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ABSTRACT: We investigate the sensitivity of phosphorus loading (mass/time) in an urban stream to variations
in climate using nondimensional sensitivity, known as elasticity, methods commonly used by economists and
hydrologists. Previous analyses have used bivariate elasticity methods to represent the general relationship
between nutrient loading and a variable of interest, but such bivariate relations cannot reflect the complex mul-
tivariate nonlinear relationships inherent among nutrients, precipitation, temperature, and streamflow. Using
fixed-effect multivariate regression methods, we obtain two phosphorus models (nonparametric and parametric)
for an urban stream with high explanatory power that can both estimate phosphorus loads and the elasticity of
phosphorus loading to changes in precipitation, temperature, and streamflow. A case study demonstrates total
phosphorus loading depends significantly on season, rainfall, combined sewer overflow events, and flow rate, yet
the elasticity of total phosphorus to all these factors remains relatively constant throughout the year. The
elasticity estimates reported here can be used to examine how nutrient loads may change under future climate
conditions.

(KEY TERMS: climate elasticity; multivariate; nutrients; nutrient loading; nonpoint source pollution; stream-
flow; phosphorus; water quality.)
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INTRODUCTION

Watersheds are dynamic systems, changing over
both short (hours, days, months, seasons) and long
(years, decades) time scales. One particularly
dynamic feature of watersheds is water quality. In
addition to changes in infrastructure, population, and
land use, changing weather patterns may greatly
influence water quality (Wilby 1993; Mimikou et al.
2000; Whitehead et al. 2009). Over the past few dec-
ades, the impacts of a changing climate on water

quantity have been studied at length (Frederick and
Major 1997; Kundzewicz et al. 2007; Milly et al.
2008; Yang et al. 2013); however, the influence of
climate variability and change on water quality has
only recently been considered (Kundzewicz et al.
2007; Delpla et al. 2009; Whitehead et al. 2009;
Loecke et al. 2017).

Water quality within hydrologic systems evolves
due to a variety of influences such as changes in pre-
cipitation intensity, temperature, storm frequency,
wind speed, atmospheric deposition, groundwater
recharge, and streambed erosion. Nutrient pollution
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is one of the most widespread environmental prob-
lems in the United States (U.S.) (Gilinsky et al. 2009;
USEPA 2009b) and often supports the rapid growth
of algal blooms that are potentially harmful to ecosys-
tems and human health (Anderson et al. 2002; Con-
ley et al. 2009). The presence of excess nitrogen and
phosphorus can lead to eutrophication, which the
U.S. Environmental Protection Agency (EPA) and
U.S. Geological Survey (USGS) agree is one of the
leading causes of water-body impairment in the U.S.
(USEPA 2009a). Anticipated climate variability will
likely pose significant impacts on water and nutrient
dynamics (Bouraoui et al. 2004; Delpla et al. 2009).

Changes in temperature, along with changes in
seasonality, will likely pose significant impacts to
nutrient patterns within water bodies (Zhu et al.
2008; Kundzewicz and Krysanova 2010; Labeau et al.
2015; Tang et al. 2015). Climate scientists report
with high confidence that the U.S. will experience a
significant increase in the number of hot days by the
end of the 21st Century (Gleason et al. 2008).
Increases in the number of warm days per year may
lead to changes in land use management, such as
rates and timing of lawn and agricultural fertilization
(Howden et al. 2007; Mueller et al. 2012). Warmer
temperatures combined with land use management
alterations may also result in changes to the micro-
bial processes that dictate crop yield, phosphate activ-
ity, and nutrient mobilization in soils (Delpla et al.
2009; Jangid et al. 2008; Sardans et al. 2008; Rosen-
zweig et al. 2013; Tang et al. 2015). As a conse-
quence, rainfall-induced runoff could potentially
carry a larger annual quantity of nutrients into riv-
ers. As weather extremes become more frequent and
severe, intense precipitation may overload sewer sys-
tems, introducing yet another source of pollution into
waters. Additionally, flooding as a result of increased
severity of storms has the potential to increase ero-
sion of nutrient-laden soil, which adds to degradation
of water quality (Loecke et al. 2017).

The potential for climate-induced changes in water
quality motivates the need for an investigation into
the sensitivity of the water quality of individual
watersheds to changes in climate variables. Johnson
et al. (2015) performed a large-scale modeling study
of 20 large U.S. watersheds using North American
Regional Climate Change Assessment Program pro-
jected climate scenarios and found that statistically
significant changes in total phosphorus and total
nitrogen loads as a result of changes in climate are
possible in about 60% of the watersheds studied.
Analogous to the literature on the climate sensitivity
of streamflow, there are two general approaches to
evaluating the climate sensitivity of water quality: (1)
running a water quality simulation model to explore
the impacts of changes in climate inputs on

simulation model output, as performed by Bouraoui
et al. (2004), Johnson et al. (2015), and Tang et al.
(2015); and (2) developing statistical relationships
between climate variables and water quality and
inferring expected sensitivities from those relation-
ships. We were interested in the latter approach and
focus our effort on developing a simple, data-driven
nonlinear approach to assessing the sensitivity of
phosphorus loading to changes in climate variables.

Climate–streamflow relationships have been used
to determine precipitation and temperature elasticity
of streamflow, providing a nonparametric (not involv-
ing any assumptions as to the form or parameters of
a distribution) and nondimensional measure of the
sensitivity of streamflow to changes in climate
(Schaake 1990; Sankarasubramanian et al. 2001;
Chiew 2006). Elasticity is a term that represents a
form of nondimensional sensitivity analysis that can
be generally defined as the proportional change in
one variable, x, divided by the proportional change in

another variable, y, where exðx; yÞ ¼ dy=y

dx=x
¼ dy

dx

x
y. The

interpretation of this definition of elasticity is simple.
If elasticity, ɛx(x, y), is equal to 2%, then a 1%
increase in x will yield a 2% increase in y. Discussion
concerning the interpretation and estimation of elas-
ticity dates back to the early 1900s in economic liter-
ature, and is now quite commonly used in hydrology
since its introduction by Schaake (1990) and
Sankarasubramanian et al. (2001). Evidence of the
widespread usage of the concept of climate elasticity
of streamflow is provided by hundreds of citations to
the study by Sankarasubramanian et al. (2001).

