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[1] Recent research documents that the widely accepted generalized likelihood
uncertainty estimation (GLUE) method for describing forecasting precision and the impact
of parameter uncertainty in rainfall/runoff watershed models fails to achieve the intended
purpose when used with an informal likelihood measure. In particular, GLUE generally
fails to produce intervals that capture the precision of estimated parameters, and the
difference between predictions and future observations. This paper illustrates these
problems with GLUE using a simple linear rainfall/runoff model so that model calibration
is a linear regression problem for which exact expressions for prediction precision and
parameter uncertainty are well known and understood. The simple regression example
enables us to clearly and simply illustrate GLUE deficiencies. Beven and others have
suggested that the choice of the likelihood measure used in a GLUE computation is
subjective and may be selected to reflect the goals of the modeler. If an arbitrary likelihood
is adopted that does not reasonably reflect the sampling distribution of the model
errors, then GLUE generates arbitrary results without statistical validity that should not be
used in scientific work. The traditional subjective likelihood measures that have been
used with GLUE also fail to reflect the nonnormality, heteroscedasticity, and serial
correlation among the residual errors generally found in real problems, and hence are poor
metrics for even simple sensitivity analyses and model calibration. Most previous
applications of GLUE only produce uncertainty intervals for the average model prediction,
which by construction should not be expected to include future observations with the
prescribed probability. We show how the GLUE methodology when properly
implemented with a statistically valid likelihood function can provide prediction intervals
for future observations which will agree with widely accepted and statistically valid
analyses.
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1. Introduction

[2] As watershed and other environmental simulation
models become more widely used, there is greater need
for procedures that generate realistic prediction intervals
and other representations of uncertainty that describe the
likely difference between actual flows and their forecasts,
and between estimated parameters and their true values (if
such true values exist). Uncertainty analysis has now
become common practice in the application of environmen-
tal simulation models. This is also a primary goal of the
Predictions in Ungauged Basins (PUB) initiative promoted
by the International Association of Hydrological Sciences
[2003] and a fundamental need of most end users
[Montanari, 2007].

[3] The generalized likelihood uncertainty estimation
(GLUE) technique introduced by Beven and Binley [1992]
is an innovative uncertainty method that is often employed
with environmental simulation models. There are now over
500 citations to their original paper which illustrates its
tremendous impact. GLUE’s popularity can be attributed to
its simplicity and its applicability to nonlinear systems,
including those for which a unique calibration is not
apparent. Montanari [2005] suggests that GLUE’s popular-
ity is due to the apparent success it has enjoyed in real-
world applications, and that it appears to provide the needed
characterization of uncertainty. Blasone et al. [2008b,
pp. 20–21] point to GLUE’s conceptual simplicity, ease
of implementation, and its flexibility with different sources
of information that can be combined with different criteria
to define a likelihood measure.
[4] Recent evaluations of GLUE by Christensen [2004],

Montanari [2005], Mantovan and Todini [2006] and this
study clearly demonstrate that prediction limits derived
from GLUE can be significantly different from prediction
limits derived from correct classical and widely accepted
statistical methods. Beven [2006b] discussed these con-
cerns, and called for additional studies. Mantovan and
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Todini [2006] and Mantovan et al. [2007], show that, with
the ‘‘less formal’’ likelihood functions generally adopted in
most previous GLUE applications, estimates of prediction
uncertainty will be what they call ‘‘incoherent and incon-
sistent’’, compromising valid statistical inference. In re-
sponse, Beven et al. [2007, 2008] point out problems that
result when a likelihood function overestimates the infor-
mation content of data. The example from Beven et al.
[2007, 2008] again reinforces a major point made by
Mantovan and Todini [2006], and by this study: if one
wants to correctly understand the information content of the
data, one needs to use a likelihood function that correctly
represents the statistical sampling distribution of the data.
[5] In GLUE’s defense, Beven and Freer [2001] argue

that GLUE prediction limits should not and will not
coincide with limits based on classical statistics. More
recently Beven [2006a] states that

‘‘These prediction limits will be conditional on the choice of limits of
acceptability; the choice of weighting function; the range of models
considered; any prior weights used in sampling parameter sets; the
treatment of input data error, etc. . . .However, given the potential for
input and model structural errors, they [the choices] will not guarantee
that a specified proportion of observations, either in calibration or
future predictions, will lie within the tolerance or prediction limits (the
aim, at least, of a statistical approach to uncertainty). Nor is this
necessarily an aim in the proposed framework.’’

