using spectral based methods (see
[41,42,59,44,16]). Such approaches can handle processes which
give rise to a nonstationary power spectrum offering significant
opportunities for improving upon traditional stationary SSMs.
3. Stochastic watershed models to the rescue

The brief literature review revealed that in spite of the long
history associated with the field of stochastic hydrology, nearly
all traditional SSMs assume stationary hydrologic conditions and
are based solely on streamflow observations, thus are unable to
capture complex anthropogenic and/or climatic impacts on stream-
flow. That review also revealed a cursory literature on nonstation-
ary SSMs concentrating mostly on statistical models with little
attention given to the tremendous advances in DWMs which have
occurred over the past few decades. The following sections provide
a conceptual basis for SWMs and describe the challenges and
opportunities in adapting DWMs to generate representative sets
of stochastic streamflow traces, under conditions of hydrologic
change for use in hydrologic risk management.
Please cite this article in press as: R.M. Vogel, Stochastic watershed models f
10.1016/j.wasec.2017.06.001
3.1. A concepual basis for stochastic watershed models

Bras and Rodriguez-Iturbe ([7], Section 1.3 titled ‘‘Simulation of
Hydrologic Processes”) provide a rigorous conceptual basis for the
use of repeated Monte-Carlo experiments for converting sets of
stochastic realizations of various inputs to a DWM to generate cor-
responding sets of stochastic realizations of model output. The
general conceptual basis of Monte-Carlo experiments expressed
by Bras and Rodriguez-Iturbe [7] provides a foundation for SWMs,
but with a change in the input variables, decision variables and
output variables, which tend to be more complicated and varied
for an SWM than for their illustration (see Fig. 1). More recently,
Montanari and Koutsoyiannis [56] introduce a generalized mathe-
matical framework for converting a DWM into a SWM. In principle,
when the joint probability distribution of all of the model inputs,
parameters and errors are known, the Monte-Carlo method can
be employed to obtain an approximation to the probability distri-
bution of any hydrologic variable which is generated as output
from a DWM. This is a formidable task, because all climatic, water
demand and other model inputs, model parameter estimates and
model errors are interrelated random variables, with future prop-
erties that are extremely challenging to predict. How to accomplish
this task in practice, remains a continuing challenge for our field.
Still the state of the art is promising as evidenced by recent
advances in uncertainty analysis of DWMs by Pappenberger and
Beven [61], Kuczera et al. [39], Brown [10], Schoups and Vrugt
[69], Renard et al. [62], Beven and Binley [5], Montanari and Kout-
soyiannis [56], Sikorska et al. [70] and others.

Arguably, a conceptual basis for the application of SWMs now
exists within the context of the now hundreds of studies which
have employed advanced methods of uncertainty analysis in com-
bination with DWMs in order to develop uncertainty bounds, or
prediction intervals associated with either streamflow predictions
(i.e. see previously cited studies) and/or other water resource sys-
tem variables [1,6,57]. The methods employed for constructing
uncertainty intervals for watershed model predictions can easily
be adapted for use in generating and evaluating representative
streamflow traces, and that is one of the central points of this
commentary.

3.2. Some examples of stochastic watershed models (SWMs) in practice

The conversion of DWMs for use as SWMs is not new. Clark
et al. [11], Schaake et al. [68], and others in the flood forecasting
community have used DWMs to generate representative
sequences of streamflow using a sensible joint resampling of both
historical climatic model inputs and model calibration residuals
now known as the ‘‘Schaake Shuffle”. The application of a DWM
in a ‘stochastic mode’ holds great promise for generating nonsta-
tionary stochastic streamflow traces. In fact, Farmer and Vogel
[18] document that unless DWMs are used in a stochastic mode
by adding model error to simulation output, systematic bias will
arise in simulated extreme events because their variance and other
upper moments will be generally, too small.

In spite of the large number of studies which have applied
uncertainty analysis to DWMs for the purpose of computing
streamflow prediction or uncertainty intervals, it is challenging
to find studies which have used DWMs within the context of
hydrologic risk management, based on either robust decision mak-
ing and/or risk based decision making analyses. Some studies have
sought to adapt a DWM for use as a SWM to generate and evaluate
multiple representative streamflow series [100,26,79,80]. Stein-
schneider et al. [79] combined a stochastic model of climatic inputs
with two different DWMs, followed by the stochastic simulation of
multiple synthetic streamflow series while accounting for both
model parameter uncertainty and a probabilistic treatment of
or hydrologic risk management, Water Security (2017), http://dx.doi.org/
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model errors. Perhaps the best example of the approach suggested in
this commentary, to date, is provided by Steinschneider et al. [80]
who apply an SWM for the purpose of generating multiple stream-
flow traces which are in turn used to evaluate robust reservoir
operating decisions under climate change. Steinschneider et al.
[80] illustrate the central goal of this commentary which is the
application of a SWM for use in hydrologic risk management.