Xia et al. (2014) noted that climate elasticities are
often used to analyze changes in water quantity and
called for the development and improvement of cli-
mate elasticity models in the water quality realm.
Jiang et al. (2014) extended the climate–streamflow
sensitivity methodology introduced by Schaake (1990)
and Sankarasubramanian et al. (2001) to develop cli-
mate–water quality relationships using extensive sam-
pling records and described the magnitude of stream
water quality responses to climate change. Jiang et al.
(2014) only considered the bivariate sensitivity of
water quality to temperature separate from its sensi-
tivity to precipitation. Saltelli and Annoni (2010)
emphasized the shortcomings of such an approach to
sensitivity analyses, presenting a generalized proof
that demonstrates the inefficiency of one-at-a-time
(OAT) sensitivity methods. Xia et al. (2014) also noted
the importance of considering all possible contributors
to changing water quality in climate modeling.

In lieu of OAT approaches, a multivariate analysis
to determine sensitivity of water quality to changes
in climate is desired. Many multivariate models have
been developed to describe the relationship between
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water quality and other factors (i.e., Driver and
Tasker 1990; Cohn et al. 1992; Koklu et al. 2010;
Nasir et al. 2011; Mustapha and Abdu 2012; Labeau
et al. 2015; and many others). However, to our
knowledge, these studies do not interpret the mean-
ing of the coefficients of such models as elasticities.
There are, however, numerous examples of the devel-
opment of multivariate methods to determine elastic-
ity of streamflow to changes in climate. Fu et al.
(2007) extended the bivariate precipitation elasticity
of streamflow introduced by Sankarasubramanian
et al. (2001) to a multivariate climate elasticity con-
sidering both precipitation and temperature. The
multivariate climate elasticity methodology was used
by Ma et al. (2010) and compared to a geomorphol-
ogy-based hydrological simulation model to estimate
the impact of climate variability on the inflow into a
reservoir responsible for domestic water supply in
Beijing. The work of Ma et al. (2010) was extended to
include a variable for interannual variability of soil
moisture storage to represent the sensitivity of runoff
to changes in soil moisture, precipitation, and tem-
perature simultaneously (Xu et al. 2012). Gardner
(2009) used multivariate elasticity techniques to esti-
mate changes in mean annual runoff as a function of
changes in precipitation, temperature, and potential
evapotranspiration. Andr�eassian et al. (2016) com-
pared five different methods to compute elasticity of
streamflow to precipitation and potential evaporation.
Allaire et al. (2015) compared two multivariate
approaches for estimation of climate, land use, and
water use elasticity of streamflow for a river in the
vicinity of the brook considered in the present study.
Wang et al. (2016) decomposed the potential evapora-
tion elasticity of runoff into five evaporation-related
elasticities to reflect the effects of temperature on
runoff and to reduce the influence of correlations
between radiation and relative humidity.

Yu et al. (2010), Saltelli and Annoni (2010), Allaire
et al. (2015), and many others have shown that a com-
plete and correct sensitivity analysis should consider
a multivariate analysis which accounts for interaction
effects among input explanatory variables to enable
an evaluation of the effect of one input variable, while
other input variables are allowed to vary at the same
time. When estimating elasticities, economists have
considered multivariate methods extensively in an
attempt to reduce omitted variable bias (OVB), which
occurs when a model incorrectly omits one or more
important causal factors, thus overestimating or
underestimating the effect of one of the other factors.
However, the estimates of climate elasticity of water
quality introduced by Jiang et al. (2014) did not
account for OVB since they only considered estimation
of the sensitivity of water quality variables to changes
in precipitation and temperature, separately. Further

information on the impact of OVB on multivariate
models in water resources is provided by Farmer
et al. (2015).

The primary goal of this study was to evaluate
multivariate interactions among temperature, precip-
itation, streamflow, and nutrient loads in an urban
watershed in an integrated fashion. We demonstrate
the value of using multivariate approaches to esti-
mate elasticity that result from models with high
explanatory value and reduced OVB. One feature
that distinguishes our approach from previous
approaches (e.g., Fu et al. 2007; Ma et al. 2010; Mus-
tapha and Abdu 2012) is that we offer a sensitivity
analysis method that makes no model assumptions
concerning the relationship between load and various
independent variables. This is a critical issue with
model sensitivity, because the form of the assumed
model governs the form of the derivatives used to
compute elasticities. The methodology introduced in
this study is quite general and can be applied to a
wide range of problems relating to water quality
management in order to evaluate the evolution of
water quality response of a watershed to many differ-
ent climatic and other factors, such as land manage-
ment and population growth. A case study is
introduced to highlight the influence of precipitation,
temperature, and surface water discharge on total
phosphorus loading within Alewife Brook, a tributary
to the Mystic River near Boston, Massachusetts.

METHODOLOGY

Climate Elasticity of Streamflow

Previous studies have examined the sensitivity of
streamflow to changes in precipitation using the con-
cept of precipitation elasticity (Schaake 1990;
Sankarasubramanian et al. 2001; Chiew 2006). The
precipitation elasticity of streamflow, ɛP, is defined as
the relative change in streamflow, Q, divided by the
relative change in precipitation, P:

eP ¼ dQ=Q

dP=P
¼ dQ

dP

P

Q
ð1Þ

Sankarasubramanian et al. (2001) presented a
nonparametric form of ɛP in Equation (2)

�eP ¼ dQ

dP

�P
�Q

ð2Þ

where �P and �Q denote the mean values of precipita-
tion and streamflow, respectively.
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Based upon the nonparametric elasticity estimator
recommended by Sankarasubramanian et al. (2001),
Jiang et al. (2014) developed the following elasticity
estimator for several water quality parameters (e.g.,
nutrients, turbidity, dissolved oxygen) with respect to
air temperature and precipitation at the monthly scale

eP ¼ median
Wt � �W

Pt � �P

�P
�W

� �
; ð3Þ

where Wt represents the water quality variable at
time t, �W represents the mean value of the water
quality variable, Pt represents the monthly precipita-
tion value at time t, and �P represents the mean pre-
cipitation value for all the data assessed. The
advantage of using the elasticity estimator in Equa-
tion (3) is that the use of the median minimizes the
impacts from outliers, such as extreme events. How-
ever, we argue that certain water quality measure-
ments, such as nutrient loads, are greatly influenced
by weather extremes, and thus outliers are an inte-
gral component of the sensitivity of water quality to
changes in climate.

