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ABSTRACT
Statistical and physically-based methods have been used for designing and assessing water
infrastructure such as spillways and stormwater drainage systems. Traditional approaches assume
that hydrological processes evolve in an environment where the hydrological cycle is stationary
over time. However, in recent years, it has become increasingly evident that in many areas of the
world the foregoing assumption may no longer apply, due to the effect of anthropogenic and
climatic induced stressors that cause nonstationary conditions. This has attracted the attention of
national and international agencies, research institutions, academia, and practicing water specia-
lists, which has led to developing new techniques that may be useful in those cases where there
is good evidence and attribution of nonstationarity. We review the various techniques proposed
in the field and point out some of the challenges ahead in future developments and applications.
Our review emphasizes hydrological design to protect against extreme events such as floods and
low flows.

ARTICLE HISTORY
Received 13 April 2017
Accepted 10 December 2017

EDITOR
R. Woods

ASSOCIATE EDITOR
A. Viglione

KEYWORDS
nonstationarity; hydrological
variability and change;
hydrological extremes;
anthropogenic and climate
change; risk and return
period; hazard functions

1 Introduction

For decades, a wide range of statistical techniques have
been developed for designing hydraulic structures for
protecting society and the environment against the
impact of extreme events such as extreme precipitation,
floods, and rising sea levels. Commonly they are based
on probability distribution functions (pdf) such as the
geometric, binomial, general extreme value (GEV), and
log-Pearson Type III (LP3), and in some cases time
series models. For example, the waiting time for the
occurrence of a flood exceeding a design flood is geo-
metric distributed and its expected value, often denoted
as “return period” (expected waiting time), has been a
commonly used concept in engineering practice.
Likewise, the number of extreme floods exceeding the
design flood magnitude of a hydraulic structure during
its design life (e.g. n years), as well as its “hydrological
reliability and risk,” have been determined based on the
binomial distribution. In addition, several other
approaches and techniques have been developed
based on risk-based design of hydraulic structures
that involve additional factors such as cost of damages,
vulnerability, and resilience. Furthermore, stochastic
models have been used to simulate representative sets
of sequences of hydrological variables (e.g. streamflow)

that may occur during the planning horizon of a given
structure (e.g. the risk of occurrence of 7-day, 10-year
low flows during a 25-year period) and physically-
based watershed models have been utilized for repre-
senting the underlying hydrological cycle and applied
for assessing the performance of hydraulic systems.

The models and techniques mentioned above have
generally been developed based on the assumption that
hydrological events, such as annual maximum rainfall
and associated flood discharges, arise from a stationary
hydrological regime (i.e. the marginal distribution
remains invariant with time). However, it has been
reported in the literature that, because of some natural
and anthropogenic factors, the hydrological cycle in
many areas worldwide has been changing, causing sig-
nificant changes in the temporal and spatial behavior of
hydrological processes such as precipitation and
streamflow and the ensuing occurrences of extreme
events. Thus, a growing concern of water resources
specialists has been the extent to which the traditional
methods developed for stationary regimes may still be
applicable, or whether newer methods are needed
where there is sufficient evidence of nonstationarity
(i.e. the marginal distribution changes with time).
This situation has sparked worldwide interest in the
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water resources community, including planners and
managers of projects, government agencies, consulting
firms, research institutions, and academia, in finding
new ways of taking into account the changing condi-
tions of hydrological regimes for planning and evaluat-
ing water infrastructure.

Recently, a variety of newer concepts and techniques
have emerged extending those based on stationary con-
ditions so that they will be applicable for nonstationary
hydrological conditions. The focus of this paper is to
examine the recent literature on the subject, such as the
application of nonstationary pdfs of the underlying
hydrological variable (e.g. extreme annual floods)
where the model parameters may be functions of cov-
ariates that evolve through time, along with model
fitting, selection, and diagnostic techniques. Likewise,
we review the development of nonstationary geometric
and Poisson-binomial distributions that enable the
determination of the distribution of the waiting time
of the first flood exceeding the design flood and the
distribution of the number of floods that exceed the
design flood during the design life of the structure,
respectively, and use of hazard function analysis, mag-
nification factors, and related properties such as return
period, hydrological reliability, and risk of failure, all
applicable under nonstationary conditions. In addition,
simple regression methods are reviewed for modeling
changes in the mean, variance, and skewness, and
combining such nonstationary moments with various
pdfs to “update” design events, given historical data.
We also discuss estimation of the Type I and II error
probabilities and how they can help us to make state-
ments about posterior probabilities needed to account
for over- or underdesign during the design process.
Furthermore, we review alternative metrics that may
be used for assessing infrastructure investment deci-
sions, including economic risk-based approaches, and
planning under the additional uncertainty imposed by
nonstationary conditions. The paper ends with a sec-
tion summarizing some of the challenges involved in
applying the new techniques reviewed here. The
reviewed concepts and techniques that consider non-
stationarity are fairly new, and time will be needed for
understanding them well, gaining practical experience
with them, and comparing the various alternatives that
have been proposed. The current paper is aimed at
assisting in this endeavor.

2 Brief review of traditional stationary
techniques

The traditional techniques for designing hydraulic
structures for defense against extreme events such as

floods are generally based on return period and risk.
They assume that extreme events arise from a station-
ary distribution and the occurrences of extreme events
are independent and identically distributed (i.i.d.). For
example, consider the case of extreme annual floods
and the notation employed by Salas and Obeysekera
(2014). Let us assume that the annual maximum floods
(AMF) are represented by the random variable Z with
cumulative distribution function (cdf) FZðz; θÞ where θ
represents the parameter set. The typical cdfs utilized
for this purpose are the GEV, the two- and three-
parameter lognormal (LN2 and LN3, respectively),
and LP3 (e.g. Stedinger et al. 1993), although other
alternatives such as the generalized logistic, generalized
Pareto (GP), generalized gamma, and Burr Type XII
have been suggested (e.g. Koutsoyiannis 2004, Hao and
Singh 2009, Papalexiou and Koutsoyiannis 2013a,
2013b, Serinaldi and Kilsby 2014). Another example
is intensity–duration–frequency (IDF) curves, which
are widely applied for designing structures, such as
municipal storm-water drainage systems. Generally,
IDF curves have been developed assuming stationarity
pdfs of the precipitation process for a given duration.
The preference and suitability of a given distribution
depend on the way in which data are processed for
analysis (e.g. annual maxima, peaks over threshold
(POT), or annual minima) and the type of variable
(e.g. extreme floods or precipitation). Often, we rely
on guidelines from published research results and spe-
cifications provided in standards for specific regions
and countries.

Consider a hydraulic structure designed using a design
flood zq, which is the flood quantile with non-exceedence
probability q. Alternatively, the notation zp and zT are
used in which p = 1 – q, i.e. the flood quantile with
exceedence probability p, and T = 1/p = 1/(1 – q) (years)
is called the return period. Note it is assumed that the
probability of exceeding the design flood zq each year or
the risk that a flood zmay exceed zq remains the same and
is equal to p (i.e. the pdf of floods is identically distributed
and stationary). The rationale behind the referred return
period T is based on the waiting time x (years) in which a
flood exceeding the design flood zq will occur for the first
time. That first time could be in year 1, 2, . . ., x, . . . or
perhaps it will never occur. Thus the probability that a
flood event (exceeding the design flood zq) will occur for
the first time in year x is (1 – p)x−1 p, or:

f ðxÞ ¼ PðX ¼ xÞ ¼ ð1� pÞx�1p ; x ¼ 1; 2; : : : ; 1
(1)

which is the geometric distribution (e.g. Mood et al.
1974). The discrete pdf in Equation (1) (also known as
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a probability mass function, pmf) has an exponential
decay with mean E(X) = 1/p and variance var(X) = q/
p2. Note that the expected waiting time (EWT, in years)
required for the first occurrence of a flood exceeding zq
is 1/p, which has been referred to as the return period
T in engineering practice (e.g. Chow et al. 1988, Bras
1990).

The failure of a hydraulic structure designed for a
project life of n years will occur whenever the first
flood exceeding zq occurs before or during year n, i.e.
the probability of that event is PðX � nÞ ¼ FXðnÞ
where FXðxÞ is the cdf of the geometric distribution.
Therefore, the risk of failure over the n-year period is
(e.g. Bras 1990):

R ¼ FXðnÞ ¼
Xn
x¼1

f ðxÞ ¼ 1� ð1� pÞn (2)

and the corresponding n-year reliability R, of the struc-
ture is R, ¼ 1� R ¼ ð1� pÞn. Furthermore, consider
the random variable Y denoting the number of floods
exceeding the design flood zq during the n-year plan-
ning period. The probabilities P(Y = y), y = 0, . . ., n can
be obtained using the binomial probability distribution
(e.g. Mood et al. 1974). Thus, the reliability is the
probability that no floods exceeding zq will occur in
the n-year period, i.e. PðY ¼ 0Þ, while the risk of fail-
ure over the n-year period is the probability P(Y > 0),
i.e. R ¼ PðY > 0Þ ¼ 1� PðY ¼ 0Þ ¼ 1� ð1� pÞn as in
Equation (2). In addition, it may be shown that the first
two central moments of Y are E(Y) = n p and var
(Y) = n p q.

The foregoing concepts, definitions, and equa-
tions, related to return period, risk of failure, and
reliability, have been commonly utilized in engineer-
ing practice and are widely available in books and
manuals (e.g. IACWD 1982, Chow et al. 1988, Bras
1990, Stedinger et al. 1993, Viessman and Lewis
2003, CEH 2016, HFAWG 2017, Stedinger 2017,
Vogel and Castellarin 2017). Depending on the type
of hydraulic structure, the value of T (or the value of

p) is selected from design manuals, the correspond-
ing design flood zq, in which q = 1 – 1/T (or q = 1 –
p), is determined from frequency analysis of the
underlying flood data, i.e. by inverting the fitted

distribution FZðzq; θ̂Þ ¼ q, in which θ̂ is the esti-
mated parameter set, and the risk of failure R is
obtained from Equation (2) for a specified value of
n. This procedure is illustrated in Table 1 (row
corresponding to EWT). Conversely, if the value of
the risk of failure R is set, e.g. R = 5%, then the
exceedence probability p (and return period T) is
obtained from Equation (2) given the value of n,
i.e. p = 1 − (1 − R)1/n and the design flood zq is

obtained by inverting the fitted model FZðzq; θ̂Þ =
q = 1 – p = (1 – R)1/n. This simple analysis can be
extended where a more detailed examination is made
that involves the associated cost of the structure, the
expected damages, and the financing of the project,
i.e. a risk-based (or reliability-based) approach to the
design problem. In such a risk-based approach (see
Section 5.5) the level of risk and/or the return period
T are chosen in such a way as to maximize the
expected net project benefits. Some of the foregoing
concepts, definitions, and equations considering sta-
tionary processes are summarized in Table 1. In
addition, the risk analysis described above may con-
sider the effect of uncertainty (Salas et al. 2013).
Furthermore, in engineering practice, similar
approaches as above and extensions thereof, and
other alternatives depending on the data available
at the basin and the problem at hand, are applied
for developing IDF curves (Chow et al. 1988), low-
flow frequency analysis (Stedinger et al. 1993), regio-
nal analysis of extreme precipitation (e.g. Schaefer
1990), and regional flood frequency studies (e.g.
Cunnane 1988).