[6] If the aim of the GLUE framework is not to generate
prediction and uncertainty intervals that contain the speci-
fied quantities with the prescribed frequency or probability,
then we do not know what the purpose of the analysis is, or
what GLUE advocates intend for their uncertainty intervals
to represent. If GLUE provides a valid statistical analysis of
environmental models when employed as recommended,
then we contend that when applied to a very simple model
with a classic model error structure, GLUE should repro-
duce the widely accepted uncertainty intervals generated
using both classical and Bayesian statistical methods that
provide the correct descriptions of uncertainty in that case.
If as we show, GLUE does not generally reproduce the
correct uncertainty intervals when applied to a wide range
of simple problems, then there is little reason to believe it
will provide reasonable results for difficult problems for
which the correct solution is not known.
[7] The aim of this paper is to evaluate GLUE using a

linear rainfall/runoff model so that model calibration is a
linear regression problem for which exact expressions for
uncertainty are well known and understood. It is common
practice to test new methods and theories on old well-
understood problems and special cases to see if the new
proposals provide valid solutions and thus are credible.
Simple cases are, after all, special cases of complicated
situations: so one cannot logically claim a method works for
complicated situations if it does not work for the simple
situations that are special cases.
[8] The statistical and probabilistic interpretation of

GLUE analyses and the choice of a likelihood function is
the focus of this paper. This paper also shows how to
correctly employ GLUE with simulation models to assure
that uncertainty analyses produce reasonable prediction
limits consistent with traditional statistical methods. In a
broader perspective, this paper reflects on the difference
between reality and the claims made for GLUE with

subjective likelihood measures as a model calibration and
sensitivity analysis framework, and the validity of Beven’s
Equifinality Manifesto [Beven, 2006a].

1.1. Previous Applications of GLUE

[9] Beven and Binley’s [1992] paper introducing GLUE
for use in uncertainty analysis of watershed models has
now been extended well beyond rainfall-runoff watershed
models to flood inundation estimation [Romanowicz et al.,
1996], ecological models [Pinol et al., 2005], schistosomi-
asis transmission models [Liang et al., 2005], algal dynam-
ics models [Hellweger and Lall, 2004], crop models
[Tremblay and Wallach, 2004], water quality models [Smith
et al., 2005], acid deposition models [Page et al., 2004],
geochemical models [Zak et al., 1997], offshore marine
sediment models [Ruessink, 2005], groundwater modeling
[Christensen, 2004], wildfire prediction [Bianchini et al.,
2006] and others. Given the widespread adoption of GLUE
analyses for a broad range or problems, it is appropriate
that the validity of the approach be examined with care.
Christensen [2004], Montanari [2005], Mantovan and
Todini [2006] and this study provide such reviews.

1.2. GLUE Methodology

[10] The Beven-Binley GLUE method is a Monte Carlo
approach which is an extension of Generalized Sensitivity
Analysis (GSA) introduced by Spear and Hornberger
[1980]. With GSA, ensembles of model parameters are
sampled from distributions, typically with independent
uniform or normal distributions for each parameter. The
model is then run with many such parameter sets, producing
multiple sets of model output. These are used together to
generate uncertainty intervals for model predictions. Spear
and Hornberger [1980] suggest a qualitative criterion to
group the generated model parameters into two sets: (1) be-
havioral sets of model parameters that produce results
consistent with the observations, and (2) nonbehavioral sets
of model parameters that produce results that contradict the
observations. Therefore, they implicitly weighted each
model parameter set by giving nonbehavioral sets a prob-
ability of zero and all behavioral sets an equal nonzero
probability.
[11] Like GSA, GLUE is based upon Monte Carlo