3.3. Stochastic streamflow traces are needed; not uncertainty intervals

There are now many studies which have employed methods of
uncertainty analysis in combination with DWMs to develop uncer-
tainty intervals associated with either streamflow predictions
[4,5,69,62] or other water resource system variables [1,6,57]. How-
ever, there are very few examples of studies which have adapted
those very same methods of uncertainty analysis for generating
representative traces of streamflow and evaluated the degree to
which those traces reproduce the expected behavior of streamflow
series [39] and applied them to hydrologic risk management
[79,80]. While uncertainty intervals are interesting and useful,
the resulting intervals are of little value in the type of RBDM and
RDM approaches which are now in common use worldwide and
sorely needed to solve future water security challenges. However,
if the streamflow ensembles used to produce uncertainty intervals
are representative of actual streamflow series, then those ensem-
bles could be extremely useful for hydrologic risk management,
another central point of this commentary. It is difficult to assess
the human implications of future streamflows based on uncer-
tainty intervals, alone, yet simulation modeling of the human
response to future streamflow patterns, using streamflow ensem-
bles derived from uncertainty analysis, can be useful for estimating
the human implications of streamflow change.

3.4. Stochastic watershed models: verification and validation

A central goal of developing a SWM is to enable the generation of
multiple sequences of meteorological inputs and streamflows that
as a set (ensemble), represent the distribution of possible future
hydrometeorological sequences that would effect the operation of
water resource systems. Prior to the application of an SWM for eval-
uating the impact of hydrologic change, one must ensure that the
model is credible. Such an evaluation of a SWM would follow the
basic guidelines associated with the construction, verification and
validation of any stochastic simulation model summarized by Ste-
dinger and Taylor [75] and Salas et al. [65] and now common prac-
tice in the much larger field of simulation modeling. Stedinger and
Taylor [75] suggest that ‘‘Verification of a” SWM ‘‘would be a
demonstration that the generated flows have the means, variances,
correlations, and other statistics [such as jumps and/or trends] that
flows with the selected multivariate distribution and the estimated
parameters should have. Validation of a SWM would be a demon-
stration that the model reproduces characteristics of historical
streamflows not explicitly reproduced as a result of the parameter
estimation process.” Klemes [35] describes a set of hierarchical
operational procedures suited to the development and testing of
SWMs under conditions of hydrologic change whether that change
is occurring over space and/or time. Model validation exercises
should also evaluate if the SWM can generate streamflow traces
which can reproduce important hydrologic and water resource sys-
tem properties which are related to the actual RBDM and RDM
activities which the model is intended to address (see [75]; and
Chapter 3 of [65]; for examples). For example, if ones interest is
in water supply planning, reproduction of various drought, storage
and water deficit statistics would be a priority (see [84,85]).

Importantly, model validation exercises would also evaluate the
overall behavior of model residuals to ensure that they are approx-
Please cite this article in press as: R.M. Vogel, Stochastic watershed models f
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imately independent and identically distributed (iid). The idea of iid
residuals is only a goal, and if it is not possible or realistic, then the
goal would be to develop a SWM which could properly represent
the stochastic behavior of the non-iid behavior of the residuals.
Whenmodel residuals exhibit non-iid behavior, they contain deter-
ministic information which ideally, would be represented by the
model, not its residuals. Surely there will be a tradeoff between
model goodness-of-fit and the degree to which residuals exhibit
iid behavior. Cosby and Hornberger [12] and Cosby et al. [13] found
that even for a much simpler deterministic photosynthesis-light
model, the goal of iid residuals was unrealistic.