Stochastic models have also been used for simulat-
ing possible hydrological sequences that may occur in
the future, which in conjunction with predicted water
demands over the planning horizon of interest can

Table 1. Alternative design methods based on return period, design quantile (return level), and risk of failure under stationarity.
EWT: expected waiting time; ENE: expected number of events; DLL: design life level.
Design method Primary

parameters
Return period, T Design quantile, zq (return level) Risk of failure, R, over

design life, n
Probability distribution

EWT(a) T T (specified) Solve for zq in FZðzq; θ̂Þ ¼ 1� 1=T R = 1 – (1 – 1/T)n Geometric
ENE = 1 n np = 1, p = 1/n

T = n
Solve for zq in FZðzq; θ̂Þ ¼ 1� 1=n R = 1 – (1 – 1/n)n Binomial

ENE = m
(m > 1)

n, m np = m, p = m/n
T = n/m

Solve for zq in FZðzq; θ̂Þ ¼ 1�m=n R = 1 – (1 – m/n)n Binomial

DLL R, n p = 1 – (1-R)1/n

T = 1/p
Solve for zq in FZðzq; θ̂Þ ¼ ð1� RÞ1=n R (specified) Geometric or Binomial

(a)Note that specifying average waiting time T as the design parameter is equivalent to specifying the exceedence probability p, since p = 1/T (refer to
Section 2). Then, the expressions in the columns for design quantile zq and risk of failure R, may be written as FZðzq; θ̂Þ ¼ 1� p and R = 1 – (1 – p)n,
respectively.
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provide the needed information for estimating the sta-
tistical characteristics and pdfs of low flows, droughts
of given durations, critical droughts, and water sur-
pluses. In addition, they have been used for forecasting
hydrological events for weeks and months in advance.
For example, Stedinger and Crainiceanu (2001)
employed an autoregressive moving average (ARMA)
model after a log-normal transformation for forecast-
ing the increasing flooding at a site of the Mississippi
River. Alternative models having various features of
interest for hydrological applications have been devel-
oped over the years, such as models exhibiting long-
term dependence, e.g. the fractional ARMA (FARMA)
model (Hosking 1984), hidden state Markov model
(Thyer and Kuczera 2000), shifting mean model
(Sveinsson et al. 2003) and the fractional Gaussian
noise model (Mandelbrot 1971, Koutsoyiannis 2002),
models for intermittent rainfall and streamflow pro-
cesses, models with periodic components (e.g. for daily
and monthly data), models where the marginal distri-
bution of the underlying variable Z is skewed (e.g.
gamma autoregressive), and multivariate models for
multisite or multiple variables (e.g. Zucchini and
Guttorp 1991, Efstratiadis et al. 2014, Sveinsson and
Salas 2017). Likewise, a suite of nonparametric techni-
ques has been developed for hydrological time series
simulation and forecasting (e.g. Lall and Sharma 1996,
Vogel and Shallcross 1996, Sharma et al. 1997, Prairie
et al. 2006, Salas and Lee 2009, Lee et al. 2010). A
summary of the various models generally used in prac-
tice can be found in Hao and Singh (2016), Sveinsson
and Salas (2017), and Rajagopalan and Lall (2017).
Furthermore, physically-based models of various
degrees of sophistication have been developed in the
past several decades for modeling and simulating the
hydrological cycle of watersheds. A wide range of mod-
els are available, such as event-based models, which
generally simulate the rainfall–runoff process for a
short time period, e.g. hours, depending on the design
storm and size of the basin considered. Examples of
this type of model are HEC-HMS (Scharffenberg and
Fleming 2010) and CASC2D (Ogden and Julien 2002).
In addition, continuous time watershed models simu-
late the rainfall–runoff process for longer time frames,
e.g. days, months, and years, and consider additional
processes and interactions between the surface and
subsurface storages and the stream runoff (e.g. Singh
1995, Singh and Frevert 2002). Depending on the given
project, an event or a continuous time watershed
model is selected. For example, for assessing the per-
formance of a flood-related structure such as a spill-
way, the HEC-HMS model is often used. Likewise, for
assessing the performance of a reservoir planned for

water supply during the low-flow season, a continuous
time model such as HSPF (Bicknell et al. 1997), SWAT
(Srinivasan and Arnold 1994), SHETRAN (Ewen et al.
2002), GSSHA (Downer and Ogden 2004), and many
others (Singh and Frevert 2002) may be necessary.
Physically-based models are well suited for evaluating
the effects of varying land use and the effect of infra-
structure on the hydrological cycle that may develop in
a basin over time, and those of future hydroclimatic
scenarios, on the characteristics of extreme events such
as floods and low flows. Examples are the model by
Westra et al. (2014) and the physically-based and sto-
chastic modeling framework (Efstratiadis et al. 2015) in
which a systematic change of land use due to urbaniza-
tion is considered and a stochastic generation made of
precipitation and temperature. Often, a proper stochas-
tic representation of the deterministic model error
component is not included in the analysis, in which
case significant systematic biases in design event quan-
tiles can result (Farmer and Vogel 2016). Model errors
can be included by adding a stochastic term in the
analysis, as suggested by Efstratiadis et al. (2015) and
Farmer and Vogel (2016) (see also Section 7).

3 New techniques in a changing environment

For several decades hydrologists have been aware of the
complexity of hydrological processes and their relation-
ships with climatic and environmental conditions (e.g.
Hurst 1957). However, it was not until the last 25 years or
so, that interest in the dynamics of such processes has
grown exponentially, particularly due to: (a) a better
understanding of large-scale atmospheric and oceanic
mechanisms, and oscillations such as El Niño Southern
Oscillation (ENSO) (Philander 1990), Pacific Decadal
Oscillation (PDO) (Mantua and Hare 2002), and
Atlantic Multidecadal Oscillation (AMO) (Enfield et al.
2001); (b) the global warming that the world has been
experiencing, in part due to the effect of increasing emis-
sion of greenhouse gases into the atmosphere (IPCC
2013); (c) the increasing population in many regions
causing major changes and stresses to the landscape, the
environment, and water availability (e.g. Vörösmarty
et al. 2000); and (d) a better understanding of the effects
of such atmospheric–oceanic processes and anthropo-
genic factors on the hydrological cycle (e.g. IPCC 2013).

This increased understanding, awareness, and inter-
est led to major research activity in the field of
hydrology and water resources in order to detect
and identify the variability of hydrological processes
at various temporal and spatial scales (e.g. Douglas
et al. 2000, Yue et al. 2012, Madsen et al. 2014),
establish the statistical significance and attribution of
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various types of changes (e.g. trends and abrupt shift-
ing patterns) that have been observed in some histor-
ical records of precipitation, streamflow, and water
storages (e.g. Burn and Hag Elnur 2002, Blӧschl and
Montanari 2010, Merz et al. 2012, Prosdocimi et al.
2015), and quantify their impacts and consequences
on water resources (e.g. Kundzewicz et al. 2007,
Adams and Peck 2008). Prior to these concerns,
hydrological processes had generally been assumed
to vary in a manner that the key statistics such as
the mean and the variance do not change with time,
i.e. a stationary process (loosely speaking). However,
for the reasons outlined above, some hydrologists
strongly questioned the assumption of stationarity
and suggested that “Stationarity is dead – whither
water management?” (Milly et al. 2008) and that alter-
native methods should be developed based on nonsta-
tionary concepts for more realistic design, evaluation,
and planning and management of infrastructure.
While the referred paper received major attention
worldwide and many papers have been published
along those lines, many others reacted with opposite
positions and opinions, as exemplified by the titles of
some of the published articles, such as: “Stationarity:
wanted dead or alive?” (Lins and Cohn 2011),
“Comment on the announced death of stationarity”
(Matalas 2012), “Negligent killing of scientific concepts:
the stationary case” (Koutsoyiannis and Montanari
2014), “Modeling and mitigating natural hazards: sta-
tionarity is immortal!” (Montanari and Koutsoyiannis
2014), and “Stationarity is undead: uncertainty dom-
inates the distribution of extremes” (Serinaldi and
Kilsby 2015).

As evidenced from recent review articles, there are
now myriad newer concepts and methods available for
flood frequency analysis (FFA) under nonstationary
conditions (e.g. Petrow and Merz 2009, CEH 2013,
Hall et al. 2014, Bayazit 2015). Despite the tremendous
increased attention given to this subject, there is still no
consensus or generally agreed upon set of methods for
performing FFA under nonstationary conditions.
Nevertheless, some government agencies are in the pro-
cess of updating flood protection design guidelines to
account for nonstationarity (e.g. Stedinger and Griffis
2011, CEH 2013, Madsen et al. 2014, Prosdocimi et al.
2014, HFAWG 2017). Likewise, the concern of nonsta-
tionarity has led to many studies for detection of pre-
cipitation changes over time, updating IDF curves, and
comparisons thereof (e.g. Cheng and AghaKouchak
2014, Yilmaz and Perera 2014, Mondal and Mujumdar
2015, Verdon-Kidd and Kiem 2015). For example,
Cheng and AghaKouchak (2014) compared results of
IDF curves obtained for both stationary and

nonstationary methods for some locations in the USA,
and Yilmaz and Perera (2014) and Verdon-Kidd and
Kiem (2015) studied IDF curves in Australia using sta-
tionary and nonstationary pdfs; their results suggested
the need to update the IDF curves given by government
guidelines. In addition, IDF studies were undertaken by
Mondal and Mujumdar (2015), based on a gridded rain-
fall dataset in India and POT analysis using nonstation-
ary GP distribution and covariates such as ENSO index
and global average air temperature. Furthermore, IDF
analysis has been done considering future climate sce-
narios where hydrological design standards for use
under future climate were made using quantile mapping
(QM) and equidistant quantile mapping (EQM) meth-
ods (Li et al. 2010), conditional on output from GCMs
(global climate models) for future climate conditions
(e.g. Tetra Tech 2015). While this and many other
studies have been made using projections of GCMs,
one must be aware of the large uncertainties, particularly
in relation to extreme precipitation (e.g. Blӧschl and
Montanari 2010).

Some of the concepts and methods that may be
useful for designing hydraulic structures to confront
extreme events in nonstationary environments are
reviewed in the sections below. But fundamental ques-
tions remain concerning whether or not nonstationary
methods are needed in practice (e.g. Cohn and Lins
2005, Villarini et al. 2009, Matalas 2012, Montanari and
Koutsoyiannis 2014, Serinaldi and Kilsby 2015, Silva
et al. 2016); further, there are still disagreements on the
underlying definitions, concepts, and methods, and the
question of how to select an appropriate design event
given evidence of nonstationarity and future uncer-
tainty (e.g. Stedinger and Griffis 2011, Rootzen and
Katz 2013, Obeysekera and Salas 2014, Read and
Vogel 2015). For example, the concepts of stationarity
and nonstationarity are often interpreted in different
ways. If the process under study, denoted as Zt, has the
pdf f ðz; θÞ, where θ is the parameter set that remains
constant through time, and Z1, Z2, . . ., Zt are indepen-
dent, i.e. uncorrelated, then the data series arising from
it is stationary. However, if the pdf or its parameters
varies with time, then Zt is nonstationary. In addition,
if Zt has the same pdf f ðz; θÞ for all t, but Zt is auto-
correlated, say covðZt; Zt�kÞ ¼ σ2ρðkÞ, where σ2 and
ρðkÞ are the variance and the lag-k autocorrelation,
respectively, i.e. the covariance does not depend on
time t, then Zt is stationary; but if covðZt; Zt�kÞ is a
function of t (besides being a function of k), then Zt is
nonstationary. Thus, depending on which property
(e.g. moments such as the first or second moments)
are constant through time, the process is denoted as
first- or second-order stationary. Furthermore, if the
autocorrelation function ρðkÞ ! 0 as k ! 1, then Zt is
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known to have a short memory (short-term depen-
dence), whereas if ρðkÞ does not converge as k ! 1,
then the process Zt has long memory, or long-term
dependence (e.g. Koutsoyiannis 2016). Importantly,
realizations of long memory processes exhibit
“changes” such as trends and shifts, so that it may
appear that the underlying process is nonstationary
when in fact it is not. This is even more confusing
when the records are short. In this context,
Koutsoyiannis (2011) pointed out that “change” does
not necessarily imply “nonstationarity.”

The lack of a consensus results in part from the
tremendous uncertainty associated with our ability to
detect, attribute, and model past trends, and the even
greater uncertainty associated with our ability to pre-
dict the future evolution of hydrological processes. If
an observed flood series is known to increase during
some particular historical period, then the magnitude
of the design flood (e.g. 100-year flood) will increase
over that period, and it may not be appropriate to
report a single value. In such situations in which his-
torical trends in flood series are obvious and/or overt
due to knowledge of changes in historical land use,
climate and/or water infrastructure, it is imperative to
provide updated estimates of design floods that reflect
“those conditions.” Even in situations in which there is
physical knowledge of the processes that cause the
hydrological nonstationarity, there is always some resi-
dual uncertainty associated with any trend detection or
modeling approach. Vogel et al. (2013) document how
one can quantify the various factors that give rise to
uncertainty in our ability to detect trends in hydrolo-
gical series, and Obeysekera and Salas (2014) describe
how uncertainty in estimates of design events can be
quantified in some cases of nonstationarity. Regardless
of the level of uncertainty associated with past or future
hydrological trends, due to the increased level of uncer-
tainty associated with nonstationarity, the design of
some structures under nonstationary conditions may
warrant risk-based approaches (e.g. Stedinger and
Crainiceanu 2001, Sivapalan and Samuel 2009, Rosner
et al. 2014).