simulation. Parameter sets may be sampled from any
probability distribution, with most reported applications
sampling from uniform distributions [Beven, 2001]. Each
parameter set is used to produce model output; the accept-
ability of each model run is then assessed using a goodness-
of-fit criterion which compares the predicted to observed
values over some calibration period. The goodness-of-fit
function is used to construct what Beven and Binley [1992,
p. 283] call a likelihood measure. As with GSA, parameter
sets that result in goodness-of-fit/likelihood values below a
certain threshold are again termed ‘‘nonbehavioral’’ and are
discarded. The remaining ‘‘behavioral’’ parameter sets are
assigned rescaled likelihood weights that sum to 1, and thus
look like probabilities. Clearly Beven, Binley, Freer and
others who have advanced this scheme do not trust their
likelihood measure to be able to distinguish between real-
istic (behavioral) and unrealistic (nonbehavioral) data sets,
and thus impose an independent ‘‘behavioral’’ threshold
criterion. If the statistical analyses were correct, it should be
able to distinguish between behavioral and nonbehavioral
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solutions without the imposition of an arbitrary and rigid
cutoff. As we will show, a correct statistical analysis does
just that in our example.
[12] To obtain uncertainty intervals around model pre-

dictions using these rescaled likelihood weights, the model
outputs are ranked so that the rescaled likelihood weights
can be used to form a cumulative distribution for the output
variable. From that distribution, quantiles are selected to
provide uncertainty intervals for the variable of concern.
Clearly this computation reflects only uncertainty arising
from model parameter uncertainty. Nothing has been done
in constructing the intervals to reflect the precision with
which the model could reproduce observed values of the
modeled variable over the calibration data set. In the
previous quote, Beven referred to structural errors. Struc-
tural errors (or equivalently model errors) describe the
inability, of even the best model with optimal parameters,
to exactly reproduce the target output. Kuczera et al. [2006]
provide a good example highlighting the fact that poorly
determined parameters do not necessarily lead to high
predictive uncertainty. Instead, they show that predictive
uncertainty is often dominated by the model error compo-
nent. We show that most previous GLUE applications have
not handled this important model error component properly.
[13] Although GLUE is now very popular, it has fre-

quently been criticized for its large computational demands.
Kuczera and Parent [1998] note that GLUE ‘‘may require
massive computing resources to characterize a highly di-
mensioned parameter space.’’ Jia and Culver [2008] report
generating 50,000 parameter sets to find 381 acceptable sets
(just 0.8%) for their watershed study. As Kuczera and
Parent [1998, p. 72] explain, use of a simple and uniform
prior probability distribution of model parameters over a
relatively large region, can result in an algorithm that, even
after billions of model evaluations, may not have generated
even one good solution. Others have noted that it is difficult
to determine how great the computational demand will be,
because there is no way of determining a priori how many
parameters sets will be necessary to adequately characterize
the model response surface [Carrera et al., 2005;
Pappenberger et al., 2005). Mugunthan and Shoemaker
[2006], Tolson and Shoemaker [2007], Blasone et al.
[2008a, 2008b] and others, have developed computationally
efficient approaches for performing calibration and uncer-
tainty analysis of complex environmental simulation mod-
els. Our focus is on the validity of the GLUE statistical
computation, and not its computational efficiency, though
both are serious concerns.
[14] The next section develops a framework for describ-

ing model uncertainty so that the appropriate statistical
computation for an uncertainty analysis using GLUE can
be understood. Section 3 summarizes the various likelihood
measures which have been employed in practice and their
use of the residual mean square error. Section 4 describes an
evaluation of GLUE performance using a simple linear
regression model as an example for which exact and correct
analytical uncertainty intervals are available. Section 5
summarizes results of our simulation experiments and
shows how use of GLUE with a correct likelihood function
can lead to meaningful uncertainty and prediction intervals.
Section 6 raises questions regarding Beven’s recent mani-
festo [Beven, 2006a] and finally, section 7 provides recom-

mendations for future research for improving GLUE
applications.

