
Journal of Hydrology 557 (2018) 109–115
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
Research papers
Prewhitening of hydroclimatic time series? Implications for inferred
change and variability across time scales
https://doi.org/10.1016/j.jhydrol.2017.11.053
0022-1694/� 2017 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail addresses: saman.razavi@usask.ca (S. Razavi), rvogel@tufts.edu (R. Vogel).
Saman Razavi a,⇑, Richard Vogel b

aGlobal Institute for Water Security, School of Environment and Sustainability, and Department of Civil, Geological, and Environmental Engineering,
University of Saskatchewan, Saskatoon, Canada
bDepartment of Civil and Environmental Engineering, Tufts University, Medford, MA, United States
a r t i c l e i n f o

Article history:
Received 15 October 2017
Received in revised form 27 November 2017
Accepted 29 November 2017
Available online 2 December 2017

Keywords:
Prewhitening
Time series analysis
Hurst effect
Tree rings
Paleo-hydrology
Residual chronology
Climate variability
Autoregressive (AR) models
a b s t r a c t

Prewhitening, the process of eliminating or reducing short-term stochastic persistence to enable detec-
tion of deterministic change, has been extensively applied to time series analysis of a range of geophysical
variables. Despite the controversy around its utility, methodologies for prewhitening time series continue
to be a critical feature of a variety of analyses including: trend detection of hydroclimatic variables and
reconstruction of climate and/or hydrology through proxy records such as tree rings. With a focus on the
latter, this paper presents a generalized approach to exploring the impact of a wide range of stochastic
structures of short- and long-term persistence on the variability of hydroclimatic time series. Through
this approach, we examine the impact of prewhitening on the inferred variability of time series across
time scales. We document how a focus on prewhitened, residual time series can be misleading, as it
can drastically distort (or remove) the structure of variability across time scales. Through examples with
actual data, we show how such loss of information in prewhitened time series of tree rings (so-called
‘‘residual chronologies”) can lead to the underestimation of extreme conditions in climate and hydrology,
particularly droughts, reconstructed for centuries preceding the historical period.
� 2017 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction and objective

Prewhitening consists of fitting time series models such as
autoregressive (AR) or autoregressive moving average (ARMA)
models to an ‘‘original” time series and separating out the time
series of residuals from the original series, which becomes the
‘‘prewhitened” series. The difference between the underlying orig-
inal (presumably true) process and a prescribed model process will
result in a realisation of ‘‘some” new process, which inherits
‘‘some” properties from the original process excluding (partly or
fully) the short-term persistence, which was removed by fitting
and effectively removing the AR or ARMA process. The question
is whether or not the properties of the prewhitened series still
carry the important information of interest embedded in the
respective original time series, including signals at a range of fre-
quencies (or time scales). The importance of this question cannot
be understated, as the prewhitened or ‘‘residual” time series form
the foundation for various types of analyses such as trend analysis
and paleo-reconstruction based on dendrochronology and other
proxy records.
In this paper, we investigate how prewhitening changes the
properties of a time series in ways other than short-term persis-
tence (i.e., the intended change). We assess the implications of
prewhitening for our inferences on variability of time series across
a range of time scales, which relates to the magnitude and signifi-
cance of trends and cycles at different frequencies. For this pur-
pose, we utilize examples based on long tree-ring time series,
collected in the headwaters of Saskatchewan River Basin, Canada,
that exhibit significant cross correlation with streamflows. The
context and focus of this work is tailored to applications in recon-
struction of paleo-climate and paleo-hydrology. However, our find-
ings may also be of relevance for other types of analyses using
prewhitening such as in trend detection of hydroclimatic variables
with the Mann-Kendall and other tests (Bayazit and Önöz, 2007;
Douglas et al., 2000; von Storch, 1995; Yue and Wang, 2002). We
note that the analyses and implications discussed in this study
are not intended to undermine the general utility of prewhitenning
in the full range of its applications. Instead, this paper attempts to
highlight some possible caveats and pitfalls that one might need to
consider when using prewhitenning.
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2. Applications of prewhitening: The status quo