One limitation of the Sankarasubramanian et al.
(2001) and Jiang et al. (2014) OAT approaches is that
they are only able to determine sensitivity of stream-
flow or water quality to changes in a single explana-
tory variable. However, water quality is influenced by
simultaneous changes in precipitation, temperature,
streamflow, seasonal cycling, and sometimes extreme
events. Therefore, a multivariate approach is neces-
sary to capture complex interactions among climate
variables that influence nutrient concentrations. The
following sections describe two general multivariate
approaches to estimation of the elasticity of nutrient
loads to various factors.

Multivariate Climate Elasticity of
Nutrient Water Quality

Our initial approach to multivariate elasticity
employs a nonparametric approach based on the
chain rule introduced by Sathyamoorthy et al.
(2014) and Allaire et al. (2015). To determine the
generalized sensitivity of nutrient loading to
changes in precipitation, temperature, streamflow,
and number of combined sewer overflow (CSO)
events per month, we consider the total differential
of nutrient load (L) resulting from simultaneous
changes in precipitation (P), temperature (T), flow
rate (Q), and number of CSOs (CSO), as shown in
Equation (4). CSOs may not exist in all urban
stream environments, and so the CSO term may be
removed if this model is applied to a stream that
does not experience nutrient inputs resulting from

CSO discharges. Though man-made, CSOs represent
additional sources of phosphorus inputs (via storm
discharge mixing with phosphorus-containing raw
sewage from the sewer system) to an urban stream
that are exacerbated during extreme storm events.
Because CSO events may increase due to variability
and extremes in climate, the CSO term was
included as a climate variable:

dL ¼ @L

@P
dPþ @L

@T
dT þ @L

@Q
dQþ @L

@CSO
dCSO ð4Þ

Based on Sankarasubramanian et al. (2001), the
mean values of each variable are used to estimate the
differentials, leading to

L� �L¼ @L

@P
ðP� �PÞ þ @L

@T
ðT� �TÞ þ @L

@Q
ðQ� �QÞ

þ @L

@CSO
ðCSO�CSOÞ ð5Þ

Each term is then divided by the mean load, �L,
and the three terms on the right are multiplied by

unity in the form of
�P
�P
;
�T
�T
;
�Q
�Q
, and CSO

CSO
, respectively, to

result in

L� �L
�L

� �
¼ @L

@P

�P
�L

P� �P
�P

� �
þ @L

@T

�T
�L

T � �T
�T

� �

þ @L

@Q

�Q
�L

Q� �Q
�Q

� �

þ @L

@CSO

CSO
�L

CSO� CSO

CSO

 !
ð6Þ

The four terms in parentheses in Equation (6) rep-
resent the percentage change from the mean, and
can be defined using lowercase variables l, p, t, q,
and cso so that Equation (6) can be rewritten more
compactly as

l ¼ �eP � pþ �eT � tþ �eQ � qþ �eCSO � cso ð7Þ

where

�eP ¼ @L

@P

�P
�L
; �eT ¼ @L

@T

�T
�L
; �eQ ¼ @L

@Q

�Q
�L
; and

�eCSO ¼ @L

@CSO

CSO
�L

are the precipitation, temperature, streamflow, and
CSO elasticity, respectively. Given that Equation (7)
is a linear model with no intercept term, we employ
ordinary least squares (OLS) multivariate linear
regression methods resulting in minimum variance
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and unbiased estimates of the four elasticity esti-
mates. The model parameter estimates are then the
elasticity estimates shown in Equation (7).

Nonparametric Model

Because the linear multivariate model in Equa-
tion (7) is based on the definition of the total differen-
tial given by the chain rule in Equation (4), we avoid
uncertainty regarding the use of a correct model form.
In other words, there are no model assumptions made
in the above derivation concerning the relationship
between the dependent variable of interest, L, and the
various independent variables, P, T, Q, and CSO.
Thus, our approach is nonparametric in the vicinity of
the mean, where the differentials are estimated. Even
if the relationship between the dependent variable L
and the various explanatory variables is nonlinear,
the linear relationship in Equation (7) in the vicinity
of the mean values of the explanatory variables still
holds. The primary assumption here is that the elas-
ticity generated from this approach can only reveal
sensitivity of the dependent variable to the various
explanatory variables, around their mean values.
Thus, the elasticities cannot represent the sensitivity
of the dependent variable to changes in extreme val-
ues of the various explanatory variables.

The resulting model in Equation (7) is fit using
multivariate OLS regression, which is attractive
because resulting estimates of elasticities are unbi-
ased and their standard errors, confidence intervals,
and even hypothesis tests are easily obtained. This
opens the possibility for corrections for heteroscedas-
ticity (occurs when the variance of error terms differ
across observations) (Stedinger and Tasker 1985;
Kroll and Stedinger 1998), autocorrelated model
errors (temporal correlation of residuals implies that
OLS estimators are no longer the best linear unbi-
ased estimator) (Draper and Smith 1981), and other
violations of OLS model assumptions (Johnston
1984). The explanatory power of the overall regres-
sion (i.e., the value of R2) is not preeminent for esti-
mation of elasticity, which relies on unbiased model
parameters with low standard errors, rather than
high model explanatory value. Instead, OVB is a crit-
ical issue and such bias tends to decrease as R2

increases. To enable proper statistical inference con-
cerning elasticity estimates, residuals of the regres-
sion model must be approximately independent (in
time) and normally distributed with a constant vari-
ance. Overall, we strive to build a multivariate model
that provides unbiased elasticity estimates with mini-
mum variance, while simultaneously exhibiting high
explanatory value to enable the model to be used for
other purposes such as load estimation.

Additional explanatory variables may be added to
a multivariate model as long as they improve model
explanatory power. Once additional explanatory vari-
ables are added, an analysis of the model sum of
squared errors may be used to determine which
explanatory variables have the greatest impact on
nutrient loading. Here, either F-tests (tests overall fit
of a regression model) or t-tests (tests statistical sig-
nificance of individual parameters of a regression
model) are suited to such analyses.

Parametric Model

Parametric modeling approaches are frequently
used in economics and hydrology and make critical
assumptions about the structure of the relationship
between the independent and dependent variables.
This approach leads to elasticity estimates that are
not computed about the mean values of the variables,
as shown in the form given in Equation (1).