2. Bayes Theorem and the Likelihood Function

[15] In this section, we use Bayes Theorem to derive the
posterior probability that should be assigned to different sets
of parameters generated in a Monte Carlo simulation.
Romanowicz et al. [1994, 1996], Romanowicz and Beven
[1998], Beven and Freer [2001], Beven et al. [2008], and
others have used GLUE as a correct Bayesian statistical
procedure. Unfortunately, of the hundreds of previous
GLUE applications, few have used a correct statistical error
model instead of one of the informal likelihood functions
traditionally adopted with GLUE. The relationships in this
section provide us with the correct descriptions of uncer-
tainty for our simple example, and enable us to show how to
generate statistically valid results using GLUE.
[16] Denote a set of streamflow observations Qt for t =

1,. . .n, to be used for model calibration by the vector Q.
Using Bayes theorem the posterior density function (pdf) of
the parameter vector q based on these observations is

fqjQ qjQ½ � ¼ cfejq ejq½ � fq q½ �; ð1Þ

where c is a normalization constant, q is the parameter
vector, fq[q] denotes the prior pdf for the parameter vector q,
and e is the vector of model errors computed as et = Qt � Q̂t

where Q̂t = M (q) represents the streamflow model
prediction vector which depends on the parameter vector
q. In equation (1) the subscript qjQ has been added to the
posterior distribution to clearly emphasize that this is the
posterior distribution of the model parameters q given a
particular calibration data set Q. The pdf fq[q] is called the
‘‘prior’’ distribution of the model parameters, because it is
based on information one has pertaining to the parameters
prior to model calibration (estimation). The function fejq[ejq]
is called the likelihood function (in other words the
likelihood of producing the model errors, e); it must
represent the probability of the observed flow vector Q for a
given set of model parameters q.
[17] The GLUE methodology randomly draws parameter

sets qi, say i = 1,. . .T times, from a prior distribution.
Assuming a uniform probability distribution for each of
the J parameters which are independent, as has often been
done in GLUE applications, yields the prior pdf,

fq q½ � ¼
1QJ

j¼1

qmax; j � qmin; j

� � for qmin; j � qi; j � qmax; j; ð2Þ

where qmin,j and qmax,j are minimum and maximum values
for each parameter.
[18] Application of Bayes theorem for independent errors

et then leads to the posterior probability for the parameter
vector q,

fqjQ qjQ½ � ¼ c
Yn
t¼1

fejq etjq½ � fq q½ � ¼
c
Qn
t¼1

fejq etjq½ �

QJ
j¼1

qmax; j � qmin; j

� � ; ð3Þ
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where n is the number of flow observations in the
calibration data set and J is the number of model
parameters. The posterior probability is the probability
assigned to a parameter set q given the calibration flow
vector Q used to assess the ability of those parameters to
reproduce that data relative to other parameter sets.
Parameter sets that produce smaller errors should have a
higher likelihood function value, and thus a higher posterior
probability. This is the spirit behind Beven and Binley’s
[1992] use of goodness-of-fit criteria as likelihood
measures. Nevertheless, for a given model structure,
equations (1) and (3) require that the likelihood function
represent the probability that the model with a given set of
parameters and a prescribed model-error distribution would
have generated the vector of observations Q. Equations (1)
and (3) are simply an expression of Bayes Theorem which
is the mathematical law describing how probabilities behave
when new information is provided. The likelihood function
corresponds to the pdf of the errors described by fejq [ejq]. It
follows that for a given set of assumptions regarding the
probabilistic structure of the errors e, there is only one
likelihood function.
[19] In keeping with our goal to keep the example simple,

we assume, as did Christensen [2004] and many others, that
the model errors, et, are normal and independently distrib-
uted (NID) with zero mean and unknown variance se

2. This
yields the following pdf for each et conditioned upon the
estimated parameters:

fejq etjq½ � ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp �
Qt � Q̂t

� �2
2s2

e

" #
; ð4Þ

wherein Qt are the observed flows and Q̂t are the predicted
flows so that et = Qt � Q̂t. Section 7 discusses what can be
done when the model errors are neither normally distributed,
independent nor homoscedastic. In the case that residual
errors are correlated, a time series model can be adopted
which yields a series of independent innovations [Beven and
Freer, 2001, equation 3; Box et al., 1994]; nonnormality can
often be resolved by a suitable transformation.
[20] Substitution of (4) into (1) yields the correct poste-

rior pdf,

fqjQ qjQ½ � ¼ cfq q½ �
Yn
t¼1

1ffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp �
Qt � Q̂t

� �2
2s2

e

" #
for qmin;j � qi;j

� qmax;j

ð5Þ

where n is the length of the climate and streamflow record
used to estimate (calibrate) the parameters.
[21] To use equation (5) one needs an estimate of se