2.1. Prewhitening in trend analysis

Trend analysis of time series aims to identify a deterministic
trend that has a physical basis and is likely to continue in the
future. The Mann-Kendall (MK) trend test, named after Mann
(1945) and Kendall (1975), is a widely used means for trend detec-
tion in a range of hydroclimatic and other variables. Ideally this
test would only be used when there is a sound physical basis
and understanding for the deterministic drivers that may be caus-
ing the trend. It is a rank-based nonparametric test with a null
hypothesis that the time series under investigation has no trend
(independent and identically distributed data), and with the alter-
native hypothesis that a monotonic (upward or downward) trend
exists in the time series. An underlying assumption in this test is
that the time series is not serially correlated, whereas this assump-
tion is frequently violated in practice when dealing with hydrocli-
matic time series. A positive serial correlation increases the
likelihood of rejecting the null hypothesis when it might be true
(the probability of type 1 error would become larger than what
the attained significance level indicates). Prewhitening was pro-
posed by von Storch (1995) as a remedy to this issue, and since
then has been used extensively with the MK test (Hamed, 2009;
Lacombe et al., 2012; Zhang et al., 2000).

Yue et al. (2002) and Matalas and Sankarasubramanian (2003)
examined the interaction between a linear trend and an AR(1)
process and showed how the existence of serial correlation alters
the variance of the estimate of the MK and linear regression
tests, respectively. Yue and Wang (2002) asserted that the use
of prewhitening with the MK test is based on an implied, but
strong assumption that prewhitening could remove the AR pro-
cess from a time series without affecting the existing trend,
while it would seriously distort the test result. This led to a
debate about the impact of prewhitening on trend detection
and whether or not it should be applied (Bayazit, 2015; Bayazit
and Önöz, 2007; Zhang and Zwiers, 2004). Yue and Wang
(2002) showed that removing a positive AR(1) process will
remove a portion of the underlying trend and hence reduce the
likelihood of accepting the null hypothesis when it may be false
(Type 2 error), thereby lowering the power of the test. Despite
these implications, prewhitening continues to be a critical feature
of trend analysis studies and the use of more advanced time ser-
ies models, such as FGN, FARMA (Hamed, 2009) and ARIMA
(Klaus et al., 2015), that possess longer term persistence are
increasingly common.
2.2. Prewhitening in paleo-reconstruction

Reconstructions of paleo-hydroclimatic conditions, including
past precipitation, temperature, and streamflow, can be derived
from proxy records such as tree-ring widths. Tree rings archive
information on annual (and sub-annual) hydro-climatic conditions
across centuries, thereby providing a platform for characterizing
change and variability in climate and hydrologic variables across
time scales, from annual to multi-decadal. Exploiting the correla-
tion between time series of tree-ring widths (detrended to remove
age-related effects) and hydro-climatic variables is often the basis
for reconstruction approaches. Reconstruction approaches typi-
cally employ multivariate statistical methods such as regression
to relate one or more tree-ring time series, called ‘‘chronologies”,
to the climate/hydrologic variable of interest. These models are cal-
ibrated and tested on the common period of observational and
proxy records and then used to reconstruct the past (Brockway
and Bradley, 1995; Meko et al., 2012).
One challenge is that short-term persistence (here considered
synonymous with an autoregressive correlation structure) in
chronologies, is typically significantly higher than that of climatic
or hydrologic variables (see Razavi et al., 2016 for discussion),
due to biological carry-over effect of trees. Prewhitening was rec-
ommended by Cook (1985) to remove such short term persistence
in tree-ring analysis, and since then, has been taught and used
extensively to remove or diminish the inflated short-term persis-
tence prior to paleo-reconstruction (e.g., Van Deusen, 1989;
Axelson et al., 2009; Cleaveland and Duvick, 1992; Cleaveland
and Stahle, 1989; Cook and Pederson, 2011; Fleming and
Sauchyn, 2013; Gangopadhyay et al., 2009; Loaiciga et al., 1993;
Maxwell et al., 2011; Meko et al., 2011; Meko et al., 2007;
Sauchyn et al., 2011; Woodhouse et al., 2006; Woodhouse and
Lukas, 2006b). The prewhitened time series, called ‘‘residual
chronologies”, are used as predictors to reconstruct a range of
hydroclimatic variables, thereby informing water resources man-
agement, particularly about the past droughts (e.g., Woodhouse
and Lukas, 2006a,b).