4 Modeling of extreme events

There are two common ways of modeling extremes of
hydrological variables such as floods, precipitation, and
wind. They are based on block maxima (BM) data and
peaks over threshold (POT) data. Block maxima are
defined as the maximum value of a given block (time
period), which is typically one year but could be a
season (e.g. wet period). An example of BM data is
the maximum annual floods, which are the highest

discharges in a calendar or water year. This approach
has generally been used in actual practice even though
the sample size available for modeling the data may be
small because only one extreme event per year is uti-
lized. Often there are cases where the second largest
flood (or the third etc.) in a given year may outrank the
annual maxima in other years, and yet, in the BM
approach, those events are not considered for extreme
value modeling.

The POT data use extreme events (e.g. floods) above
a selected threshold (base flood in case of floods)
within a given year or a season. The selection of the
threshold and the POT values are important from both
physical and statistical points of view. It is expected
that using POT values will improve the estimation of
design events because of the larger sample of extremes
that can be extracted from the historical data. However,
the POT data require higher frequency of the basic
time series (e.g. hourly or daily) as opposed to BM
data. In some cases, some annual extremes may not
even be selected as POT events. The POT modeling
approach provides additional flexibility in representing
extreme events as compared to the BM approach but at
the expense of added complexity (Lang et al. 1999).
Unlike the BM dataset, which is well defined, the POT
data depend on the base level selected. Although some
criteria have been developed, standard guidelines for its
application are lacking. The POT method is also
known as the partial duration series (PDS) method.
Both stationary and nonstationary models can be
used with BM and POT data. In this section, formula-
tion of models, model selection, and parameter estima-
tion and uncertainty are reviewed for both types of
data.

4.1 Models based on BM data

Many probability distribution functions have been used
in practice for modeling BM data, such as LN, gamma,
LP3, and GEV distributions. The attractive feature of
the GEV distribution is the well-developed extreme
value theory, which is useful for modeling extremes
arising from either stationary or nonstationary regimes
(e.g. Coles 2001). It leads to an extremal theorem that
describes the asymptotic behavior of BM as a family of
distributions, which has become increasingly popular
in hydrology. Assume there are n random variables
X1; X2; :::; Xn which occur in a given block, and they
are independent and identically distributed (i.i.d.) with
marginal distribution denoted as FXðxÞ. We are inter-
ested in the distribution of the maximum, i.e.
Mn ¼ maxðX1; X2; :::; XnÞ. It can be shown that,
regardless of the distribution FXðxÞ, the distribution
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of Mn when rescaled with some appropriate constants
approximates to a family of Type 1, Type 2, and Type 3
extreme value distributions.

Furthermore, it may be shown that the cdf of the
three types of distributions may be expressed as (e.g.
Coles 2001):

FZðz; θÞ ¼ exp � 1þ �
z � μ

σ

� �h i�1=�
� �

(3)

which is known as the generalized extreme value (GEV)
distribution, in which the parameter set θ ¼ ðμ; σ; �Þ
comprises the location, scale, and shape parameters,
respectively. Note that ½1þ ð�=σÞðz � μÞ� > 0, and if
� ¼ 0, the cdf (Equation (3)) converges to the Type 1
(Gumbel) distribution, which is unbounded, while if
� > 0, the cdf is bounded on the left at (μ – σ)/ξ for the
Type 2 (Frechet) distribution, and bounded on the right
at (μ – σ)/ξ for the Type 3 (Weibull) distribution. In
addition, the pdf of the GEV distribution can be writ-
ten as:

fZðz; θÞ ¼ 1
σ

1þ �
z � μ

σ

� �h i� 1
��1

exp � 1þ �
z � μ

σ

� �h i�1=�
� �

(4)

Note that for modeling minimum values (e.g. low
flows) based on the GEV, one may use the duality
between the maximum and the minimum (Coles 2001).

Extensions of the stationary distributions used with
BM data have been suggested in the literature for
modeling nonstationary extremes. The main concept
has been that extremes of hydrological variables exhi-
biting nonstationarity may be independent but not
identically distributed. Many applications of pdfs
expressed in a nonstationary framework have been
made assuming that the pdf belongs to a GEV family
(e.g. Coles 2001, Katz et al. 2002, Prosdocimi et al.
2015, Um et al. 2017), although in some cases the LN
(e.g. Hecht and Vogel 2017) and LP3 (e.g. Webster and
Stedinger 2017) models have been applied. We con-
tinue our discussion assuming a simplification useful
for modeling, i.e. the type of cdf FZðz; θtÞ remains the
same over time, but the parameters vary with covari-
ates, which could be time or explanatory variables that
vary with time (refer to Section 4.3 on covariates).
Further, we use the GEV with parameter set
θt ¼ ðμt; σt; �tÞ, and the nonstationary cdf is written
as (Coles 2001, Katz 2013):

FZðz; θtÞ ¼ exp � 1þ �t
z � μt
σt

� �� 	�1=�t
( )

(5)

where ½1þ ð�t=σtÞðz � μtÞ� > 0 and Equation (5)
reduces to the Type 1 Gumbel distribution with

varying parameters if ξt = 0. The location parameter
may be a function of a covariate, for example, NIÑO3
(an index representing the El Niño phenomenon),
while keeping other parameters fixed. Sometimes both
the location parameter μt and the scale parameter σt are
assumed functions of covariates while keeping ξt con-
stant (e.g. El Adlouni et al. 2007, Ruggiero et al. 2010).
Rarely, all three parameters are made as functions of
covariates because it has been found in the literature
that the shape parameter ξ is difficult to estimate with
precision even in the stationary case. Therefore, for
nonstationary models it is unrealistic to consider the
shape parameter as a smooth function of time or a
function of a covariate (Coles 2001). Commonly, the
location parameter μ is assumed to vary with time, but
if the “upper bound” of the annual maxima also
increases with time, then in such cases the scale para-
meter σt may have to be modeled as a function of time
(e.g. El Adlouni et al. 2007, Menéndez and Woodworth
2010). Some examples are μt = μ0 + at and log
σt = σ0 + bt (Ruggiero et al. 2010, Katz 2013, Salas
and Obeysekera 2014).

4.2 Models based on POT data

Often observational records of BM (e.g. annual) are
short, resulting in significant uncertainties in the
model parameters estimated from such records. An
alternative is to build models based on POT data
where multiple extremes above a given threshold may
be available. Using a larger sample of extremes is
appealing since it may reduce the uncertainty of
model parameters and design quantiles. However, the
POT approach is less common and more complex than
the BM approach. For example, selecting the threshold
is not straightforward. Some of the early work on the
theoretical basis of POT in hydrology was developed in
the 1960s and 1970s (e.g. Shane and Lynn 1964,
Todorovic 1970, Zelenhasic 1970, Todorovic and
Yevjevich 1969, Todorovic and Woolhiser 1972,
Cunnane 1973, Todorovic 1978, Cunnane 1979).
Since then, additional studies have followed for devel-
oping criteria and guidelines for applying the POT
models, comparing BM and POT predictions (e.g.
Ashkar and Rousselle 1983, Buishand 1990, Lang
et al. 1999), and extending the POT models into a
nonstationary framework (e.g. Prosdocimi et al. 2015).

Assume that Z(t) represents a realization of a hydro-
logical process (e.g. streamflow, precipitation, or wind)
whose extremes are of interest. Over a specified time
interval [0, t], e.g. a year, there are multiple peaks of the
process. Consider now a threshold or base level
denoted by u, and values of Z(t) that are above the
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base level u, denoted as Z1, Z2, . . ., Zi, and collectively
defined as the “occurrence process.” Assume further
that n events occur over the time interval [0, t], and the
“exceedences” above the threshold, u, are identified as
Yi = Zi – u, i = 1, 2, . . ., n. Note that the number of
exceedences n is also a random variable, which is
denoted as N(t) and varies from 0 to ∞. Likewise, the
magnitude of exceedences Yi is a random variable. The
goal of the POT approach is to determine the distribu-
tion of the maximum of the exceedences over the
arbitrary time interval [0, t]. Since both N(t) and Y
are random variables, the problem has been character-
ized as a random number of random variables
(Todorovic 1970).

If we denote the event Et
n ¼ ½NðtÞ ¼ n�, then

P½Etn� ¼ P½NðtÞ ¼ n� is the probability of n exceedences
in the time interval [0,t], and Xt = max(Y1, Y2, . . ., Yn).
Todorovic (1970) demonstrated that the cdf of Xt,
Ft
XðxÞ ¼ P½Xt � x� is given by:

FtXðxÞ ¼ P½Et
0� þ

X1
n¼1

P \n
j¼1

½Yj � x� \ Etn

� �
(6)

which shows that the distribution of the maximum
over the interval [0,t] is made up of the distributions
of the number of exceedences and of the magnitude. In
addition, if the exceedence events are characterized as a
time-dependent Poisson process (Todorovic and
Yevjevich 1969, Todorovic 1970), the distribution of
the number of exceedences N(t) can be written as:

P½Etn� ¼
exp½�ΛðtÞ�½ΛðtÞ�n

n !
(7)

in which Λ(t) is the time-varying parameter of the
Poisson process. If Λ(t) = λ t, where λ is a constant
rate, then N(t) follows a homogeneous Poisson as:

P½Et
n� ¼

e �λ tðλ tÞn
n !

(8)

Many studies have been made examining the suit-
ability of the Poisson assumption, particularly since
the mean and the variance are the same for the
Poisson distribution (e.g. Cunnane 1979). Thus,
alternative distributions for the occurrence process
have been proposed, such as the binomial and nega-
tive binomial (e.g. Cunnane 1979, Lang et al. 1999,
Onӧz and Bayazit 2001, Bhunya et al. 2012, 2013).
Overall, it appears that the Poisson assumption
works reasonably well.

The exceedence Yi above the threshold may have
any arbitrary distribution. The simplest model sug-
gested in the literature is the exponential distribution

(Shane and Lynn 1964, Todorovic and Zelenhasic
1970):

FYðyÞ ¼ 1� expð�y=~σÞ (9)

where ~σ is the scale parameter. While alternative pdfs
have been proposed, such as the two-parameter gamma
(Zelenhasic 1970), Weibull (Ekanayake and Cruise
1993), LN (Rosbjerg 1987), and LP3 (Bačová-Mitková
and Onderka 2010), the generalized Pareto (GP) dis-
tribution has become the most commonly used because
of its asymptotic property (Pickands 1975, Coles 2001).
The cdf of the GP distribution is:

FYðyÞ ¼ 1� ð1þ � y=~σÞ�1=� (10)

where ~σ and ξ are the scale and shape parameters, respec-
tively. Furthermore, if the exceedences Y1, Y2, . . ., Yn are i.
i.d. with cdf given by Equation (10), and are independent
of the occurrence of a nonhomogeneous Poisson process
given by Equation (7), then the cdf of the maximum of
Equation (6) yields:

Ft
X
ðxÞ ¼ exp½�ΛðtÞ�

þ
X1
n¼1

½FYðxÞ�n exp½�ΛðtÞ� ½ΛðtÞ�n
n !

¼ exp½�ΛðtÞ ð1� HðxÞ� (11)

Equation (11) lends itself to the derivation of specific
cases for stationary and nonstationary conditions. For
instance, when N(t) follows a homogeneous Poisson as
in Equation (8) and the exceedences Yi are exponential
as in Equation (9), then the cdf of X is given by:

Ft
XðxÞ ¼ exp½�λ t expð�x=~σÞ� (12)

which is the Gumbel distribution (Cunnane 1973). In
addition, if the exceedences are GP distributed, then
the distribution of the maximum X is:

Ft
XðxÞ ¼ exp � λ t ð1þ � x=~σÞ� 1=�

h i
(13)

which is known as the Poisson–generalized Pareto
(Poisson-GP) model. Remarkably, the Poisson-GP
model has the same form as a GEV with parameters

ðμ; σ; �Þ, where λ t ¼ ð~σ=σÞ�1=� and ~σ ¼ σ þ �ðu� μÞ.
For further details the reader is referred to Smith
(1989) and Coles (2001).