Stedinger and Taylor [75] document that verification of the
SWM is not a simple matter of comparing the historical streamflow
statistics to the statistics of the modeled flows, which has been
incorrectly implemented in nearly every previous study, because
sample estimators of the various statistics such as variance, skew-
ness and autocorrelation can exhibit considerable bias. Thus Ste-
dinger and Taylor [75] introduce unbiased estimators of those
statistics in their Eqs. (12)–(14) which are uniquely suited to the
verification of SWMs. Those equations, or analogous equations
developed for other statistics such as jumps and trends, must be
used to verify that the model can reproduce the statistics upon
which the model is based.
3.5. Stochastic weather generation for stochastic watershed models

As our awareness evolves concerning the impact of climate
change on water resource systems, there is a corresponding evolu-
tion in approaches for modeling our future climate at a scale com-
mensurate with hydrologic and water resource impact assessment
models. Unfortunately, the spatial and temporal scales of general
circulation models (GCMs) and hydrological models are different
[101], in part because climate models were not developed to pro-
vide the level of accuracy required for adaptation-type analysis
which the water resources community needs [40]. Koutsoyiannis
et al. [37] and Anagnostopoulos et al. [2] have compared the output
of various climate models to temperature and precipitation obser-
vations at various locations around the world and found that both
point scale and spatially integrated climate model projections gave
poor agreement with historical data. Of course the goal should be
for climate model projections to give a good representation of
the future and not the past. One strategy for determining if they
may be able to do so is to use them in hindcast mode (for example
using the past century of increasing greenhouse forcing) and eval-
uating the trends that may be observed in the hydrologic traces
they generate and compare those to the actual hydrologic records
that have been observed. To move forward on stochastic non-
stationary weather generation for hydrologic modeling we need
to perform such experiments to evaluate if the models produce
results that are plausible representations of the future. There will
continue to be considerable uncertainties propagated through the
morass of computations from emissions scenarios, GCMs, regional
climate models, and bias corrections, to hydrologic and water
resource systems models, referred to by Foley [20] as the ‘‘uncer-
tainty cascade”.

An alternative to the use of GCMs are stochastic weather mod-
els, which can be used to generate random weather sequences that
are statistically consistent with historical weather observations,
analogous to the way in which SSMs are used to generate stream-
flow sequences which are statistically consistent with historical
streamflow observations. A burgeoning literature exists on
stochastic weather generation (see an early review by [99]; and
the more recent literature review in [90]). Stochastic weather gen-
erators are attractive because they can be designed to reproduce
historical climate, and may also be used in combination with GCMs
or hydrologic risk management, Water Security (2017), http://dx.doi.org/
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to generate forecasts [98], though such forecasts suffer from all the
shortcomings mentioned above.

What is sorely needed is a strategy for testing methods for gen-
erating representative ensembles of future atmospheric inputs to a
SWM that provide confidence that they can reasonably represent
the variability and trends (or lack of trends) that we see repre-
sented in the historical climate of the last several decades. Using
hindcasts driven by the actual history of greenhouse forcing must
be a part of this process. Wilby [97] offers a set of five principles for
comparing models and improving the current suite of climate
models to serve better the needs of the hydrologic modeling
community.
4. Stochastic watershed models: challenges and opportunities

This commentary has outlined the long and rich history of the
application of stochastic streamflow models (SSMs) in risk based
decision making (RBDM) and highlights that most existing models
were designed and constructed to generate stationary streamflow
sequences. Sincemost existing SSMs are based solely on streamflow
observations, it is not possible to explore the impact of changes in
land use, water use and climate on streamflow. This limitation is
becoming increasingly important and constraining as we continue
to acknowledge nonstationary behavior of hydrologic systems
due to anthropogenic influences [53,93,94,95,89,63,33]; and many
others). Due to the nowwidespread acceptance that hydrologic sys-
tems often have and will undergo significant change, it is no longer
reasonable to plan our future water resource systems by assuming
that future conditions will replicate past hydrologic experience.
Anthropogenic influences on streamflow regimes are now perva-
sive, creating a need for a new generation of nonstationary SSMs
termed stochastic watershed models (SWMs), for addressing all
the same water resource planning, design and management activi-
ties for which stationary SSMs were originally designed to address,
and in addition, to respond to the numerous challenges which SSMs
are unable to address. For example, in addition to their ability to
account for nonstationary anthropogenic and other complex influ-
ences on watershed behavior, SWMs can be used to evaluate new
land, water and energy management policies. The following chal-
lenges and opportunities associated with SWMs are envisioned:

4.1. Opportunities for an immature field

The brief review of nonstationary SSMs revealed an immature
and fragmented literature with little guidance for a cohesive
approach to address the myriad of issues relating to nonstationary
hydrologic processes. Most nonstationary SSMs developed to date
appear to require a high level of statistical competence including:
Bayesian statistics, wavelets, and spectral analysis in addition to a
background in simulation modeling and stochastic processes
needed for the development, implementation and validation of
any SSM. This commentary has highlighted a tremendous need
for the development, verification and validation of SWMs for use
in risk based planning activities under nonstationary conditions,
a need which appears to be rapidly increasing [8,9,49,25].