2. In a
full Bayesian analysis, se

2 and q have a joint posterior
distribution. However, if one has sufficient data, the value
of se

2 will be very close to the maximum likelihood estimate
(MLE) ŝe

2 equal to

ŝ2
e ¼

1

n

Xn
t¼1

Qt � Q̂MLE
t

� �2 ð6Þ

where Q̂t
MLE denotes the model predictions obtained using

the MLE of the model parameters, which are those model
parameters which led to the minimum value of Q̂e

2 for the
likelihood function in (5).
[22] After substitution of (6) into (5) and some rearrang-

ing, one obtains the posterior distribution for the model
parameters q given NID errors,

fqjQ qjQ½ � ¼ c ŝeð Þ�n
2pð Þ�n=2

exp � n

2

Pn
t¼1

Qt � Q̂t

� �2
Pn
t¼1

Qt � Q̂MLE
t

� �2
2
664

3
775fq q½ �:

ð7Þ

The terms c (ŝe)
�n (2 p)�n/2 are constant in a particular

application, as is the prior distribution for the parameters fq
[q] using independent uniform priors on each parameter,
hence they may be combined to yield

fqjQ qjQ½ � ¼ kexp � n

2

Pn
t¼1

Qt � Q̂t

� �2
Pn
t¼1

Qt � Q̂MLE
t

� �2
2
664

3
775for qmin;j � qi;j � qmax;j;

ð8Þ

where k is simply a constant term whose value may be
determined by the requirement that the integral over all the
parameters of the density function should equal one.
Equation (8) is equivalent to

fqjQ qjQ½ � ¼ kexp � ns2e
2ŝ2

e

� �
; ð9Þ

wherein se
2 =

Pn
t¼1

(Qt � Q̂t)
2/n is the mean square error for

the model with a particular set of possible parameters q and
ŝe
2 is the MLE of the model error variance. Alternatively

one can rewrite (9) as

fqjQ qjQ½ � ¼ kexp � n

2

1� R2 qð Þ½ �
1� R2 q̂MLE

� �h i
8<
:

9=
;; ð10aÞ

wherein the values of the R-squared statistics are

R2 qð Þ ¼ 1� s2e
s2Q

" #
and R2 q̂MLE

� �
¼ 1� ŝ2

e

s2Q

" #
ð10bÞ

These describe how well the model with parameter set q, in
conjunction with the maximum likelihood parameter
estimators fit the data. Here sQ

2 denotes the variance of the
observations Q, which is unaffected by the model
parameters.
[23] Equations (8)–(10) exhibit several key and impor-

tant features: (1) the best fitting model determines the
standard against which other solutions are compared, (2)
the probability assigned to each parameter set depends upon
how well the model with those parameters matches the
calibration data, and (3) the length n of the calibration data
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set has a very large impact on the importance assigned to a
parameter set not providing the best possible fit. If n is
small, then there are insufficient data to resolve the values
of the best parameters. However, if n is large, then the
calibration data should be much more informative and our
ability to discriminate between different sets of parameters
should increase. Said another way, ‘‘data provides informa-
tion, and more data provides more information’’.
[24] This whole idea plays a very important role in the

analysis of the precision of maximum likelihood estimation.
In general, asymptotically, the sampling variance matrix S
for the model parameter estimators is equal to the negative
of the inverse of the expected second derivative of the log
likelihood function [Bickel and Doksum, 2001]. Thus,

S�1 ¼ �E
@2 ln L Qjqð Þ

@q2

� �
¼ �nE

@2 ln f Qijqð Þ
@q2

� �
; ð11Þ

wherein L(Qjq) is the likelihood function for the entire data
set Q, assuming independent observations, and f(Qijq) is the
probability density function for a single observation. We
mention this general theory here because it makes so clear
the value of each observation in a correct analysis, and how
the precision of the estimated parameters depends on the
number of observations n.
[25] The power of appropriate use of the correct likeli-

hood function for the data is truly impressive. As illustrated
by the classical analysis presented by Kendall and Stuart
[1961], subject to several regularity conditions, the maxi-
mum likelihood estimators asymptotically achieve the min-
imum variance among all asymptotically unbiased
estimators, which is the Cramér-Rao inequality. However,
this analysis requires that one use the likelihood function
that describes the distribution of the data that would be
available for inference in repeated sampling.
[26] As a practical matter, we are interested in a Monte