Referring to Equation (11), extension of the POT
method to nonstationary conditions can be achieved in
several ways. The threshold u, the occurrence process
N(t), and the exceedences Yi may be considered to be
nonstationary, although one must balance model com-
plexity, the principle of parsimony, physical attribution
of nonstationary components of the model(s), and data
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availability, while maintaining the key assumptions of
POT modeling. For instance, the threshold u is often
modeled using quantile regression (Koenker 2005) and
this approach has been used successfully for regional
POT models (e.g. Roth et al. 2012, 2014). Likewise,
seasonality in the occurrence process may modeled by
a superposition of sinusoidal cycles as (North 1980):

λðsÞ ¼ λ0 exp
XL
j¼1

aj sinðω j sþ bjÞ
" #

(14)

where λ0, aj, and bj are parameters to be estimated
from data, L is the number of significant harmonics
necessary to fit the periodic function, ω ¼ 2π=t0, and t0
is the length of the cycle (e.g. 365 if the time step is
daily and the basic period is one year). A continuous
trend may also be added to the periodic process when
necessary. And time dependence in the exceedences Y
may be included by using the cdf of X as (North 1980):

FtXðxÞ ¼ exp � �t0½1� FsYðxÞ� λðsÞ ds
n o

(15)

Parey et al. (2007) modeled both the occurrences and
the parameters of the GP distribution as time-depen-
dent processes. Prosdocimi et al. (2015) also used the
point process formulation of the POT approach and
modeled the resulting GEV parameters as functions of
time and other covariates, such as rainfall and temporal
evolution of urbanization in a catchment. They also
compared the nonstationary POT and BM models
using the same covariates. Some applications of non-
stationary POT models can be found in the literature
(e.g. Silva et al. 2014, 2016, Prosdocimi et al. 2015,
Razmi et al. 2017). The results show that using POT
data appears to be more effective than using BM data
for modeling the distribution of the maximum of
hydrological extremes.

4.3 Covariates, estimation, model selection, and
testing

Nonstationarity in extremes, such as floods and sea
levels, may be modeled assuming that the parameters
μ and σ are time dependent such as μt ¼ μ0 þ a t and
log σt ¼ σ0 þ b t (e.g. El Adlouni et al. 2007, Menéndez
and Woodworth 2010, Ruggiero et al. 2010, Katz 2013,
Salas and Obeysekera 2014). Vogel et al. (2011) found
that a single and parsimonious exponential model may
better approximate the behavior of the mean and var-
iance of series of AMF at thousands of rivers in the
USA with little evidence of any change in the coeffi-
cient of variation of flood series (refer to Section 4.4 for
additional details on this issue). Importantly, the mean

and standard deviation are coupled, so that assuming a
constant coefficient of variation may be very plausible,
even under nonstationary conditions (although it must
be validated with the data.) The shape parameter is
difficult to estimate reliably and is usually considered
as a constant to ensure identifiability (Coles 2001, Katz
2013). Typically, the length of the underlying data (e.g.
annual floods) is not long enough to estimate reliably
all the parameters as time dependent (see Section 6 for
additional detail).

The parameters can also be modeled as functions of
exogenous variables or covariates. The covariates are
external variables of phenomena, such as ENSO and
AMO, that may influence the value of the event of
interest (e.g. flood) at a given location. An important
part of building a model is to be able to identify those
covariates that are physically justified and attributed as
the cause(s) of the nonstationarity (e.g. Merz et al.
2012). Natural climatic variability may cause abrupt
shifts in hydrological regimes, which appear to be of
random lengths (e.g. Kiem et al. 2003, Sveinsson et al.
2003, 2005, Akintug and Rasmussen 2005, Enfield and
Cid-Serrano 2006, Rao 2009, Villarini et al. 2009, Park
et al. 2011). For example, the quarter monthly annual
maximum outflows of Lake Ontario and the 7-day low
flows of the Parana River appear to have a shifting
pattern over one or more “levels” (e.g. Sveinsson
et al. 2005). However, if the shifts are of decadal or
multi-decadal nature, typical observational records may
not have a sufficient number of “shifts” to determine
reliably the probabilistic characteristics of the duration
and magnitude of those shifts. The AMO, which has
been linked to rainfall regimes and annual streamflows
(Enfield et al. 2001), and annual maximum floods (Rao
2009), has only a few shifts in its observational record,
which started around 1850. However, proxy tree-ring
data have been used to extend the records back in time,
which allowed the estimation of the probability of a
future shift given the length of a current AMO regime
state (Enfield and Cid-Serrano 2006). Park et al. (2011)
demonstrated the use of this approach for predicting
storm surge extremes, assuming the parameters of
GEV distributions depend on the AMO regime state.
Likewise, other atmospheric and oceanic fluctuations,
such as the Pacific Decadal Oscillation (PDO) and the
El Niño Southern Oscillation (ENSO), have been
known to modulate the hydrological variability of
some river basins in the USA (e.g. Tootle et al. 2005,
Nowak et al. 2012). One of the major challenges in
dealing with shifting extremes is the estimation and
projection of regime shifts. Salas and Obeysekera
(2014) used a mixed model for fitting the distribution
of annual floods, where data exhibited two shifting
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patterns associated with the AMO. In addition to cli-
mate, anthropogenic factors such as land-use changes
(e.g. increasing deforestation or increasing urbaniza-
tion in the basin) may influence the variability of
extreme events and cause nonstationarity (e.g.
Prosdocimi et al. 2015).

The parameter vector θt of Equation (5) consists
of three parameters, the location, scale, and shape
parameters. In general, θt may involve two to four

parameters, which may be expressed as gðθkt Þ ¼
f ðcovariatesÞ where k is the parameter index, g is a
link function, and f is a function that may be linear
or nonlinear. A general formulation involving additive
functions up to four parameters is the Generalized
Additive Models in Location, Scale, and Shape
(GAMLSS) suggested by Rigby and Stasinopoulos
(2005) and implemented in the R software package
gamlss. In the GAMLSS formulation, the distribution
parameters denoted as μ, σ, ν, and τ may be modeled as
linear, nonlinear, or nonparametric smoothing func-
tions of the explanatory variables. Although the overall
model is general and may also include random effects,
the most useful form for hydrological applications is
the semi-parametric additive model (SAM) given by:

gkðθkt Þ ¼ Xk βk þ
XJk
j¼1

hjkðxjkÞ (16)

where gkðθkt Þ, k = 1, 2, 3, 4, are monotonic link func-

tions associated with each parameter θkt , Xk is a matrix
of explanatory variables (i.e. covariates) of size n × Jk , n
is the sample size, hjk is a nonparametric additive
function (e.g. cubic spline or polynomial) of the expla-
natory variable Xjk evaluated at xjk, Jk is the number of
additive functions h, and βk are the parameter vectors.
It is noted that the design vector xjk may be the same as
or different from a design column of the matrix Xk. For
example, for the parameter μ, SAM in Equation (16)

can be expressed as g1ðμÞ ¼ X1β1 þ
PJ1
j¼1

hj1ðxj1Þ. Similar

expressions can be written for g2ðσÞ, g3ðνÞ, and g4ðτÞ.
Simpler models, called parametric linear, for two para-
meters say μ and σ, are g1ðμÞ ¼ X1 β1 and
g2ðσÞ ¼ X2 β2. The gamlss package in the R software
provides an extensive suite of probability distributions
whose parameters can be expressed as functions of
explanatory variables (covariates) using the expressions
above, in which the coefficients are estimated using a
penalized maximum likelihood (ML) method. The
availability of numerous forms of probability distribu-
tions in gamlss provides various options for modeling
extreme value data. However, the users of software

must take great care in building as parsimonious a
model as possible given the concerns raised by
Serinaldi and Kilsby (2015) and others.

There are several methods for estimating GEV para-
meters from BM data. They include the method of
moments (MOM), method of maximum likelihood
(ML), method of probability weighted moments
(PWM) or L-moments, and Bayesian approaches (e.g.
Stedinger et al. 1993). The ML method is based on the
likelihood function, which is defined as:

LðθtÞ ¼
Yn
i¼1

f ðzi; θtÞ (17)

where f ðzi; θtÞ is the selected pdf, θt is the parameter
set (which may be constant or varying as a function of
covariates), z1, z2, . . ., zn are the BM data, and n is the
sample size. The approach hinges on maximizing LðθtÞ
with respect to the parameter vector θt. Often it is
more convenient to maximize the log-likelihood func-
tion, i.e. ℓ ðθtÞ ¼ log LðθtÞ. Literature abounds using
the ML method for estimation of hydrological extremes
(e.g. Kottegoda and Rosso 2008).

Parameter estimation using POT data is generally
based on estimating the parameters of the occurrence
process N(t) and those on the exceedences Yi, as
described above. For example, if N(t) is Poisson and
Yi is GP distributed, then the distribution of the annual
maximum is GEV with parameters that are related to
the parameters of N(t) and Yi. Note that for estimating
the parameters of the GP one may use the ML method
based on Equation (17), as described above. However,
in using POT data additional considerations are neces-
sary. One is the selection of the threshold u for which
there is no standard practice. Lang et al. (1999) provide
a summary of the operational guidelines for POT
methods and address both the threshold selection and
the independence criteria. Scarrot and MacDonald
(2012) also provide a review of the threshold selection
methods. Bernardara et al. (2014) suggested a two-step
approach including physical declustering and statistical
optimization. The first step is intended for identifica-
tion and characterization of independent events,
whereas the second step is for setting a threshold for
ensuring the convergence of exceedence distribution
towards the commonly used GP distribution.
Threshold selection in the context of regional POT
has been reviewed by Roth et al. (2015).

Several criteria are available for verifying the inde-
pendence requirement (Lang et al. 1999). The US
Water Resources Council (USWRC 1976) specified
that the exceedences of flood events must be sepa-
rated by at least 5 days plus the natural logarithm of
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the basin area in square miles. Additionally, the
intermediate flows between two consecutive peaks
must drop below 75% of the lowest of the two
peaks. The autocorrelation coefficient of successive
peaks can also be used, although for this purpose it
is a poor measure of dependence (Cunnane 1973).
Lang et al. (1999) also suggest using the mean num-
ber of events per year as one criterion. In the case of
floods, Langbein (1949) suggested the base be equal
to the lowest annual flood, but in long records it
should be raised such that the mean number should
be around three to four, and Cunnane (1973) indi-
cated that the mean number should higher than 1.65.
Bernardara et al. (2014) summarize the criteria used
for other variables such as extreme sea levels and
rainfall. Furthermore, few quantitative criteria are
available to aid in selecting the threshold in the case
of the GP distribution (Coles 2001). If the threshold
is too low, it is likely to violate the asymptotic
assumption regarding the selection of GP for model-
ing exceedences. But too high a threshold will result
in fewer exceedences leading to high variance of the
parameters. Two methods available for threshold
selection in the case of GP are the mean residual
life (MRL) plot and the shape parameter stability
test (Coles 2001).

Model selection and diagnostic testing are important
steps in extreme value modeling (Coles 2001,
Strupczewski et al. 2001). For nested models, the signifi-
cance of the trend in the model parameters (e.g. trend in
the location parameter μ) may be evaluated using the
likelihood ratio test, which uses the deviance statistic
D = 2{ℓ(Mr) – ℓ(Ms)}, where ℓ(Mr) and ℓ(Ms) are the
log-likelihood functions of the fitted models Mr (e.g. a
model with a linear trend in the parameter µ) and Ms

(without trend in the parameter µ), respectively, and r
and s (r > s) are the number of parameters in the models
considered. The test of the validity of one model against
another is based on the probability distribution of D,
which is approximately chi-square distributed with r – s
degrees of freedom. In addition, as suggested by Katz
(2013), one may apply the Akaike information criterion
(AIC) to compare among competing models, where AIC
(k) = −2ℓ(Mr) + 2k for a model with k parameters.
Alternatively, the Bayesian information criterion (BIC),
where BIC(k) = −2ℓ(Mr) + kℓ(n), may be applied where n
is the data sample size. The preferredmodel is that having
the minimum value of AIC or BIC. The performance of
the selected model is generally assessed by inspecting
diagnostic plots such as the probability and quantile
plots (Coles 2001). Note that for nonstationary GEV
models, the quantile–quantile plot may be based on stan-
dardized residuals (Coles 2001, p. 110).