3. Structure of variability across time scales

The structure of variability across time scales (SVATS) herein
refers to the way in which the variance (rate of variability) of a pro-
cess changes with respect to changes in the time scale of analysis.
Suppose k denotes the time scale in years and r2ðkÞ denotes the
variance of a given time series (i.e., a realization of a process) at
time scale k. For example, r2ð1Þ is the variance of the time series
on the annual scale, r2ð2Þ is the variance of the two-year time ser-
ies derived from that annual time series (by averaging every two
consecutive years), and r2ðkÞ is the variance of its derived k-
year-scale time series. When the number of data values in the
annual time series is T (for T years), the number of data values in
its two- and k-year-scale time series are T/2 and T/k. In general,
the variance r2ðkÞ is expected to decrease as the time scale k
increases. The rate and pattern of such a decrease in variance, how-
ever, are different for different geophysical time series.

3.1. Illustrative example

To illustrate the SVATS in time series, Fig. 1a and b show ‘‘vari-
ance vs. time scale” plots, on the log-log scale, for two different
tree-ring time series (standard chronologies) called SFR and CAB
for periods 1038-2008 and 1440-2003, respectively. These
chronologies are located in Saskatchewan River Basin, Canada
and exhibit significant positive correlations with their local
streamflows. Details of these chronologies are available in Razavi
et al. (2015). With no loss of generality, in this figure, all of the time
series shown are standardized at the annual time scale (base time
scale) so that they all have an annual variance of unity (i.e.,
r2ð1Þ ¼ 1). The points shown in Fig. 1 correspond to the behavior
of the original time series and the residuals after fitting an AR(1),
AR(3) and ARMA(1,1) model. The curves correspond to the AR(1),
AR(2), AR(3), and ARMA(1,1) models fitted to the original time ser-
ies. Section 3.2 presents the modelling details, and Section 3.3 dis-
cusses the properties of the resulting residuals.

Evidently in both cases, r2ðkÞ of the original time series
decreases with the increase in k at rates smaller than that of a
purely random process (i.e., white noise). This behaviour is a man-
ifestation of the stochastic structure as a function of time scale
(irregular long-term changes and trends at a range of frequencies).
Such difference from a random process is also commonly attribu-
ted to persistence in geophysical time series at a range of time
scales, particularly long-term persistence and the ‘‘Hurst Phenom-
enon” (Hurst, 1951; Klemeš, 1974; Mudelsee, 2007; Salas et al.,



0.01

0.1

1

011 1002     3       4     5 20         30     40   50

0.02

0.03
0.04
0.05

0.2

0.3
0.4
0.5

Time Scale, k (years)

V
ar

ia
nc

e,
 σ

2 (
k)

Original Time Series

Residual Times Series – AR(1)

Residual Times Series – AR(3)

Residual Times Series – ARMA(1,1)

(a)

0.01

0.1

1

011 1002     3       4     5 20         30     40   50

0.02

0.03
0.04
0.05

0.2

0.3
0.4
0.5

Time Scale, k (years)

V
ar

ia
nc

e,
 σ

2 (
k) ARMA(1,1) Process

AR(3) Process

(b)

Original Time Series

Residual Times Series – AR(1)

Residual Times Series – AR(3)

Residual Times Series – ARMA(1,1)

Fig. 1. ‘‘Variance vs. time scale” plots with original and residual time series of (a) SFR and (b) CAB tree-ring chronologies. The fitted AR and ARMA processes are shown by
curves.
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1979). The slope of a line passing though the points (not shown
here) on the variance vs. time scale plot is known to be 2H-2,
where H is called the ‘‘Hurst exponent” and is 0.5 for white noise
(see Beran, 1994, page 92).
3.2. Performance of AR and ARMA models in reproducing SVATS