In the field of economics, the concept of elasticity
is widely used to determine the sensitivity of demand
for a product to its price. This is termed price elastic-
ity and is an approach that generally does not depend
on mean values such as the elasticity in Equation (1),
but usually assumes a log-linear model relating the
independent and dependent variables

L ¼ h� PeP � TeT �QeQ � CSOeCSO � v; ð8Þ

where L, P, T, Q, and CSO are defined as in Equa-
tions (3–7); h, ɛP, ɛT, ɛQ, and ɛCSO are model coeffi-
cients; and v are lognormally distributed model
errors. Note that log-linear models of the form
given in Equation (8) are widely used in hydrology
as evidenced by hundreds of such models available
within the StreamStats water resources web appli-
cation (Ries et al. 2004). Taking derivatives of the
model coefficients in Equation (8) provides the elas-
ticity estimates corresponding to Equation (8), such
that

eP ¼ dL

dP

P

L
; eT ¼ dL

dT

T

L
; eQ ¼ dL

dQ

Q

L
; and

eCSO ¼ dL

dCSO

CSO

L
:

These elasticity definitions are more general than
in Equation (7) because they are not defined strictly
about the mean of the variables. However, estimation
of multivariate elasticities using Equation (8)
requires an assumption regarding the multivariate
power law model structure in Equation (8), which
was not a requirement for estimation of the elastici-
ties about the mean values in Equation (7).
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Model Interpretation

To highlight the importance of multivariate inter-
actions, elasticity estimates were computed based on
simple (bivariate) regressions between each explana-
tory variable separately. That is, the elasticity values
were estimated from the following bivariate equa-
tions: l ¼ �eP � p, l ¼ �eT � t, l ¼ �eQ � q, and l ¼ �eCSO�
cso, individually, instead of Equation (7), as well as
L ¼ h � PeP � v; L ¼ h � TeT � v; L ¼ h � QeQ � v, and
L ¼ h � CSOecso � v instead of Equation (8). These
bivariate values were also compared to the bivariate
water quality estimators developed by Jiang et al.
(2014), which were based on the median elasticity
estimator given in Equation (3).

An attempt was made to determine elasticity esti-
mates for each of the four seasons by estimating sep-
arate seasonal sensitivities using fixed effects with
interaction terms in both Equations (7 and 8). An
interaction term is defined as the product of two inde-
pendent variables that interact if the effect of one of
the variables differs depending on the level of the
other variable. In Equations (7 and 8), the binary
seasonal fixed effects variables were multiplied by
precipitation, temperature, and flow rate to deter-
mine whether or not the interactions between climate
variables and seasons would produce differing elasti-
city estimates based on season.

According to economic price elasticity of demand
principles, elasticity values <0.1 represent inelastic
behavior, whereas values >1.0 represent elastic
behavior. Thus, streamflow elasticity estimates >1.0
would imply that the response of total phosphorus
loading to changes in flow rate is elastic with that
elasticity increasing as values increase above unity.

The percentage of the model sum of squares corre-
sponding to each variable (%SS) may be used to com-
pare the importance of precipitation, temperature,
streamflow, and CSO events in terms of how much of
the variations in phosphorus load is explained by
each term. The variance inflation factor (VIF) can be
used to identify intercorrelation among the explana-
tory variables, with a VIF ≥ 10 denoting a severe
multicollinearity problem (Helsel and Hirsch 1992)
leading to suspect results that may not give valid
information regarding individual predictors (i.e.,
predictors may be redundant with respect to other
predictors).

CASE STUDY

In the following case study, we modeled the
response of phosphorus loads in the Alewife Brook, a

tributary to the Mystic River near Boston, Mas-
sachusetts, to changes in climate variables from 2007
to 2014. This temporal scale was chosen based on
availability of streamflow data, which began when
the USGS streamflow gage #01103025 was installed
at the brook in 2007. We applied Equations (7 and 8)
to estimate the generalized climate elasticity esti-
mates of total phosphorus loads in the brook.

Background

Alewife Brook is located in an urbanized area (see
Figure 1) and is a contributor of phosphorus to the
main stem of the Mystic River, which is on the Mas-
sachusetts 303(d) List of Impaired Waters requiring
calculation of a total maximum daily load (Mas-
sachusetts DEP 2014). Phosphorus originates from
sources within the watershed, including fertilizer
and animal waste runoff, erosion, and resuspension
of phosphorus-rich soil and sediment, and leaking
municipal sanitary systems. An additional source of
phosphorus that is specific to Alewife Brook comes
from the activation of CSOs during large rain
events. When storm drains are at capacity due to a
sizable rain storm, they direct stormwater to the
sewer system, where stormwater and sewer water
mix together and discharge into the brook through
CSOs.

Since 2000, unfiltered baseflow water samples have
been collected by the Mystic River Watershed Associ-
ation in Alewife Brook at monthly intervals and ana-
lyzed for total phosphorus content (MyRWA 2015). In
2014, storm event sampling (samples taken at
approximately hourly intervals throughout the dura-
tion of a storm) was performed to provide total phos-
phorus measurements during rain events. Monthly
average temperature and monthly total precipitation
data were acquired from the National Climatic Data
Center and used for the analysis (Station at Logan
Airport GHCND:USW00014739).

To develop long-term monthly estimates of total
phosphorus loads for periods during which measured
phosphorus concentrations were unavailable, a five-
parameter lagged regression equation was developed,
based on the seven-parameter LOAD ESTimator
(LOADEST) model suggested by Cohn et al. (1992):

ln½Load� ¼ b0 þ b1 � ln½Q� þ b2 � lnðQt�1Þ

þ b3 � sin
2pT
365

� �
þ b4 � cos

2pT
365

� �
þ e;

ð9Þ

where Q is the 15-min average discharge at the time
of sample collection, Qt�1 represents the previous
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day’s average discharge, T is Julian day of the year,
and ɛ accounts for model error. b1 through b4 are
coefficients corresponding to each explanatory vari-
able, Q, Qt� 1, and T. This model was chosen
because it is one of the many possible forms of the
LOADEST model developed and commonly used by
the USGS (i.e., see table 7 in Runkel et al. 2004;
USGS 2013) to estimate water quality loads from
discharge measurements, it provides a good fit to
the observations, and it is useful for computing
phosphorus loads from easily acquired data, such as
flow rate and day of year. Total phosphorus concen-
tration data from both storm event samples and
monthly baseflow samples during 2007–2014 were
used to model monthly average phosphorus loads
(Munson 2015). The measured concentration data
were converted into loads (mg/s) by multiplying the
measured phosphorus concentrations by the corre-
sponding 15-min average discharge in the Alewife
Brook (USGS gage #01103025; data approved for use
after processing and review) prior to input in model
Equation (9). Results of model Equation (9) in

comparison to measured data are provided in the
Supporting Information.