4.4 The value of regression in nonstationary flood
frequency analysis

Regression approaches are extremely useful for char-
acterizing the nonstationary behavior of extreme floods
and modeling trends. Numerous benefits arise from
use of regression in a nonstationary context, when a
modeling approach results in residuals that are inde-
pendent, homoscedastic, and normally distributed (e.g.
Helsel and Hirsch 2002). Here we outline eight unique
features of linear regression for nonstationary flood
frequency analysis described by Serago and Vogel
(2018) and Hecht (2017):

(1) A single regression can be used to estimate all
conditional moments required for nonstationary
flood frequency analysis, offering a parsimo-
nious approach which can be applied to any
probability distribution.

(2) Regression is useful for communicating results
because of the graphical display of the available
data combined with both quantitative and qualita-
tive goodness-of-fit display of the resulting trend
model.

(3) Linear regression can be used to approximate a
wide class of nonlinear relationships, because
monotonic nonlinear functions may be linear-
ized using the ladder-of-powers (Mosteller and
Tukey 1977) to enable estimation using ordinary
least squares (OLS) regression with all its asso-
ciated benefits.

(4) Unlike many nonparametric trend detection
methods, regression is a method for both trend
detection and modeling. Trend modeling is cri-
tical for updating design events to reflect current
or future hydrological conditions.

(5) Confidence intervals can be calculated that
reflect uncertainty associated with the fitted
trend model as well as prediction intervals that
reflect uncertainty to be expected in future pre-
dictions (e.g. Helsel and Hirsch 2002).

(6) Multivariate regression can incorporate multiple
interacting covariates in modeling trends (e.g.
Kwon et al. 2008, Delgado et al. 2010, López
and Francés 2013, Prosdocimi et al. 2014,
Condon et al. 2015, Sedano et al. 2017).

(7) Regression can include estimates of the likeli-
hood of Type I and II errors, which have been
shown to be important for quantifying the
potential for underdesign and overdesign
(Vogel et al. 2013). Those estimates can in turn
be integrated into a risk-based decision process
(Rosner et al. 2014).
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(8) It is often difficult to distinguish trends from
persistence and both may be present in hydro-
logical records (e.g. Cohn and Lins 2005).
Persistence generally leads to inflation in the
variance of trend model coefficients leading to
incorrect statistical inference for the confidence
and prediction intervals and for Type I and II
error probabilities. Conveniently, a method for
adjusting the standard errors of regression coef-
ficients for various forms of persistence has been
suggested (Matalas and Sankarasubramanian
2003).

4.4.1 Regression model for nonstationary
conditional moments
Regardless of the assumed pdf of the AMF series,
which we term Z, a model of the conditional moments
is needed to convert a stationary pdf into a nonsta-
tionary pdf. Perhaps the most widely used pdfs of AMF
series include the LN2, LN3, LP3, and GEV. In each
case there are unique properties of the associated loga-
rithms of the AMF series V = ln(Z – τ), in which τ
denotes the lower bound of the LN3, and GEV pdfs of
Z. Note that, if τ = 0, Z is LN2 and V = ln(Z) is normal;
when Z is LN3, V = ln(Z – τ) is normal; if Z is LP3,
then V = ln(Z) follows a Pearson Type III (P3) pdf, and
when Z is GEV with negative shape parameter, V = ln
(Z – τ) follows a Gumbel pdf. Thus, it is reasonable to
develop a model of the conditional moments of V = ln
(Z – τ), rather than Z, since V is generally easier to
model than Z. Note that Serago and Vogel (2018)
developed a more general nonstationary approach
based on derived conditional moments of Z, so that
this approach could be used to fit a nonstationary
version of any probability distribution by using condi-
tional moments in real space. Below we show only the
results for conditional moments of V.

Consider the exponential trend model of the AMF
series Z as

Z ¼ expðβo þ β1 t þ εÞ (18)

where βo and β1 are model parameters, ε is a normally
distributed model error with zero mean and constant
variance, and t is an explanatory variable (not necessa-
rily time) that describes the effect of some anthropo-
genic or climatic factors on the AMF series. Equation
(18) was evaluated at thousands of rivers across the
USA and the UK by Vogel et al. (2011, see Appendix),
and Prosdocimi et al. (2014), respectively. Although
Equation (18) only contains a single independent vari-
able t, it can be extended to a multivariate model that

includes physically meaningful covariates (e.g. Kwon
et al. 2008, Delgado et al. 2010, López and Francés
2013, Prosdocimi et al. 2014, Condon et al. 2015).
Model (18) reduces to a linear model by taking loga-
rithms, i.e. V ¼ βo þ β1 t þ ε, then, OLS regression
may be applied. Note that the conditional mean, var-
iance, and skewness of V = ln(Z – τ) for the case of
linear regression are given by

EðVjtÞ ¼ μVjt ¼ βo þ β1 t (19a)

varðVjtÞ ¼ σ2
Vjt ¼ σ2Vð1� ρ2Þ ¼ σ2V � β21 σ

2
t (19b)

skewðVjtÞ ¼ γVjt ¼ γV � β 3
1 γt (19c)

where the slope coefficient is related to the product
moment correlation coefficient ρ between V = ln(Z – τ)
and t, i.e. β1 ¼ ρσV=σt , in which σV and σt are the stan-
dard deviations of V and t, respectively, and γV and γt are
the corresponding skewness coefficients. Again, one may
set τ= 0 for the LN2 and P3 cases. Note that in the
equations for the conditional mean, variance, and skew-
ness, only a single additional parameter β1 is needed, i.e. a
parsimonious approach, with the added eight advantages
of regression outlined above. For a model with no trend,
i.e. β1 ¼ ρ ¼ 0, the conditional and unconditional var-
iances of V are equal, while if ρ increases to unity, the
conditional variance of V tends toward zero. Interestingly,
Read and Vogel (2015, Supplementary information) show
that the simple regressionmodel also implies a relationship
between the nonstationary coefficient of variationCZjt of Z
and its stationary coefficient CZ ¼ σZ=μZ , i.e.

CZjt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2

Z þ 1Þð1�ρ2Þ � 1
q

. As expected, there is a

reduction in the nonstationary value of CZ|t as ρ increases,
which reflects improvements in our ability to predict
future trends. Hecht and Vogel (2017) introduce a hetero-
scedastic regression approach and derive the conditional
moments for a heteroscedastic regression, which enables
them to develop a nonstationary LN2 model that can
exhibit a trend in the coefficient of variation of Z.

4.4.2 Magnification factors and confidence intervals
Vogel et al. (2011) introduced a metric called the magnifi-
cation factor to reflect the change in the design flood over
time that results from the regression model in (18).
Consider the case of a nonstationary LN model in which
the nonstationary quantile function is given by Zp ¼
expðμV jt þ wpσVjtÞ ¼ expðβo þ β1 t þwp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2V � β21 σ

2
t

q
Þ,

where wp is the pth quantile of a standard normal variable
and again V = ln(Z – τ) with τ = 0. A flood magnification
factor is defined as the ratio of the quantile functions in two
different time periods t and t þ Δt, which gives:
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M ¼ Zp t þ Δtð Þ
Zp tð Þ ¼ exp β1 t

� �
(20)

for the cases when Z follows either an exponential
or a LN2 pdf. For example, M = 1.2 with Δt ¼ 10
corresponds to a 20% increase in all flood quantiles
over a decade. Other nonstationary pdfs will lead to
different expressions for the magnification factor.
Vogel et al. (2011) and Prosdocimi et al. (2014)
report magnification factors for hundreds of rivers
in the USA and the UK, respectively. Of course, one
must be very cautious when extrapolating trends
with time as the independent variable, since the
trend may not persist into the future (e.g.
Stedinger and Griffis 2011). Therefore, it is recom-
mended to report confidence/prediction intervals
for extrapolated estimates, which tend to widen
with time, thus documenting our (in)ability to pre-
dict future design events. Simple analytical formulae
for such confidence and prediction intervals for
estimates of the conditional mean in Equation
(19a) are given by Helsel and Hirsch (2002). The
reader is referred to Section 7 for further discussion
on this subject.

4.4.3 Likelihood of Type I and II errors
Vogel et al. (2013) discuss several trend detection
studies on the statistical significance of observed
trends in geophysical series. Unfortunately, most
such studies concentrate on the probability associated
with the null hypothesis of “no trend,” which we
denote as α. The power of such statistical trend
tests, defined as the likelihood that we might detect
a trend when it exists, is denoted 1 − β, while β is the
probability of missing the trend if it exists, i.e. the
probability of the Type II error informs us about the
likelihood of whether or not society is prepared to
accommodate and respond to such trends. Another
advantage of the regression-based trend model given
in Equation (19a) is that analytical relationships exist
for computing both the Type I and Type II error
probabilities. Remarkably little attention has been
given to the power of the test and the associated
likelihood of Type II errors. Lettenmaier (1976),
Dupont and Plummer (1998), Vogel et al. (2013),
and Rosner et al. (2014) describe an analytical calcu-
lation of the Type II error probability β associated
with our estimate of the slope term β1 for a linear
regression, which we describe below.

The trend test amounts to a Student’s t-test on the
estimated value of β1 in a simple linear regression
based on a sample of length N. Given the null

hypothesis H0: β1 ¼ 0 versus the one-sided alternative
hypothesis HA: β1 > 0, one can estimate the probability
of a Type I error, α, using PðTN�2 � tÞ, where TN−2

denotes the Student’s t random variable with N –2

degrees of freedom, and t ¼ β̂1=σ̂β̂1
, where β̂1 is the

OLS estimate of the trend slope and σ̂β̂1
is the standard

deviation of the estimator. Similarly, the probability of
the Type II error β corresponding to a given value of α

can be estimated by β ¼ PðTN�2 � t1�α;N�2 � δ
ffiffiffiffi
N

p Þ
where δ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=ρ2Þ � 1
p

, ρ is the correlation coeffi-
cient between V = ln(Z – τ) and t, and t1�α;N�2 is the
1 – α quantile of the Student’s t distribution with N– 2
degrees of freedom and non-exceedence probability
1 – α (Vogel et al. 2013). The relationship between α
and β only depends on the sample size N and the
correlation coefficient ρ. Note, the trend term β1 is
related to the correlation ρ as β1 ¼ ρσV=σt , where σt
is the standard deviation of t, and σV is the standard
deviation V in Equation (19b). Rosner et al. (2014)
document how the estimates of the Type I and II
error probabilities, α and β, can be used in a risk-
based framework for determining the optimal design
event under nonstationary conditions.

5 Return period, risk, and reliability under
nonstationarity

A traditional method for designing engineering projects
when key drivers affecting the project are uncertain is
based on correction factors. For example, a review and
survey of guidelines for design flood and design rainfall
estimation to account for climate change in Europe
indicate that a few countries have guidelines in the
form of correction factors (Madsen et al. 2014).
However, in this section we focus on recently developed
statistical techniques and metrics suggested in the litera-
ture for evaluating the performance of infrastructure,
particularly those related to extreme events arising in
nonstationary regimes. They include methods primarily
derived from continuous and discrete probabilistic
models, hazard functions, and economic risk-based
approaches. Some of the methods reviewed here are
fairly new and, as mentioned above, the assumptions
are still debatable and the metrics need additional test-
ing. Further, in some cases the methods are not estab-
lished in practice, but we offer possible concepts, ideas,
and paths that may be followed and developed as the
need and opportunity arise.

As above, we consider the nonstationary cdf of
annual floods denoted as FZðz; θtÞ, where parameter
set θt varies with covariates that evolve with time. It is
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also assumed that in an initial year, say year t = 0, a
hydraulic structure has been designed (built) based on
the flood quantile zq0 , which has an initial return per-
iod (mean waiting time) T0 = 1/p0 = 1/(1 – q0), where
p0 and q0 are the exceedence and non-exceedence
probabilities of zq0 , respectively. The cdf above could
be defined based on BM or POT data.