AR models are models of short-term persistence with a mem-
ory length controlled directly by the model order. Because of
their short memory length, these models have been commonly
assumed to be appropriate to capture and remove short-term
persistence (autocorrelation) in time series. To generate the
curves representing the AR and ARMA processes on
Fig. 1a and b, we fitted AR(p) and ARMA(p, q) models to the time
series, with p ranging from 1 to 6 and q = 1 (using SAMS soft-
ware, Sveinsson et al., 2007), and used the corrected Akaike
Information Criterion (Hurvich and Tsai, 1993) for their ranking;
accordingly, ARMA(1, 1) and AR(3) were the best and second best
models for both of the time series.

Evidently, the different AR and ARMA processes can reproduce
the underlying SVATS in the time series at different time-scale
ranges from multi-annual to multi-decadal and longer, depending
on their orders (i.e., the values of p and q). For example, AR(1) can
accurately reproduce the underlying structure of variability up to
approximately �5-year scale, while for larger time scales, the rate
of decrease in variance approaches that of a random process. How-
ever, AR(3) and ARMA(1,1) can reproduce the structure of variabil-
ity for a wide range of time scales (even multi-decadal). Stated
differently, a visual inspection of the plot suggests that, in these
cases, the slope of AR(1) asymptotically approaches that of the ran-
dom process between 5- and 10-year time scales, AR(2) does so
between 10- and 20-year time scales, and AR(3) and ARMA(1,1)
do so at time scales of greater than 20 years. We note that AR
and ARMA processes with higher orders can reproduce this SVATS
even at longer time scales (not shown).
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3.3. SVATS in prewhitened time series

We showed above that the AR and ARMA models are capable of
capturing and reproducing SVATS across a range of time scales.
This capability directly affects the resulting prewhitened time ser-
ies and limits the statistical properties that the prewhitened (resid-
ual) time series will inherit from the original time series. To assess
how and to what extent the resulting residual time series preserve
the SVATS of the respective original time series, let’s look at the
points already shown on Fig. 1a and b that represent residual time
series resulting from fitting the AR(1), AR(3), and ARMA(1, 1) pro-
cesses. As can be seen, the SVAT within the residual time series are
drastically distorted or completely lost in the time-scale range
shown. Such a loss of variance corresponds to a complete loss in
information to the extent that the variability of the residual time
series obtained from AR(3) and ARMA(1,1) is quite similar to that
of a random process (no signal). This suggests that the effect of
prewhitening on the residual time series goes well beyond remov-
ing short-term persistence (auto-correlation) as is so often
assumed (see Section 2).

4. Implications and discussion

The possible distortion or loss of the SVAT can have serious
implications that risk the credibility of any resulting statistical
inferences performed on the residual time series. To further clarify
these implications, we provide an alternative representation of the
behaviour shown in the previous section. Fig. 2a shows the original
SFR time series along with the respective residual time series
obtained by fitting an AR(3) model – both of the time series are
standardized to have identical average and variance at the annual
time scale. This figure also shows 15- and 50-year moving average
time series of the annual time series. Fig. 2b focuses on a sub-
period (1600–2000) of Fig. 2a to better visually compare the orig-
inal and residual time series at the annual time scale. Although the
original and residual time series at the annual time scale possess
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Fig. 2. (a) The original and residual time series of the SFR chronology along with their 15
shown in (a) for sub-period 1600–2000. (c) The cumulative distribution functions (CDFs)
15-year time scale. The annual original and residual time series were standardized so th
identical variance and may seem consistent with each other over
time, their respective moving averages are significantly different.
In other words, there is a significant reduction in information
resulting from the removal of irregular trends and cycles in the
residual time series as a result of the removal of the persistent
component. The difference is particularly significant in the periods
of consecutive dry or wet years (e.g., see periods 1460–1520 and
1650–1700). This indicates that the residual time series signifi-
cantly underestimates the duration and extent of extreme (dry or
wet) periods.