Carlo procedure that will generate a set of discrete param-
eter sets {qi} and their associated probabilities pi which
jointly provide a consistent and unbiased representation of
fqjQ[qjQ]. This could be done in several ways, but the
simplest is that employed by GLUE. If values of qi are
randomly drawn using the prior pdf for the parameter vector
fq [q] in equations (1) and (2), and those parameter vectors
are then assigned probabilities proportional to the likelihood
function in equations (1) and (3), one obtains

pi ¼
fqjQ qijQ½ �Pm

i¼1

fqjQ½qijQ�
; ð12Þ

for i = 1,. . .m. Consequently {qi, pi} jointly provide the
needed representation of fqjQ[qi|Q]. Note that the constant c
in equations (1) and (3) cancels out in equation (12).
[27] Now a critical issue that should not be missed is that

equation (12) describes the probability distribution for the
unknown parameter vector q. It is absolutely not the
predictive distribution describing what might be the value
of a future observation, which has been assumed in many
previous GLUE applications. This fact is discussed by
Christensen [2004] and Blasone et al. [2008a, 2008b].
Mantovan and Todini [2006] and Mantovan et al. [2007]
emphasize this point.

[28] To generate an uncertainty distribution for what might
be a future observation, one needs to consider the uncertainty
in the parameters described by fqjQ[q̂ijQ] as well as the likely
difference between the model prediction and an observed
value. The latter difference is due to a range of errors
including the simplicity of the model compared to reality,
and limitations in the input data reflecting possible measure-
ment errors and their misrepresentation of the needed inputs
(data are often point values when areal averages are needed).
Beven [2006a] provides a very complete description of the
many sources of error and the challenges they pose for
parameter estimation. There are promising approaches
which represent input data error explicitly, in addition to
model errors and response-variable measurement errors. See
Kavetski et al. [2002, 2006a, 2006b], Vrugt et al. [2005],
Moradkhani et al. [2005a, 2005b], Kuczera et al. [2006],
Clark and Vrugt [2006], and Huard and Mailhot [2006].
[29] If one wishes to generate an uncertainty interval for a

future observation, the predictive distribution fQfjQjQfjQ] for
a future observation Qf given the data vector Q should be
employed, which is given by Zellner [1971] as

fQf jQ Qf jQ
� �

¼
Z

fQf jq Qf jq
� �

fqjQ½qjQ�dq; ð13Þ

withet=Qt� Q̂tand Q̂t=M (q).Thus indevelopingapredictive
distribution for a future observation, one needs to consider the
uncertainty in the parameters, and also, what is generally more
important, the deviations of the observed flows from even the
best prediction [Mantovan and Todini, 2006, p. 373].
[30] Here we use the term ‘‘uncertainty interval’’ to

describe an interval intended to contain an uncertain pa-
rameter with a specified probability or frequency (often
called credible regions in the Bayesian literature, [Zellner,
1971], and confidence intervals in classical statistics).‘‘Pre-
diction interval’’ will describe an interval for a future
observation which depends both on parameter uncertainty,
and upon future data, model and output measurement errors.

3. Likelihood Measures Used with GLUE

[31] The GLUE idea is to combine a priori knowledge of
the model parameters captured by the prior pdf, with new
information (i.e., observed data) represented by the likeli-
hood to obtain a posterior pdf of the model parameters.
Rejecting a traditional statistical basis for the likelihood
function, Beven and Binley [1992, p. 281] introduced their
own requirements for a likelihood measure arguing that
‘‘the choice of a likelihood measure will be inherently
subjective’’. They require that ‘‘It should be zero for all
simulations that are considered to exhibit behavior dissim-
ilar to the system in question, and that it should increase
monotonically as the similarity in behavior increases’’.
Furthermore, Beven and Binley [1992] argue that the
likelihood function can be chosen from ‘‘many of the
goodness-of-fit indices used in the past’’. Beven and Binley
[1992] acknowledge that the choice of likelihood measure
will greatly influence the resulting uncertainty intervals and
so argue that this choice must be made explicit so they can
be the ‘‘subject of discussion and justification’’ [Beven and
Freer, 2001, p. 18].
[32] Several likelihood measures have been proposed and

used in previous applications of the GLUE methodology.
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Table 1 of Beven et al. [2000] provides a summary. A
popular likelihood measure, inverse error variance, intro-
duced by both Beven [1989] and Beven and Binley [1992] is