Multivariate Elasticity Methods

A time series of monthly total phosphorus loads
was obtained from Equation (9) and used as inputs in
Equations (7 and 8), with an additional term to rep-
resent the monthly number of CSO events at Alewife
Brook. Although CSOs could be considered an anthro-
pogenic source of phosphorus loading to the river,
they are included because CSO activation is exacer-
bated when storms are high intensity and variable.
Equations (7 and 8) were used to relate the time ser-
ies of monthly total phosphorus loads (estimated
using Equation 9) to precipitation, temperature,
streamflow, and the number of CSO events. Addition-
ally, given the results of Labeau et al. (2015) and
others, seasonal fixed effects were added to the mod-
els in Equations (7 and 8) to account for seasonal
fluctuations of phosphorus unaccounted for by the

FIGURE 1. Alewife Brook watershed (source: mysticriver.org; accessed July 25, 2017).
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temperature variable. Fixed effects are easily
accounted for within regression analyses by simply
including binary (0,1) variables that control for unob-
served heterogeneity associated with each season.
These seasonal fixed effects are taken into account by
including four additional input binary variables cor-
responding to the four seasons: spring (any day in
the months April, May, or June), summer (any day in
the months July, August, or September), fall (any
day in the months October, November, or December),
and winter (any day in the months January, Febru-
ary, or March). The seasonal binary variables were
assigned a value of either 1 or 0 depending on the
season during which the total phosphorus measure-
ment was taken. For instance, the spring binary vari-
able was given a value of 1 if the corresponding total
phosphorus value was observed during spring (April,
May, or June) or 0 otherwise. These seasonal fixed
effects may account for seasonal changes in phospho-
rus (Figure 2) not accounted for in sampling or mod-
eling procedures.

Estimates of elasticity in Equations (7 and 8) were
obtained using OLS regression, where model residu-
als were tested to ensure that they were approxi-
mately uncorrelated in time, homoscedastic, and well
approximated by a normal distribution. Helsel and
Hirsch (1992) outlined that residuals must follow
these patterns in order to obtain unbiased estimators
of the dependent variable, test hypotheses, and esti-
mate confidence intervals for regression coefficients.
The addition of fixed effects, as well as an event-
based CSO variable, assisted in removing potential

OVB, ensuring that the majority of the primary fac-
tors contributing to phosphorus loading were taken
into account. Concerns over possible serial correlation
were addressed using the Durbin Watson test, which
examines whether the regression model residuals
exhibit significant serial correlation.

RESULTS AND DISCUSSION

Climate Elasticity of Total Phosphorus

Two approaches (parametric and nonparametric) to
estimating the multivariate sensitivities of total phos-
phorus to changes in precipitation, temperature,
streamflow, and number of CSOs were developed
using Equations (7 and 8), and the results are
reported in Table 1. Each elasticity estimate has a
corresponding t-value defined as the ratio of each
elasticity estimator to its standard deviation. Since
such t-values follow a Student’s t distribution, we also
provide P-values corresponding to each elasticity esti-
mate, defined as the probability that the estimated
elasticity value is equal to zero, under the null
hypothesis that is actually equal to zero. The P-
values reported in Table 1 are all <0.03, which indi-
cates that it would be extremely unlikely that these
elasticity values are actually zero. In addition,
Table 1 outlines the percentage of the model sum of
squares corresponding to each explanatory variable

FIGURE 2. Simplified conceptual model of seasonal phosphorus cycling in Alewife Brook (based on Boman et al. 2002).
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(%SS) and the VIF. Durbin Watson test values were
between 1.5 and 2.5; therefore, model residuals did
not exhibit significant serial correlation.

A number of inferences may be drawn from the
results in Table 1 based on the economic price elastic-
ity of demand principles discussed in the Methodology
(Parametric Model) section. The precipitation elasticity
of total phosphorus loads, eP, is 0.272 for Equation (7)
and 0.100 for Equation (8), indicating elastic or rela-
tively elastic behavior. Table 1 also demonstrates that
of all the explanatory variables, total phosphorus loads
are most sensitive to changes in monthly streamflow.
This may signify that the dynamic streamflow condi-
tions that dictate erosion and sediment recycling
within the river exacerbate phosphorus conditions
more so than the impacts of precipitation alone. It is
important to realize that temperature elasticities will
depend on the units of temperature used, and compar-
ison can only be made between temperature elastici-
ties when the same temperature units are used in

such comparisons, which is the case in this study.
Elasticities are generally invariant to the units used,
an advantage of using elasticity; however, this is only
true for variables with homogeneous unit conversions,
as is the case for nearly all variables other than
temperature.

CSO had considerable explanatory value, as
evidenced by its associated high t-values and very low
P-values. However, Table 1 shows that the CSO
elasticity of total phosphorus was only 0.0473 for
Equation (7) and 0.0155 for Equation (8), indicating
that monthly total phosphorus loads appear to be rela-
tively insensitive to increases in the number of CSO
events per month when compared to other variables.
The influence of seasonal fixed effects combined with
this CSO term improved the model explanatory value
while correcting for OVB. These results indicate that
even though total phosphorus loads are not highly sen-
sitive to changes in the number of CSOs, the occur-
rence of CSOs is extremely important for predicting
the actual magnitude of total phosphorus loads.

The attempt to determine elasticity estimates for
each of the four seasons by estimating separate sea-
sonal sensitivities using fixed effects and interaction
terms in Equations (7 and 8) resulted in P-values cor-
responding to the interaction effects that were ≫0.05
in both models. Thus, even though the magnitude of
phosphorus loading changes from season to season,
multivariate sensitivities (or elasticity estimates)
appear to remain constant.

Elasticity estimates from Equations (7 and 8) are
not expected to agree exactly because each has a dif-
ferent interpretation: Equation (7) assumes no model
form and can only represent sensitivity around the
mean values of the various variables, whereas Equa-
tion (8) assumes log-linear model form and results in
a more generalized interpretation of elasticity which
is constant over the complete range of variability of
all the variables, and is thus not limited to sensitivity
about the mean. Both Equations (7 and 8) do, how-
ever, lead to the important conclusion that phospho-
rus loading is sensitive to changes in precipitation,
temperature, discharge, and CSO events, which must
all be considered simultaneously to fully understand
the effects of climate change on a watershed.