Fig. 2c and d compare the cumulative distribution functions
(CDFs) of the original and residual time series at the annual and
15-year time scales, respectively. The annual-scale CDFs of the
two time series are alike. On the 15-year time scale, however,
the CDFs of the two are significantly different - the residual time
series possesses only about one quarter of the variability of the

original time series at the same time scale
r2
residual

ð15Þ
r2
original

ð15Þ ¼ 0:07
0:28 ¼ 0:25

� �
.

We note that the implications shown in the analyses above are
general and can be seen for any other time series. This may have
significant implications for the reconstruction of paleo-hydrology.
The point is any reconstruction of climate or hydrologic variables
for the centuries preceding the historical period inherits the statis-
tical properties (including the SVATS) from its predictors. There-
fore, if such residual time series (‘‘residual chronologies”) are
used, the resulting reconstructions or inferences can be misleading,
in particular in terms of the magnitude of extreme events – e.g., the
magnitude of extreme droughts would be underestimated.

In the context of trend analysis, the observations in Fig. 2 rein-
force the need to carefully distinguish the effects of trends and
auto-correlation in trend detection. Yue et al. (2002) suggested
the removal of a trend component from a time series prior to
prewhitening as a first step and then adding the trend back to pre-
whitened time series for the Mann-Kendall test. This approach has
been frequently used in the literature as a way to separate the two
effects. It often requires the user to pre-specify a form for a
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presumably existing trend, e.g., linear or other monotonic forms,
which could lead to problems if there is no actual trend.

A deeper question underpinning our analysis would ask what
information can a residual time series be expected to provide? In
an ideal world where the correct form of the time series model is
known, the resulting prewhitened residual time series based on
that model would be a white noise exhibiting no information
resulting from a deterministic process, whatsoever. In the real
world, however, prewhitened residual time series represent only
that portion of the original time series which cannot be described
by the assumed time series model used to create those residuals.
Alternatively stated, the possible existence of ‘‘some” information
(signals) left in prewhitened time series is due to the inability of
the assumed time series models to perfectly describe the underly-
ing deterministic processes exhibited within the data. The message
is that the quality and quantity of such information depend on the
model used and cannot be easily interpreted especially for complex
time series models. In spite of this, there are examples in the liter-
ature that used more complex models which exhibit longer mem-
ory, such as autoregressive integrated moving average (ARIMA)
and fractional Gaussian noise (FGN) models, for prewhitening.
Lastly, the autocorrelation structure of geophysical variables may
be significantly non-stationary (Razavi et al., 2015). Such possible
non-stationary behavior further complicates the impact of any
prewhitening process that assumes a stationary process in original
time series.

The variance vs. time scale plot shown in Fig. 1 is a powerful
tool to investigate the serial dependencies in time series across
the range of time scales. Using this tool, Fig. 3 compares the beha-
viour of 15 time series of tree growth rates (chronologies) and nat-
uralized river flow in the Oldman River (a tributary of
Saskatchewan River), Canada, over the historical period (1912–
2001). The maximum time scale considered on the abscissa of
Fig. 3 is short (8 years) relative to the much longer time scale con-
sidered in Fig. 1, because the length of the time series in Fig. 3 is
relatively short (89 years). The short lengths of record associated
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(2016).
with the series in Fig. 3 result in much more scatter than was
observed for the much longer time series used to develop Fig. 1.

As expected in Fig. 3, the variance decreases as the time scale
increases for all the time series, however, the slope of the linear
function that is fit to the tree-ring and streamflow series are quite
different. The difference in slope at a time scale is attributable to
the difference in persistence within the time series at that time
scale, though these differences are also confounded by the short
record lengths, somewhat. As can be seen, for short time scales
(shorter than 3 years), the slopes of the two (flows and growth
rates) are considerably different, with a slope associated with the
flows closer to that of a random process, whereas for long time
scales (longer than 3 years), the slopes of the two series are similar.
This observation indicates that the short-term persistence in
growth rates is higher than that of the flows (due to biological
effects in trees), while the two are very similar in terms of their
long term variability.