5.1 Expected waiting time (EWT)

Consider the random variable X as the time where a
flood exceeding the design flood zq0 will occur for the
first time. For example, the probability that the first
flood exceeding the design flood will occur at time
x = 3 is ð1� p1Þ ð1� p2Þ p3. In general, the probability
that the first flood exceeding zq0 will occur at time x is
given by (Salas and Obeysekera 2014):

f ðxÞ ¼ px
Yx�1

t¼1

ð1� ptÞ ; x ¼ 1; 2; . . . ; xmax

(21)

where f(1) = p1 and xmax is the time where pt becomes
equal to 1. Equation (21) is the generalization of the
geometric distribution that is applicable to nonstation-
ary conditions, and has parameters (exceedence prob-
abilities) varying with time. Note that if the ps are the
same (stationary condition), then Equation (21) sim-
plifies to Equation (1), the well-known geometric dis-
tribution. As indicated in Section 2, the stationary
geometric distribution has an exponential decay, but
that is not the case for the nonstationary geometric
distribution in (21), which can take on a variety of
unimodal distributional shapes (Read and Vogel
2015). Likewise, the cdf of the geometric distribution
(21) becomes:

FXðxÞ ¼ 1�
Yx
t¼1

ð1� ptÞ ; x ¼ 1; 2; . . . ; xmax

(22)

where FX(1) = p1 and FX(xmax) = 1. Mandelbaum et al.
(2007) introduced nonhomogeneous geometric random
variables, which are similar to the above and provided a
convenient recursive formula for computing f(x).

The nonstationary geometric distribution (Equation
(21)) enables one to determine the expected waiting
time (EWT) or return period, where the flood exceed-
ing the design flood zq0 will occur for the first time as
(Cooley 2013, Salas and Obeysekera 2014):

T ¼ EðXÞ ¼ 1þ
Xxmax

x¼1

Yx
t¼1

ð1� ptÞ (23)

Equation (23) gives the return period T for nonstation-
ary conditions, which is consistent with the existing
definition of return period for the stationary case. But
unlike the stationary case where T is only a function of
the exceedence probability p (a constant value), i.e.
T = 1/p, in the nonstationary case T is a function of
the time-varying exceedence probabilities pt. Equation
(23) has been derived relying on the geometric distri-
bution (Equation (21)), which is applicable for nonsta-
tionary conditions. The interested reader is referred to
the papers by Wigley (1988) and Olsen et al. (1998),
who derived the return period based on concepts of the
binomial distribution and mentioned the possibility of
using a nonhomogeneous Poisson process. In addition,
the variance of X may be determined from varðXÞ ¼
EðX2Þ � T2 in which:

EðX2Þ ¼
Xxmax

x¼1

x2 px
Yx�1

t¼1

ð1� ptÞ (24)

Likewise, the risk of failure of the referred hydraulic
structure having design life n may be determined by
R = P(X ≤ n) = FX(n) so that from Equation (22) we get
(Salas and Obeysekera 2014):

R ¼ 1�
Yn
t¼1

ð1� ptÞ (25)

and the reliability becomes:

R, ¼
Yn
t¼1

ð1� ptÞ (26)

In Section 2, the expressions for T and R and the
design procedure for the stationary case were reviewed.
A similar procedure can be followed in the nonstation-
ary case, although its implementation is more involved
because some of the computations must be done
numerically. For example, we illustrate a procedure
that may be useful for assessing the return period and
risk of failure of an existing hydraulic structure that has
been designed for a return period, which we denote by
T0 (e.g. T0 = 50), which gives p0 = 1/T0, q0 = 1 – p0, and
the design quantile zq0 is obtained by inverting

q0 ¼ FZðz; θ̂0Þ, i.e. z ¼ zq0 ¼ F�1
Z ðz; θ̂0Þ. Further,

after some years of operation, additional data become
available, and the concern for changes in the basin and
climate suggests that the hydrological regime may be
different from the past. The assessment is based on the
nonstationary equations suggested above and the fol-
lowing steps:

14 J. D. SALAS ET AL.



(i) Fit a nonstationary flood frequency model

FZðz; θ̂tÞ using the available data.
(ii) The values of pt ¼ 1� qt are obtained

from pt ¼ 1� FZðzq0 ; θ̂tÞ.
(iii) Calculate T from Equation (23) and R from

Equation (25) for a specified value of the
assessment time frame, say n years.

(iv) The associated uncertainties can be determined
following the procedures reviewed in Section 6.

The calculations above are direct and straightforward
in the sense that no iterative or numerical solutions are
needed.

Alternatively, the procedure could be posed as a
design problem, in which case either the risk of failure
R or the return period T is fixed initially, and one
wishes to compute the design flood capacity. For exam-
ple, referring to Equation (23), one could set the
desired value of T, e.g. T = 100, then find zq0 by
inverting Equation (23), since pt ¼ 1� FZðzq0 ; θ̂tÞ
(the solution will involve a numerical trial-and-error
procedure). Note that zq0 is the design flood that the
hydraulic structure would be designed for at the begin-
ning of the time period considered. Then the risk of
failure R can be determined from Equation (25). This
procedure is summarized in Table 2 (row for method
EWT). Conversely, one could set a value of the risk R
and a design life n, e.g. R = 5% and n = 50, then zq0 is
found by inverting Equation (25) (Table 2, row for
DLL method; also see Section 5.3). In addition, as
indicated in Section 5.5, an economic risk-based deci-
sion approach could be set up by considering, for
example, the cost of the structure and the expected
damages. Table 2 summarizes some of the foregoing

concepts, definitions, and equations pertaining to non-
stationary extreme processes such as floods.

5.2 Expected number of events (ENE)

A nonstationary flood regime may imply an increasing
(or decreasing) frequency of extreme events in a drai-
nage basin. Assume, as before, that the initial design
quantile (return level) is zq0, with a design return
period T0. The exceedence probability with respect to
this initial design quantile will increase (or decrease)
with time due to the nonstationarity of the probability
distribution. As a result, the frequency of the occur-
rences of floods exceeding zq0 will also increase (or
decrease) with time, and it would be useful for planners
and managers of infrastructure to be able to quantify
those frequencies for nonstationary regimes.

Considering a time frame of n years (e.g. the design
life of the structure), let Ij, j = 1, 2, . . ., n be a series of
Bernoulli random variables that denote the occurrence
or absence of an extreme event exceeding zq0 in year j,
i.e. if an annual flood exceeds zq0 in year j, then Ij = 1,
otherwise Ij = 0. Further, if the annual floods are
independent in time, then the Ijs are also independent,
but due to nonstationarity they are non-identically
distributed. The time-varying exceedence probability
is given by pj = P[Ij = 1]. Following Obeysekera and
Salas (2016) let Y be the number of extreme events
exceeding the design flood zq0 over the design life n,
which is equal to Y ¼ Pn

j¼1 Ij and the possible values
of Y are {0, 1, . . ., n}. It may be shown that under
nonstationarity the PMF of Y is Poisson binomial
(Tejada and Den Dekker 2011, Hong 2013):

Table 2. Alternative design methods based on return period, design quantile (return level), and risk under nonstationarity. EWT:
expected waiting time, ENE: expected number of events, DLL: design life level, and AAR: average annual risk.
Design
method

Primary
parameters

Return period
T, T0, or �T

Design quantile zq0
(return level)

Risk of failure R, over
design life, n

Probability
distribution

EWT(b) T T (specified) Given T, find zq0 in

T ¼ E Xð Þ ¼ 1þ Pxmax

x¼1

Qx
t¼1

1� ptð Þ (a)

Equation (25)(a) Nonhomogeneous
geometric (NG)

ENE = 1 n Find p0 ¼ 1� Fzðzq0; θ̂0Þ
Then T0 =1/p0

Solve for zq0 in
Pn
t¼1

pt ¼ 1 (a) Equation (25)(a) Poisson-binomial

ENE = m
(m > 1)

n, m Find p0 ¼ 1� Fzðzq0; θ̂0Þ
Then T0 =1/p0

Solve for zq0 in
Pn
t¼1

pt ¼ m (a) Equation (25)(a) Poisson-binomial

DLL(b) R, n Find p0 ¼ 1� Fzðzq0; θ̂0Þ
Then T0 =1/p0

Given R and n find zq0 in

R ¼ 1� Qn
t¼1

1� ptð Þ (25)(a)

R (specified) NG or
Poisson-binomial

AAR(n) R, n Find �p in R ¼ 1� 1� �pð Þn
Then �T ¼ 1=�p

Find zq0 in �p ¼ 1=nð ÞPn
t¼1

pt
(a) R (specified) Binomial

(a) pt ¼ 1� FZðzq0 ; θ̂tÞ (refer to Section 5.1).
(b) If the EWT or DLL methods are used for assessing a previously designed project where the design quantile zq0 is known (and the corresponding values of
p0 and T0), then T can be determined from Equation (23) and R from Equation (25) without any numerical or trial and error calculations.
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PðY ¼ yÞ ¼
X
A2Sy

Y
j2A

pj
Y
i2Ac

ð1� piÞ ; y ¼ 0; 1; . . . ; n

(27)

where Sy is the set of all subsets of y integers that can be
selected from {1, 2, 3, . . ., n}, and Ac is the complement
of A with respect to {1, 2, . . ., n}, for example, if n = 3,
A = [1,2] and Ac = 3, or A = [1,3] and Ac = 2, or
A = [2,3] and Ac = 1, so that S2 = {[1,2], [1,3], [2,3]}.
Depending on the value of n, the number of elements
in Sy, which is equal to n!/(n – y)!y!, can be quite large.
Several approximations and an exact method for deter-
mining P(Y = y) of Equation (27) are available in the
Poibin package of R-software (R Core Team 2015).

The probability of zero extreme events during the
design life n gives the reliability:

R, ¼ PðY ¼ 0Þ ¼
Yn
j¼1

ð1� pjÞ (28)

and the corresponding risk of failure is (Obeysekera
and Salas 2016):

R ¼ 1�
Yn
j¼1

ð1� pjÞ (29)

Note that Equations (28) and (29) are the same as (26)
and (25), respectively, except they were obtained using
a different approach. The expected number of extreme
events, denoted ENE, over the design life n under
nonstationary conditions is of interest in practical
applications. The expected value and variance of Y are:

EðYÞ ¼
Xn
j¼1

pj (30)

varðYÞ ¼
Xn
j¼1

pjð1� pjÞ (31)

Note that, under stationary conditions, i.e. pj = p0 for
all j, so that E[Y] = np0 and var(Y) = np0(1 – p0), as
pointed out in Section 2 for the binomial distribution.
In the case of nonstationarity, the return period T0

(consequently p0 = 1/T0) may be obtained by inverting
Equation (30) by setting E(Y) = m, where m is the
specified expected number of events (ENE) exceeding
the design flood in n years. For example, the case m = 1
has been discussed by Parey et al. (2007), Cooley
(2013), Rootzen and Katz (2013), and Obeysekera and
Salas (2014), and m > 1 was considered by Obeysekera
and Salas (2016). The concept here is that E(Y) = m can
be used as a criterion for assessing a project. Thus, for
specified values of n and m, Equation (30) can be
solved for p0, T0, and zq0, which will give the

information needed for making design decisions.
Refer to rows under ENE = 1 and ENE = m in
Table 2 for a summary of the definitions, concepts,
and equations as outlined in this section.
Furthermore, one may wish to compute a tolerance
interval for Y using, say, E(Y) + cσ(Y) = r with c ≥ 0
and r ≥ 1, which will lead to alternative design and
assessment metrics.

5.3 Design life level (DLL)

The waiting time concept has a drawback in that it
requires knowledge of nonstationary behavior beyond
the design life of a project, and such an extrapolation is
uncertain. Rootzen and Katz (2013) suggested a risk
measure that incorporates the design life n, explicitly
for determining the required design quantile for the
nonstationary case. They termed this measure the
design life level (DLL), and it is based on the risk that
the largest flood during a selected planning period n
will be higher than a specified design event zq0, which
can be derived from the risk formula (Equation (25)).
The explicit incorporation of the design life n into its
definition makes it attractive in practical applications.
The risk value R is specified, e.g. R = 5%, and then
Equation (25) is inverted to determine the appropriate
value of zq0 and the corresponding values of p0 and T0

(Table 2). Rootzen and Katz (2013) also provided an
alternative measure known as Minmax Design Life
Level, which is based on the yearly risk level. In this
case, the design quantile is chosen such that the max-
imum exceedence probability in any given year during
the design life is at most a specified value, say p%. This
measure allows one to limit the maximum risk expo-
sure in any given year during the project life. Two
graphical displays of risk information were also sug-
gested: a bar plot of annual risk (exceedence probabil-
ity) for a given design quantile and then a constant risk
plot which displays the design quantile that corre-
sponds to a given exceedence probability (yearly risk).
Both risk plots are useful communication tools for
displaying time-varying risks under nonstationarity.