Our elasticity estimates indicate similar results for
streamflow elasticity using both multivariate and
bivariate methods. However, bivariate methods show
increased precipitation and CSO elasticity as well as
decreased temperature elasticity, compared to multi-
variate methods, as indicated in Figure 3. In general,
the bivariate results should not be trusted due to the
now well-known caveats associated with OAT sensi-
tivity analyses. Table 2 compares the coefficients of
determination (R2 and R2 predicted) corresponding
to bivariate vs. multivariate elasticity estimation

TABLE 1. Comparison of climate elasticity estimations
in relation to monthly average total phosphorus loads.

Result Precipitation Temperature CSO Flow rate

Equation 7
eP,T,CSO,Q 0.272 0.556 0.0473 1.12
t 5.34 3.91 2.85 19.86
P 0.00 0.00 0.01 0.00
%SS 67.12 1.19 7.14 19.28
VIF 2.52 5.34 1.91 3.15
R2 96.2%
R2 (adj) 95.8%
R2 (pred) 95.1%

Equation 8
eP,T,CSO,Q 0.100 0.570 0.0155 1.23
t 2.18 4.29 2.42 19.28
P 0.03 0.00 0.01 0.00
%SS 47.42 4.32 4.36 35.64
VIF 1.78 4.68 1.48 2.05
R2 92.1%
R2 (adj) 91.3%
R2 (pred) 90.2%

Notes: CSO, combined sewer overflow; VIF, variance inflation factor.
(1) Although Equation (7) requires that each model be fit without
an intercept term, R2 values are reported for Equation (7) fit with
an intercept term only to help identify presence or absence of
omitted variable bias. (2) e refers to the elasticity estimate, not an
error term. (3) Variables P, T, CSO, and Q refer to precipitation,
temperature, CSO events, and flow rate, respectively. (4) Variables
t and P in this table refer to t-values (ratio of each elasticity esti-
mator to its standard deviation) and P-values (probability that the
estimated elasticity value is equal to zero), respectively. (5) %SS
refers to the percent sum of squares, and demonstrates the contri-
bution of a particular variable to overall R2. (6) R2 (adj) is the per-
centage of response variable variation explained by its
relationship with one or more predictor variables, adjusted for the
number of predictors in the model. (7) R2 (pred) shows how well
the model will predict responses for new observations, with larger
values of R2 (pred) indicating models of greater predictive ability.
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methods. The multivariate nonparametric and para-
metric methods exhibit R2 values closer to 100% than
corresponding bivariate methods, indicating that the
multivariate elasticity models more accurately reflect
the properties of the load data and would be expected
to yield models with lower OVB than corresponding
bivariate models. We conclude that it is necessary to
account for the multivariate interactions among pre-
cipitation, temperature, and streamflow to fully
understand and explain their impacts on nutrient
loading in this watershed. Elasticities estimated from
bivariate models may represent the general relation-
ship between nutrient loading and a variable of inter-
est in some cases, but these methods cannot reflect
the complex nonlinear multivariate relationships
inherent among nutrients, precipitation, temperature,
and streamflow. Additionally, it is important to
include event-based factors that contribute to nutri-
ent loading and seasonal fixed effects in models that

estimate elasticity to reduce OVB and confidence
intervals while increasing model explanatory value.

Unlike common forms of sensitivity analyses, the
nonparametric multivariate elasticity approach intro-
duced in Equation (7) is standardized by normalizing
each deviation by the mean, rather than the standard
deviation. This model does not require any assump-
tions other than being restricted to estimation of sen-
sitivity about the mean, because the derivation is
based solely on the chain rule. That derivation
resulted in a multivariate linear model without an
intercept term, which is independent of the form of
the original model that relates nutrient load to the
explanatory variables. This is quite important
because the form of that relationship dictates the
value of the elasticity, and since that form is
unknown, a nonparametric approach is attractive.
Many sensitivity analyses differ from the approach
presented in Equation (7) because they are based on

FIGURE 3. Comparison of bivariate and multivariate elasticity estimation methods
(eP = precipitation elasticity, eT = temperature elasticity, eQ = flow elasticity, and eCSO = CSO elasticity).

TABLE 2. Comparison of coefficients of determination (R2) for bivariate and multivariate elasticity estimation methods.

R2 (R2 predicted) (%) for Bivariate and Multivariate Elasticity Methods

Bivariate Elasticity Multivariate Elasticity

Nonparametric (Equation 7) Parametric (Equation 8) Nonparametric (Equation 7) Parametric (Equation 8)

P 67.1 (58.9) 40.6 (37.2)

96.2 (95.1) 92.1 (90.2)
T 1.30 (0.00) 3.40 (0.00)
Q 82.2 (81.2) 70.2 (68.9)
CSO 46.2 (32.0) 23.7 (19.7)

Note: (1) Variables P, T, CSO, and Q refer to precipitation, temperature, CSO events, and flow rate, respectively. (2) R2 (adj) is the percent-
age of response variable variation explained by its relationship with one or more predictor variables, adjusted for the number of predictors
in the model. (3) R2 (pred) shows how well the model will predict responses for new observations, with larger values of R2 (pred) indicating
models of greater predictive ability.
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a multivariate regression structural model form. Such
a model assumption limits the analysis, especially
when R2 is low (<60%; indicating nonlinearity of the
assumed linear model), because it is then question-
able to use the values of the coefficients for ranking
input factors (Saltelli et al. 2004; Saltelli and Annoni
2010). This study demonstrates that the discrepancy
between bivariate and multivariate estimates of pre-
cipitation elasticity to phosphorus loading is caused
in part by OVB present in bivariate elasticity estima-
tion. The large estimates of precipitation and CSO-
event elasticity shown in the bivariate analysis sum-
marized in Figure 3 are likely compensating for omit-
ted explanatory variables, thus overestimating the
effect of precipitation and CSOs on nutrient loading.