The result in Fig. 3 suggests that although standard chronologies
do not properly represent the short-term persistence (autocorrela-
tion) of hydro-climatic variables at the annual scale, theymay exhi-
bit an adequate representation of persistence and variability at
longer time scales (2- or 3-year time scales and longer). This is
due to the reduction of the carry-over effects associated with the
growth of trees at longer time scales. As a result of this finding,
instead of the conventional approach, we recommend focusing ini-
tial attention on reconstructing paleo-time series at multi-year
time scales (e.g., 2- or 3-year time series instead of annual time ser-
ies) and then disaggregating them into the annual time scale guided
by the annual variability information in the tree-ring time series.
See the initial attempt described by Razavi et al. (2016) for more
analysis and discussion of the challenge of reconstructing multi-
year scale paleo-hydrologic series. Razavi et al. (2016) showed that
not only can this approach better represent the underlying SVATS,
but also has a higher reconstruction power which explains a higher
percentage of the variance in the hydro-climatic variable of interest
than the series based on shorter time scales.
10
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5. Final remarks

Since the recommendation by Cook (1985) to use prewhitening
to remove short term persistence from long records of tree rings,
prewhitening of hydroclimatic time series has proliferated in both
courses and research as the solution to remove or diminish the
impact of short-term persistence prior to paleo-reconstruction
(see citations in Section 2). We have provided evidence and reason-
ing which documents why focusing one’s attention on prewhi-
tened hydroclimatic time series can be misleading, because it
leads to a loss of important information contained in a time series.
We have documented that prewhitened time series will generally
not carry important stochastic properties embedded in respective
original time series resulting from persistence and seasonality,
and thus cannot preserve the SVATS (structure of variability across
time scales). It was shown that prewhitening has impacts which
may go well beyond the intended goal of only eliminating/reducing
short-term persistence, and in fact, prewhitening distorts our abil-
ity to detect trends and cycles in time series and can also diminish
their magnitude and significance. This is very important, as hydro-
climatic time series possess a multitude of irregular trends and
cycles at a range of frequencies and such information are essential
for a variety of studies, in particular those relating to water
resource management. The implications of prewhitening are of
course different for different applications, and this paper suggests
that the analyst be mindful of potential implications discussed.

Perhaps the most important negative implications of
prewhitening are for paleo-reconstruction, where the prewhiten-
ing leads to a distortion of the time series which is then be trans-
ferred directly to the reconstructed time series of hydroclimatic
variables. This indicates that resulting statistical inferences con-
cerning paleo climatic conditions may not be credible and/or
should be interpreted with caution. For example, the magnitude
and duration of paleo-extremes such as droughts can be signifi-
cantly underestimated, when prewhitened time series are used for
hydroclimatic reconstruction. Note that the amount of the infor-
mation loss due to prewhitening for a given time series depends
on the extent of its SVATS (significance of signals at different fre-
quencies) and the time series model used, and therefore, can be
variable from one case study to another.

Although the phenomenon of inflated short-term persistence in
tree-ring records (standard chronologies) appears to persist in
recent literature (see citations in Section 2), it does not necessarily
undermine the value of paleo-reconstructions based on standard
chronologies. To address concerns over the fact that annual records
of numerous geophysical records exhibit short-term persistence, an
alternative would be to perform analysis over longer-time scales
(e.g., two or three year time series) to effectively remove some of
the short term persistence (see the approach proposed in Razavi
et al., 2016). Tools such as those illustrated in the examples pro-
vided in Fig. 1 provide a generalized approach to exploring the
impact of a very wide range of stochastic structures of short- and
long-term persistence on the variability of hydroclimatic records.

In addition, future studies should consider the use of long
‘‘pseudo-proxy” data obtained from climate model simulations
over the past millennium which may be useful in further charac-
terizing the SVATS in climatic time series and the implications of
prewhitening. Such data can be used in the evaluation of the per-
formance of paleo-reconstruction methods, using controlled and
systematic experiments known as pseudoproxy experiments
(Smerdon, 2012).

Lastly, the analyses and implications discussed in this study
were not intended to undermine the general utility of prewhiten-
ning in the full range of its applications (including trend detection).
Instead, this paper attempted to highlight some possible caveats
and pitfalls that one might need to consider when using
prewhitenning in an application.
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