5.4 Hazard function analysis

The field of hazard function analysis (HFA) involves a
probabilistic assessment of the “time to failure,” “survi-
val,” or “return period” of an event of interest. HFA,
sometimes referred to as survival analysis, is used across
a wide array of fields, including epidemiology, manufac-
turing, medicine, actuarial statistics, reliability engineer-
ing, economics, and elsewhere. HFA is used to determine
the onset or relapse of a disease in bio-statistics, the time
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until a person becomes unemployed (or employed) in
economics, the time until a device fails in reliability
engineering, and the time to death in actuarial science,
among many other fields and uses (e.g. Klembaum 1996,
Klein and Moeschberger 1997, Tung et al. 2006, Cleves
et al. 2008, Finkelstein 2008, Kottegoda and Rosso 2008,
Lawless 2011). HFA comprises a well-known set of tools
for characterizing the probability distribution of the time
of failure associated with a specific event or process over
the course of a time period of interest. Likewise, in
nonstationary cases, HFA can represent the distribution
of the time of failure, as shown for natural hazards in
general (Read 2015, Read and Vogel 2016a), and for
floods (Read and Vogel 2016b). When the variable of
interest, Z, exhibits nonstationary behavior, HFA is par-
ticularly applicable and of interest to hydrologists con-
cerned with nonstationary processes.

The foundation of HFA is the hazard function, or
failure rate function, h(t) defined as the probability that
a failure event occurs in the time interval (t, t + Δt)
(Kottegoda and Rosso 2008):

hðtÞ ¼ fTðtÞ
1� FTðtÞ ¼ � 1

STðtÞ �
dSTðtÞ
dt

(32)

where h(t) has units (failures/time), fT is the pdf of the
time to failure denoted here as T, FT is the cdf, and
ST(t) = 1 – FT(t) is the survival function of T, also
known as the reliability function, which represents the
probability of no failure in the time interval (0,t], given
that failure has not yet occurred at t. From Equation
(32), it follows that the cumulative hazard functionH(t),
which represents the total number of failures over a
specified time interval (Cleves 2008), is given as:

HðtÞ ¼ �
t

0
hðsÞds ¼ �

t

0

dSTðsÞ
STðsÞ ds ¼ � ln½STðtÞ� (33)

Then, the survival function ST can be rewritten from
Equation (33) as:

STðtÞ ¼ exp½ � �t0 hðsÞds� ¼ exp½�HðtÞ� (34)

For stationary and i.i.d. processes, the hazard function
h(t) is constant and T associated with the design event
zqo follows an exponential pdf regardless of the form of
FZ(z;θ) (Gumbel 1941).

Normally, the hazard function h(t) defined in
Equation (32) is only constrained to be non-negative,
h(t) ≥ 0; it may be increasing or decreasing, non-mono-
tonic, or discontinuous (Klein and Moeschberger 1997).
However, Read (2015) and Read and Vogel (2016b) inter-
preted h(t) as the changing exceedence probability asso-
ciated with a particular design event of interest. They
consider a time-varying model for floods, FZðz; θtÞ, in

which floods are independent but not necessarily identi-
cally distributed (i./n.i.d.). They also restrict their analysis
to an increasing trend in themean and standard deviation
of the AMF series, which is an excellent approximation to
many actual flood series (Vogel et al. 2011, Prosdocimi
et al. 2014). As indicated in previous sections, under these
conditions, the exceedence probability pt associated with
the design event changes as a function of time, and thus
the expected waiting time (EWT) until a flood that
exceeds the design event occurs is no longer 1/p.
Further, they assume that the hazard function can be
expressed and interpreted as the series of nonstationary
exceedence probabilities:

hðtÞ ¼ 1� FZðzqo ; θtÞ ¼ pt (35)

where again, zq0 is the design event quantile. They use
several independent methods to confirm that this rela-
tionship holds in practice for many special cases. The
interpretation of the function h(t) in Equation (35) is
the same as its definition in Equation (32); thus it still
represents a failure rate, even though the hazard func-
tion is now standardized over the interval [0,1].

Using the HFA summarized in Equations (32)–(35),
Read and Vogel (2016a) derive the pdf, cdf, and survival
function of T corresponding to various nonstationary
models of flood series Z, including nonstationary ver-
sions of the exponential, GP, and LN models. Their
results show that, in all cases, the pdf of the time of
failure under nonstationary conditions no longer has an
exponential shape as for the stationary case, which con-
firms the results mentioned in Section 5.1 above.
Instead, the shape of the pdf of T is complex, more
symmetric than exponential, and depends upon the
degree and form of the nonstationarity associated with
the flood series Z, as well as the usual natural or inherent
hydrological variability (Read and Vogel 2016a). In
addition, their results based on the use of HFA agree
entirely with their analysis summarized in Read and
Vogel (2015) for the case when the AMF series Z follows
a nonstationary LN model. Their findings suggest that
the use of HFA provides a promising framework for
summarizing our probabilistic understanding of the
time of failure associated with design events under non-
stationary conditions and for improving our under-
standing of the linkages between Z, zq0 , and T.

5.5 Economic risk-based approaches

Economic risk-based decision making (RBDM) is a well-
established methodology that determines appropriate
levels of infrastructure based on the expected damages
avoided vs. the cost of the infrastructure required (e.g.
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National Research Council 2000, Tung 2005) and is now
standard practice in some countries and agencies (e.g. US
Federal agencies, Stakhiv 2011). RBDM approaches differ
from those risk-based design-event approaches described
above, because they integrate probabilistic notions of risk
with economic consequences of flood hazards. RBDM
can be used in place of the traditional design-event
approach, which selects a particular (average) T-year
event, a given risk R in a specified design lifetime n, or
considers both T and R, usually specified by regulation or
experience, and then designs the necessary infrastructure
to protect against the hydrological event. When a design-
event risk-based approach does not integrate economic
consequences, a suitable risk metric that captures nonsta-
tionary conditions is Equation (25) or other alternatives,
as discussed in Sections 5.2 and 5.3.

The goal of RBDM is to choose a level of infrastruc-
ture protection that minimizes the total expected
annual cost (including flood damage costs) of the
water infrastructure. Alternatively, RBDM may maxi-
mize the project net benefits. Thus, RBDM may lead to
flood-risk mitigation measures against a flood event
either larger or smaller than, say, the 100-year flood,
which is a common design event considered in the
traditional analyses for some projects. A common
approach to performing RBDM for sequential decision
problems is to use a decision tree. A decision tree is the
graphical equivalent of a stochastic dynamic program
(SDP), which combines a graphical representation of
the overall set of alternatives and decisions, with a
framework for making risk-based decisions under
uncertainty. Decision trees are described in most intro-
ductory textbooks in statistical decision theory and
decision sciences as well as in textbooks on water
resource systems analysis (e.g. Loucks and Van Beek
2005). Below, we discuss approaches applicable for
both traditional design-event risk-based and the eco-
nomic RBDM suited to nonstationary conditions.

Management decisions in a nonstationary world to
cope with extreme events, such as floods and low flows,
are generally sequential decisions, which depend criti-
cally on the uncertainty inherent in future projections
of flood (or low flow, as the case may be) scenarios and
their corresponding impacts and consequences.
Nevertheless, there are remarkably few examples of
the application of RBDM to nonstationary water
resource problems in the scientific literature and very
few examples of the use of decision trees under non-
stationary conditions. Fiering and Matalas (1990) pro-
vide one of the earliest examples of a sequential
statistical decision process for evaluating various alter-
natives in the context of nonstationarity (climate
change). Chao and Hobbs (1997) give a brief history

of decision analysis applications to climate change; and
apply SDP for evaluating breakwater adaptation under
possible climate change impacts on Lake Erie. Likewise,
Hobbs et al. (1997) applied a decision tree approach to
water resources management under climate change,
and recently the method has been resurrected (e.g.
Gersonius et al. 2013, Rosner et al. 2014).

A critical challenge in the application of decision
trees to the problem of RBDM under nonstationary
conditions involves estimation of the probabilities asso-
ciated with various outcomes (branches of decision
tree). Hobbs et al. (1997) demonstrate use of a
Bayesian approach to analyzing the probabilities in
the decision tree for evaluating alternative adaptation
strategies for climate change for the Great Lakes.
Similarly, Manning et al. (2009) describe a Bayesian
analysis consisting of aggregating predictions from a
range of model predictions, such as GCMs or RCMs
(regional climate models). Another approach for apply-
ing RBDM using a decision tree under nonstationary
conditions would be to integrate the uncertainty inher-
ent in projections of future trends. Such an analysis
must incorporate the uncertainty associated with our
ability to detect changes in flood series. Rosner et al.
(2014) introduced a RBDM approach applicable to
nonstationary conditions, using a decision tree, with
the outcome probabilities based on Type I and Type II
error probabilities associated with statistical trend
hypothesis test outcomes. Their approach includes: a
nonstationary GEV model of flood frequency, the
uncertainty inherent in the trend detection process,
natural hydroclimatic uncertainty, and a detailed eco-
nomic analysis associated with the various infrastruc-
ture alternatives under consideration. The resulting
process enables the decision maker to ask the question
when enough information is available to warrant mak-
ing a particular flood-management adaptation decision
under nonstationary conditions.

A simple metric to describe the evolution of flood
risks under nonstationary hydrological regimes consid-
ering an economic perspective has been suggested by
Stedinger and Crainiceanu (2001). They assume that
for any given planning period n, the risk for any
threshold level can be described by the sequence of
annual exceedence probabilities p1; p2; :::; pn and an
average measure of such varying annual risk, AAR, is:

AARðnÞ ¼ �p ¼ ð1=nÞ ðp1 þ p2 þ :::þ pnÞ (36)

Essentially, Equation (36) can be used in place of the
risk function defined in Equation (25). In addition, the
authors describe an economic RBDM approach which
assumes that a damage function D(z) for every flood
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level z is known and ω is an economic discount factor
that represents the time value of flood losses. If
z1; z2; :::; zn are the flood levels over the planning
period n, then the discounted damage function, DDF,
evaluated at the present time is:

DDFðωÞ ¼ Dðz1Þ þ ωDðz2Þ þ � � �
þ ωn�1Dð znÞ (37)

The paper by Stedinger and Crainiceanu (2001)
explores alternatives of the damage function D(z) and
applications to the case of increasing flooding at a site
in the Mississippi River. The simple metric based on
Equation (36) is also included in Table 2 for
comparison.

Any of the methods described in previous sections
may be extended to incorporate economics into the
design procedure under nonstationarity, and such
extensions are recommended. However, integration of
costs and benefits over the design life under nonstatio-
narity may not be straightforward, as remarked by
Rootzen and Katz (2013), and adds another element
of difficulty into the analysis.

6 Impact of uncertainty and nonstationarity on
design events

It is well known that, when using stationary pdf mod-
els, physically-based models, and stochastic models, the
uncertainty of design quantiles (e.g. flood return levels)
or of any risk metric of a given project is attributed to
the uncertainty of the model parameters because they
must be estimated based on a limited sample, often
small datasets. Likewise, there is an additional uncer-
tainty associated with our lack of knowledge of the true
model of the system under consideration. In the case of
nonstationary models, the problem is the same, but
even more complex and challenging because of the
larger number of parameters involved and the alterna-
tive ways of including nonstationarity into the analysis.
In this regard, while for many models determining
parameter uncertainty has been well advanced at least
for stationary models, a relevant problem is to what
extent the quantification of those uncertainties (e.g.
uncertainty of the 100-year flood) is utilized in prac-
tice. This is even more so for project assessment under
nonstationary conditions because of the many uncer-
tainties involved. The combined impact of parameter
uncertainty and model uncertainty is a challenging
subject that needs additional research. While many
pdfs have been utilized in practice for fitting the dis-
tribution of hydrological extremes, the review of litera-
ture suggests that pdfs of annual maximums,

particularly those arising from POT data, points
towards the GEV distribution because of the well-
defined extreme value theory. Therefore, one can take
advantage of the tools of model selection, comparison,
and testing, which for nested models are well estab-
lished, and include stationary and nonstationary pdfs.