An additional benefit of Equation (8) is that the
model can provide both elasticity estimates and phos-
phorus loads, an advantage in practice. The final log-
linear model is as follows:

L ¼ h� P0:1001 � T0:5702 �Q1:230 � CSO0:0115

where

h ¼ 11:82 if spring
h ¼ 16:41 if summer
h ¼ 14:98 if fall
h ¼ 12:97 if winter

8><
>:

The influence of seasonal fixed effects is repre-
sented in the model intercepts, h, which demonstrate
that phosphorus loads are higher in the summer and
fall seasons, rather than in spring and winter. This is
consistent with the total phosphorus load estimates
provided by the LOADEST model (Figure 4). Possible
explanations for higher phosphorus loading during
the summer months include increased temperature
mobilizing phosphorus from soils and sediments (Del-
pla et al. 2009; Sardans et al. 2008; Tang et al. 2016)
and increased frequency of high-volume storms
resulting in bank erosion, remobilization of

sedimentary particulate phosphorus (Correll et al.
1999; Wetzel 2001), and more frequent CSO events.
During autumnal senescence, organic phosphorus is
released from plants and is thus an additional input
of phosphorus to the water column (Carpenter et al.
1998; Keskitalo et al. 2005). As shown in Table 1, the
parametric model has high explanatory value
(R2 = 92.1%), which is higher than many total phos-
phorus load models developed by other investigators
(see Table 3). Our findings indicate that the use of
fixed effects models combined with inclusion of the
number of CSO events holds promise for improving
regression models of nutrient loads, as evidenced by
the much greater goodness of fit associated with the
models developed here than in previous studies.

Although our method for determining elasticity esti-
mates in Equation (8) relies on an assumed log-linear
model form, those estimates are not restricted to inter-
pretation of sensitivity about mean values as is the
case when using Equation (7). It is difficult to deter-
mine whether Equation (7) is preferred to Equa-
tion (8), or vice versa, because they produce elasticities
with slightly different interpretations. Instead, this
study presents two alternative methods for
determining sensitivity of nutrients to changes in
climate. It was found that the difference in elasticity
estimates between the two methods was relatively
small for each climate variable. Both methods have
advantages over existing sensitivity analysis methods
because they avoid the perfunctory complications asso-
ciated with OAT sensitivity methods by considering
several variables that may contribute to water quality
changes simultaneously. By accounting for the interac-
tions among precipitation, temperature, and stream-
flow on nutrient loading, both models avoid the
negative effects of OVB so that one variable is not over-
compensating for another omitted variable. Additional
explanatory variables as well as fixed effects may be
included in the analysis to strengthen explanatory
power of the model while determining sensitivity of
water quality to variables simultaneously.

Model Interpretation and Applications

Although it is often difficult to identify the many
sources of phosphorus loading into a watershed, the
impacts of these sources can be represented using the
methodology outlined in this paper. Elasticity esti-
mates enable us to understand how total phosphorus
loading may respond to the simultaneous and inter-
acting changes in precipitation, temperature, stream
discharge, and number of CSO events. Our approach
enables us to predict how phosphorus conditions may
respond to various future climate scenarios. For
example, a temperature elasticity of total phosphorus
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FIGURE 4. Comparison of modeled phosphorus data
and multivariate parametric elasticity model.
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loads value of 0.57 implies that if temperature during
a given month increases by 10%, Alewife Brook may
see a 5.7% increase in total phosphorus loads for that
month. In the context of the 2007 IPCC Special
Report on Emissions Scenarios, which reports that
the global average surface temperature will increase
by 0.5°C (0.9°F; 255.9 K) by the 2020s (Solomon et al.
2007), this finding has relevance for characterizing
potential nutrient loads in the future.

Because our elasticity estimates are based on a
model that uses fixed effects to represent seasonal
variation, this estimate of phosphorus sensitivity to a
10% temperature change is able to distinguish
between actual changes in climate and normal sea-
sonal variation. Pairing elasticity data with regional
climate predictions can better inform future water-
shed planning. For instance, temperature scenarios
specific to Cambridge, which is also part of the Ale-
wife Brook watershed, project that annual tempera-
ture could increase by about 6% in 2030 and by as
much as 18% in 2070 (Kleinfelder, 2015). Thus, if
temperature increases by 6% during a given month
in 2030, Alewife Brook may see a 3.4% increase in
total phosphorus loads for that month. If temperature
increases by 18% during a given month in the year
2070, phosphorus loads at Alewife Brook may
increase by 10%. Although water managers do not
have the ability to control future climate, they are
capable of creating strategic plans to reduce the
impacts of climate variability on phosphorus loading
within a basin. Elasticity estimates draw attention to
the climatic factors that will impact a water body
with the greatest magnitude, potentially improving
the organization of best management practices to
implement for nutrient load reduction.

Limitations

There are numerous limitations to the multivariate
statistical models and methods introduced here. In
all modeling studies, OVB is always present to some
extent, unless goodness of fit is perfect (i.e., R2 = 1),
which is never the case in practice. Some potential
explanatory variables were not included here due to
lack of monthly data over the study period, including
changes in: impervious coverage, soil compaction,
water imports and exports, water infrastructure, veg-
etation removal, population growth, lawn area, and
fertilizer use. We emphasize, however, that the goal
of this study was to elucidate the effects of changing
climate variables on nutrient loads, including vari-
ables affected by a changing climate, such as CSO
releases, rather than on the impacts of direct anthro-
pogenic influences on nutrient loads.

The inclusion of fixed seasonal effects terms in the
models may complicate the way in which the models
are used with respect to anticipated shifts in seasonal
climate patterns. Future research that explores the
impacts of climate change on season length and distri-
bution throughout the calendar year should be imple-
mented in this model structure to improve climate
elasticity estimates of total phosphorus loads.
Although examining sensitivity of phosphorus loading
to climate variables on a monthly scale will generally
account for seasonal effects, it is possible that the
monthly scale may obscure important intra-month
event-based and seasonal relationships among the
response and independent variables. Additional stud-
ies may consider evaluating the sensitivity of phospho-
rus loading to climate variables at a daily or event
scale to further examine the effects of event-based

TABLE 3. Coefficients of determination for multivariate total phosphorus load models that include climate-independent variables.