4.2. The time is ripe for stochastic watershed models

SWMs are simply deterministic watershed models imple-
mented in a stochastic mode (see [18]) using stochastic meteoro-
logical series to generate ensembles of streamflow traces that
represent the possible variability in future flows (generally for
some specific year). Many of the needed ingredients are now avail-
able for the implementation of SWMs. There are dozens of water-
shed models to choose from as evidenced by the variety of
Please cite this article in press as: R.M. Vogel, Stochastic watershed models f
10.1016/j.wasec.2017.06.001
textbooks which summarize numerous software packages for their
implementation (for example, see [3,96,72,71]) including a highly
sophisticated National Water Model [48] which can provide near
real-time, high spatial resolution streamflow forecasts for the
entire U.S. Similarly, there are many methods of uncertainty anal-
ysis for creating uncertainty intervals for streamflow predictions
from watershed models, as evidenced from the now over 1865
citations to the GLUE method introduced by Beven and Binley
[4,5], (which comes with its own controversy; see [55,50]; and
[78]). Existing methods of uncertainty analysis originally devel-
oped for the purpose of generating ‘uncertainty intervals’ or ‘pre-
diction intervals’ (see previous citations) can be adapted for use
in generating representative stochastic traces of streamflow series.
Thus many of the necessary ingredients are in place for the devel-
opment and testing of SWMs for use in risk-based decision making
activities. Perhaps the most critical and vexing challenge remain-
ing for the successful implementation of SWMs involves the gener-
ation of representative ensembles of future atmospheric inputs to a
SWM described below.

4.3. Representative stochastic weather inputs – the missing link

A SWM is ideally suited to address challenges created by human
actions on the landscape within a watershed, however, representa-
tive climate/weather models are needed as input to SWMs, to
address challenges within the watershed, resulting from human
activities occurring at regional and global scales which are trans-
mitted through the atmosphere. Kundzewicz and Stakhiv [40]
argue that while they are improving, climate models are still not
ready for ‘‘prime time”, at least for direct application to water man-
agement problems. They argue that much more research is needed
and models need to be considerably improved before they can be
used effectively for adaptation planning and design. What is sorely
needed is a strategy for testing methods for generating representa-
tive ensembles of future atmospheric inputs to a SWM that provide
confidence that they reasonably represent the variability and
trends (or lack of trends) that we see represented in the historical
observations from the last several decades.

4.4. Opportunities for new insights

While there are now many studies which have employed meth-
ods of uncertainty analysis in combination with DWMs in order to
develop uncertainty intervals associated with either streamflow
predictions [4,5,69,62] or other water resource system variables
[1,6,57] there are very few examples of studies which have adapted
those methods of uncertainty analysis for generating representa-
tive traces of streamflow [79,80] and evaluated the degree to
which those traces reproduce the expected behavior of streamflow
series [39]. It is anticipated that when existing DWMs are evalu-
ated in a ‘stochastic mode’, that new insights, challenges and
opportunities will arise. For example, it is now increasingly com-
mon to fit complex stochastic models to DWM residuals for the
purpose of performing uncertainty analysis. An alternative
approach would be to modify the objective function for the calibra-
tion of DWMs to ensure that model residuals are approximately
independent and identically distributed (iid) while simultaneously
ensuring a good fit to observed streamflows. Whenmodel residuals
exhibit deterministic behavior such as persistence, seasonality
and/or trend, those residuals are ‘doing the work that the model
should be doing’. The idea is for the watershed model to have most
of the explanatory power, with little to no explanatory power left
to the residuals. Furthermore, if a SWM can be fit in such a way
as to ensure iid residuals, its application in a stochastic mode will
be straightforward and would not require the high level of statisti-
cal sophistication currently needed for the application of com-
or hydrologic risk management, Water Security (2017), http://dx.doi.org/
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monly used methods of uncertainty analysis such as Markov Chain
Monte Carlo and the Bayesian GLUE approach. There will clearly be
a tradeoff between goodness-of-fit and the degree to which one
can obtain iid residuals and it is that very tradeoff that may offer
considerable new insights into our ability to calibrate, verify and
validate SWMs as well for improving our scientific knowledge of
hydrologic processes and performing RBDM. It is also expected that
explorations of this tradeoff using some of the recent ideas on
multi-objective calibration of DWMs [104] should also provide
numerous benefits.
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