As indicated above, in modeling stationary and non-
stationary extreme events an issue of concern is the
parameter uncertainty of the selected pdf and the
design metrics involved. Since the size of the typical
dataset is generally too small to estimate the parameters
reliably, one must be cautious in selecting a model with
an appropriate number of parameters. For example,
even for stationary models, estimating the shape para-
meter is not reliable. It is for this reason that in some
countries (e.g. in the USA) maps have been developed
to estimate regional skewness, which combined with
at-site skewness gives a more reliable skew value to be
used in estimation of the model parameters (HFAWG
2017). Various approaches have been proposed to esti-
mate the variance (uncertainty) of a design quantile
under nonstationary conditions (e.g. Coles 2001).
They generally fall into three categories: (a) the delta
method, (b) bootstrapping, and (c) profile likelihood. If
the parameters are estimated using the method of max-
imum likelihood (ML), the three approaches may be
used for constructing confidence intervals associated
with estimates of a design event quantile. The delta
method is based on the large sample properties of ML
estimators. The bootstrap method is based on standar-
dized data, which are then resampled with replacement
and used to fit an ensemble of nonstationary models.
The profile likelihood method, which is based on the
log-likelihood function, is usually more accurate than
the other two methods, and may be used to compute
confidence intervals for design events. However, even if
the profile likelihood method is more accurate, it is
more complex in cases of nonstationary models
because commonly they involve a bigger number of
parameters than the stationary models. Obeysekera
and Salas (2014) provide the details of all three meth-
ods and illustrate their applications with data of
extreme hydrological events.

Another increasingly common approach to uncer-
tainty analysis of design event quantiles involves the
use of Monte Carlo methods for repeated sampling of
design event quantiles obtained from physically-based
models. For example, the generalized likelihood uncer-
tainty estimation (GLUE) method is a common
approach used in this category of uncertainty methods,
although it has been widely criticized (e.g. Stedinger
et al. 2008) when it is used with an “informal” likelihood
function. Generally, there is now a widespread
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application of deterministic models for use in deriving
design event quantiles and for obtaining uncertainty
intervals associated with such quantiles, because such
deterministic models can often accommodate physical
changes in watershed behavior. An example in this
direction has been suggested by Efstratiadis et al.
(2015), based on a deterministic modeling framework
with stochastic residual errors. Often a proper stochastic
representation of the deterministic model error compo-
nent is not included in the analysis, in which case sig-
nificant systematic biases in design event quantiles can
result (Farmer and Vogel 2016). The application of
deterministic models without accounting properly for
the model residual uncertainty introduces substantial
distributional bias into important statistics computed
from simulated responses. Farmer and Vogel (2016)
apply a complex distributed rainfall–runoff model to
hundreds of river basins across the USA to document
that this bias is particularly severe at the distributional
extremes corresponding to floods and droughts. Even
though a deterministic model may generate unbiased
simulations overall, differential bias in various impor-
tant statistics derived from such simulations still arises
from ignoring the model residuals. Some of this bias can
be mitigated by considering a stochastic reintroduction
of model residuals into simulated responses. Exactly
how to do so requires additional exploration and may
depend on the particular application and the simulation
model developed. Farmer and Vogel (2016) document
that the stochastic use, as an ex post facto solution to the
problem of distributional bias, may be an attractive
approach. Importantly, many of the components of a
rigorous uncertainty analysis can be redirected for use in
the stochastic development and implementation of
environmental simulation models in operational studies
(Vogel 2017). Additional bias in design events will also
result from not including other known sources of uncer-
tainty into model output, such as uncertainty in climatic
inputs and model parameters. Consideration of uncer-
tainty arising due to climatic input series that drive such
models, in addition to uncertainty due to model para-
meter estimation as well as reintroduction of model
errors into simulation output, must all be considered
when performing a proper uncertainty analysis based on
physically based simulation models (Vogel 2017). Such
analyses and developments may be particularly impor-
tant within the context of the additional uncertainty
corresponding to the impacts of climate change.

Uncertainty, which may be even more important
than parameter uncertainty, arises from the lack of
knowledge of the nonstationary evolution of the
model (e.g. a pdf) in the future. It is not advisable to
simply extrapolate the historical trends into the future.

Such an extrapolation should be based on additional
information regarding plausible evidence-based futures
(e.g. anthropogenic and climate variability and change
investigations), which is why it is advocated to use
physically-based covariates for modeling future nonsta-
tionary conditions. However, even when physically-
based covariates are considered, the extrapolation
could prove to be inaccurate due to lack of knowledge
of future conditions. For example, in cases where the
nonstationarity of floods is due to urbanization, the
built-out condition implies an upper limit on future
trends in floods, and this limit must be considered in
any plausible analysis. Often it may be reasonable to
use the historical trends due to urbanization to simply
update a flood frequency analysis to reflect current
urbanization conditions, which may remain roughly
constant for the near-term or for a short period into
the foreseeable future. Similarly, there are significant
uncertainties associated with future climates and the
use of the current suite of GCMs because such models
are unreliable, particularly for extreme precipitation
events (e.g. Blӧschl and Montanari 2010, Kundzewicz
and Stakhiv 2010). Quantification of the predictive
uncertainty of future hydroclimatic conditions will
remain a considerable challenge in the further devel-
opment of nonstationary methods for extreme events
in the future.

7 Further remarks: caveats and complications

As stated above, projections made using any statistical
or deterministic model inherently involve uncertain-
ties. For example, the design flood computed using a
pdf such as GEV or LP3, fitted to historical records at a
particular location, has uncertainties that are typically
expressed in the form of confidence intervals. This is so
for both stationary and nonstationary conditions; how-
ever, in the case of nonstationarity, additional chal-
lenges arise due to predictive uncertainties of future
trajectories of the underlying anthropogenic and
hydroclimatic processes and their impact and conse-
quences on society and the environment.

First, the perceived nonstationarity may not neces-
sarily be caused by anthropogenic or climate change
effects. For example, even though trend tests and
change point analysis may suggest statistically signifi-
cant changes in the hydrological regime, such inhomo-
geneity in the time series may be due to stationary
processes, such as low-frequency components of the
atmospheric and oceanic system, or to the effect of
persistence (e.g. Sveinsson et al. 2003, Cohn and Lins
2005, Koutsoyiannis 2011, Koutsoyiannis and
Montanari 2014, Sveinsson and Salas 2017). For this
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reason, Serinaldi and Kilsby (2015) recommend that
nonstationary frequency analysis should not be based
solely on the at-site time series, but rather require
additional information and detailed exploratory data
analysis. Regardless of the perceived nonstationarity,
whether due to ongoing changes of the physical char-
acteristics of the basin (e.g. urbanization or deforesta-
tion), climatic or human influences, or other effects,
such effects should be explored and considered.
Through such an investigation, a well-defined determi-
nistic mechanism that explains the nonstationary beha-
vior must be identified. Attribution of change is not an
easy task (Merz et al. 2012), but it may be worth
pursuing in some detail, depending on the importance
of the project. While a proper model building that
includes nonstationarity should in principle be well
justified both physically and statistically, one must be
aware of the limitations involved (e.g. cost, resources,
time, political factors, inertia of institutions, and
others) when planning infrastructure.

Matalas (2012), Serinaldi and Kilsby (2015), and
others have recommended that stationarity should
always remain the default assumption. Silva et al.
(2016) compared the results obtained by applying alter-
native flood frequency models considering climate-
related covariates, and found that “the difference in
estimates and uncertainty of the design life level (DLL),
obtained using stationary and nonstationary models was
very small,” for the particular example considered. In
situations when nonstationary behavior is apparent, it
is even more important to include the effect of uncer-
tainty in planning and management decisions (Stakhiv
2011). Vogel et al. (2013) and Rosner et al. (2014)
recommend considering outcomes relating to both sta-
tionary and nonstationary conditions, in an integrated
probabilistic framework known as RBDM (see
Section 5.5).

In any effort to account for nonstationarity due to
climate change, numerous additional complications
arise. Historical changes have been documented by
observations and proxy data, but future changes are
generally studied by GCM projections and scenarios.
However, it is well known that climate projections,
particularly for precipitation extremes, are extremely
uncertain in most regions of the world (e.g. Blӧschl
and Montanari 2010, Kundzewicz and Stakhiv 2010).
Future projections from climate models may include
multiple realizations (ensembles) that project the plau-
sible futures of, say, the precipitation regime. However,
there is no accepted standard practice for using alter-
native futures of climate over the design life to deter-
mine an appropriate design flood (or low flows and
drought) level for the project. The development of

nonstationary methods for pdfs and IDF curves using
uncertain climate projections are subjects where
research is urgently needed, especially in regions
where impacts of climate change are known to be
considerable, as well as in areas lacking pertinent
data. In this regard, it may be appropriate to refer to
Blӧschl and Montanari (2010), and as emphasized by
Merz et al. (2012), who propose distinguishing hard
and soft facts in some of the changes arising from the
climate models, such as air temperature changes, which
are robust and can be considered as a “hard fact,” while
changes in precipitation, where the uncertainty
increases as the scale decreases, must be considered as
“soft facts.”

Serinaldi and Kilsby (2015) and Obeysekera and
Salas (2016) have identified additional challenges in
applying nonstationary methods. They include the
uncertainty of model structure, and the lack of clear
understanding of the actual probabilistic meaning of
the concepts of stationary and nonstationary return
periods and risks. In fact, the real meaning of return
period T, a typical jargon commonly utilized in actual
hydrological practice under stationarity, is often mis-
understood and does not always reflect or communi-
cate future flood risk over the particular project
planning horizon. Read and Vogel (2015, see Table 1
and associated discussion) provide numerous reasons
for considering the concepts of system reliability or risk
of failure over a planning horizon rather than using
return period, under both stationary and nonstationary
conditions. An important reason for favoring risk of
failure R over the use of return period T is that calcula-
tion of R depends on planning horizon n, whereas
calculation of T does not. Under stationarity, there is
a simple relationship between T and the risk of failure
R, for a given planning horizon, but that is not the case
with the newer methods developed that are applicable
for nonstationary conditions. Therefore, one must
make an effort to understand the underlying concepts
and assumptions, etc. for their proper applications.
Likewise, there are several alternative measures for
assessing projects when considering risk and reliability
under nonstationarity, but formal comparisons of such
applications are still lacking.

In addition, there is a need for developing assess-
ment criteria where more explicit consideration of
uncertainty is taken into account. There are many
existing classes of water infrastructure worldwide,
such as flood walls and spillways, that have been
designed under the concepts of a stationary flood
regime. For example, the exceedence probability p of
the design flood may have been set at, say, p = 0.002 (or
500 years of return period), i.e. there is 0.2% chance
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that a flood will exceed the design flood in any given
year. Then a relevant question may be, what is the
expected risk of failure of the structure and its uncer-
tainty, say in the next 25 years, given that nonstation-
ary conditions of the flood regime have been detected
based on a careful investigation? If the flood regime
continues to be stationary, then one can answer the
questions using Equation (2), which gives a risk of
about R = 5% and its uncertainty (standard deviation)
can be determined by a procedure described in the
literature (e.g. Salas et al. 2013). However, calculating
the expected risk, and particularly its uncertainty, is
more complex under nonstationary conditions. Then
some of the risk measures discussed in Section 5 above
could be extended to consider the underlying
uncertainties.

Regardless of the models, the methods that are being
developed to take into consideration nonstationary
conditions are more complex than those that have
typically been used assuming stationary conditions.
Generally, models are needed, but the equations are
more involved, the number of model parameters
increases, there is less experience with such models,
the data are generally insufficient, and the sources of
uncertainties are many. Perhaps some of the difficulties
may be overcome by the development of software and
databases, data sharing and accessibility (although in
some countries the needed data are not easily available,
e.g. hydro-meteorological data), and the development
of training programs and courses to transfer and dis-
seminate needed knowledge. It is hoped and expected
that many of these difficulties will become more man-
ageable as more experience and knowledge are devel-
oped. As indicated above, the availability of
computational tools and software (e.g. Guilleland and
Katz 2011) will alleviate some of the problems, but a
word of caution is that they could easily be misused if
basic concepts, assumptions, and limitations are not
considered.

Lastly, given the various uncertainties involved in
planning and management of infrastructure in a nonsta-
tionary world, as mentioned above, it may be suggested
that the planning horizons may have to be shortened, e.g.
from 50 years life to 25 years, and at the same time flexible
design and construction of structures are required to
better enable extensions, modifications, and retrofitting,
as needed and at reasonable cost to society.
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