Reference Regression Equation R2 (%)

Driver and Tasker (1990) Ln[TP(lb)] = 262 + 0.828 9 Ln(Total storm rainfall; inches) + 0.645 9 Ln(Drainage area;
sq. mi.) + 0.583 9 Ln(Industrial land use; %) + 0.181 9 Ln(Commercial land use; %)
� 0.235 9 Ln(Nonurban land use; %) � 1.376 9 Ln(Mean annual rainfall; inches)
+ 1.548 9 Ln(Bias correction factor)

72

Driver and Tasker (1990) Ln[TP(lb)] = 0.153 + 0.986 9 Ln(Total storm rainfall; inches) + 0.649 9 Ln(Drainage area;
sq. mi.) + 0.479 9 Ln(Impervious area; %) + 1.543 9 Ln(Max precipitation intensity; inches)
+ 1.486 9 Ln(Bias correction factor)

64

Driver and Tasker (1990) Ln[TP(lb)] = 53.2 + 1.019 9 Ln(Total storm rainfall; inches) + 0.846 9 Ln(Drainage area; sq.
mi.) + 0.189 9 Ln(Commercial land use; %) + 0.103 9 Ln(Residential land use; %) � 0.16
9 Ln(Nonurban land use; %) � 0.754 9 Ln(Mean minimum January temperature; °F) + 2.059
9 Ln(Bias correction factor)

54

Arheimer and Liden (2000) Ln(TP; kg/m2) = �1.25 � 0.078(Soil moisture; mm)2 � 0.63sqrt(Flow rate; mm/day) 60

Brezonik and Stadelmann (2002) TP(kg/event) = �1.205 + 0.801(Precipitation; cm) + 0.244(Precipitation intensity; cm/h) + 0.461
(Drainage area; acres)

40

Smith et al. (2003) Log(TP; mol per km2/yr) = 2.72 + 0.36 log(Population; people per km2) + 0.78 log(Runoff; m/yr) 58

Note: TP, total phosphorus.
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factors and intra-month shifts in climate variables on
the climate elasticity of phosphorus loading.

Another potential limitation of this study is that
the nutrient data upon which the elasticity model
Equations (7 and 8) rely are based on model esti-
mates themselves from Equation (9). This is because,
unlike streamflow, which is often monitored nearly
continuously, most water quality constituents are
measured only intermittently. Therefore, the data
employed in nutrient loading studies, including the
present study, tend to be based in part on models
such as Equation (9), and this fact must be consid-
ered in any corresponding uncertainty analysis or
application of model Equations (7 and 8). The sam-
pling results used in Equation (9) were based on
storm event sampling conducted in 2014 in combina-
tion with baseflow sampling performed from 2007 to
2014. Although Equation (9) is designed to yield
unbiased estimates of annual load regardless of sam-
ple size, using only one year of storm sampling com-
bined with seven years of baseflow sampling may
lead to increased uncertainty. Nonetheless, it was
important to include as much phosphorus loading
and flow rate data as was available to better repre-
sent the responses of the brook to a range of condi-
tions. In addition, the representativeness of climate
data corresponding to the watershed defined by the
river location of interest is always a concern because
most long-term measured climate data are only avail-
able for point locations, whereas spatially representa-
tive watershed estimates, such as those modeled
using PRISM (NACSE 2017), may improve the preci-
sion of the sensitivity analysis.

There are always concerns over scarcity of both sam-
pled total phosphorus and flow rate data, and possible
sampling errors (e.g., not taking enough samples to
represent the full hydrograph of the storm). Further
research on this topic should include development of
models for multiple sites in multiple regions analogous
to the work of Roman et al. (2012) for sediment loads,
as well as consideration of biologically available forms
of phosphorus as opposed to total phosphorus.
Although water quality records are usually more
sparse than streamflow records, improved sampling
and modeling efforts over time will lead to improve-
ments in our ability to detect long-term climate trends
associated with nutrient loading.

CONCLUSIONS

There is now a relatively large literature that
explores the nondimensional sensitivity, termed elas-
ticity, of streamflow to numerous climatic and

watershed factors, yet there is only a minimal corre-
sponding literature concentrating on the sensitivity
of nutrient loading to climate change. This study
attempts to begin to bridge this gap by introducing
two simple multivariate nondimensional sensitivity
analysis techniques (nonparametric and parametric)
for evaluating the impact of climatic and other water-
shed influences on phosphorus loads. A nonparamet-
ric multivariate regression method, Equation (7), for
determining the sensitivity of nutrient loading to
changes in climatic factors, such as precipitation,
temperature, flow rate, and other possible explana-
tory variables, was introduced. Compared to other
methods of sensitivity analysis, this approach is
advantageous because it enables a multivariate anal-
ysis yet is not dependent on critical model form
assumptions and is thus termed nonparametric. This
model may also be used to estimate seasonal total
phosphorus loads based on the input variables.

Overall, this study shows that nutrient loading in
the study watershed is sensitive to changes in precip-
itation, temperature, streamflow, and event-based
factors such as CSO. At Alewife Brook, total phospho-
rus loads appear to be more sensitive to changes in
monthly flow rate than to monthly precipitation.
Although increases in total monthly precipitation will
likely have significant impacts on monthly phospho-
rus loads, an increase in the number of storms per
month could produce the conditions necessary for ero-
sion and sediment resuspension. Future changes in
temperature, although less likely to affect total phos-
phorus loading than streamflow changes, may
increase nutrient transport into the river through
increased microbial activity in soil and sediments.
The addition of seasonal fixed effects and a CSO vari-
able did not alter sensitivity analysis results, but did
improve the explanatory value of both models to the
extent that our models appear to have greater good-
ness of fit than previous models of total phosphorus
loads.

This study introduces a methodology that may
improve our general understanding of the complex
interactions among precipitation, temperature,
streamflow, and nutrient loading using OAT sensitiv-
ity approaches and interpreting multivariate model
coefficients in an elasticity context. The methodology
introduced in this study can be applied to a broad
array of water quality scenarios and may include
additional climatic and other factors that were not
considered in the case study, such as vegetation and
runoff characteristics, changes in water infrastruc-
ture, land management, and population growth.
Future studies might consider a multivariate model
to describe the integrated impact of nitrogen and
phosphorus loadings together when evaluating elastic
response to climate variables. To improve
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meaningfulness of such analyses, more extensive
records of nutrient loading are needed and the mod-
els should be extended to multiple sites and regions
analogous to the regional models of sediment loads
developed for the eastern U.S. by Roman et al.
(2012).

SUPPORTING INFORMATION

Additional supporting information may be found
online under the Supporting Information tab for this
article: Load estimator output and associated model
statistics.
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