LIV ¼ s2e
� ��N

; ð14Þ

where se is the standard deviation of the model errors, and N
is called the ‘‘shaping factor’’. Beven and Binley [1992]
used N = 1 but suggested that the shaping factor can be
chosen by the user. As expected, different values of N lead
to different uncertainty intervals [Ratto et al., 2001].
Increasing N gives greater weight to model parameters
which yield a better ‘‘goodness of fit’’. As N approaches
infinity the best parameter set that is generated will be given
a weight of 1, while all other parameter sets will be
discarded. As N approaches zero, all parameter sets receive
equal likelihood weights.
[33] The likelihood measure applied most frequently is

based on the efficiency index introduced by Nash and
Sutcliffe [1970],

LNS ¼ 1� s2e
s2Q

" #N
; ð15Þ

where se is the standard deviation of the errors, sQ is the
standard deviation of the observations and again, N is again
a ‘‘shaping factor’’. For examples, see Kinner and Stallard
[2004], Uhlenbrook and Sieber [2005] and other studies
summarized in Table 1 of Beven et al. [2000]. Freer et al.
[1996] used (15) with N = 1 and 30, as well as

LEXP ¼ exp �Ns2e=s
2
Q

h i
: ð16Þ

which is included in Table 1 of Beven and Freer [2001]
without the factor sQ

2. Without sQ
2 the value of LEXP would

depend on the units employed to measure flows, which
makes no sense. We have not used LEXP because it is very
similar to LNS for se

2 small relative to s2Q, and fails to go to zero
as is desirable when se

2! s2Q. Other likelihoodmeasures have
been developed for particular modeling applications [Page et
al., 2004; Mertens et al., 2004], and several methods have
been proposed for combining likelihood measures [Engeland
and Gottschalk, 2002;Uhlenbrook and Sieber, 2005; Page et
al., 2004; Mo and Beven, 2004; Beven et al., 2008].
[34] In our experiments, we employ the likelihood func-

tion in equation (14) introduced by Beven and Binley [1992]
to see how closely it resembles a statistically correct
likelihood function for NID model errors. Here the sample
variance of the errors ei is computed assuming the true mean
is zero, which provides a penalty for bias. Although the
most common value for the shaping factor is N = 1 in
previous studies [see Beven et al., 2000, Table 1], we
consider a range of values for the shaping factor N. Using
standard notation, the likelihood in equation (14) can be
rewritten as

fIV qjQ½ � ¼

Pn
t¼1

Qt � Q̂
� �2

n

2
664

3
775
�N

; ð17Þ

which can be further rewritten to resemble (9) and (10) as
follows:

fIV qjQ½ � ¼ k s2e
� ��N¼ k 1� R2 qð Þs2Q

� i�N

;

�
ð18Þ

where k is a constant term chosen to make
PT
i¼1

fIV (qi|Q) = 1

across all T parameter sets, sQ
2 describes the variance of the

observed streamflows and R2 (q) is defined in (10b).
[35] The form of the Bayesian likelihood functions in

(8)�(10) are quite different from the informal likelihood
function in (18), and this would be the case for any of the
informal likelihood functions or likelihood measures sug-
gested by Beven and Binley [1992] and many others. Only
by chance will the subjectively selected informal likelihood
function in (18) be representative of the likelihood function
in (8)�(10) as is shown below in our example. The correct
likelihood function depends critically upon R2(q̂MLE) which
reflects how well the model really can fit the data. It also
depends upon the length n of the calibration sample upon
which the analysis is based; more data should provide
more information. Neither of these factors appears in (18).
Mantovan and Todini [2006, pp. 373–374] use the term
incoherence to describe the failure of informal likelihood
functions to account for the value of n.
[36] The GLUE likelihood measure commonly used in the

past and given in (18) depends on sQ
2 which describes how

much variation there is in the data, not how well the best
models can reproduce the data, or how long a sample one has
to estimate the model parameters, as does the correct likeli-
hood function in (10). Suppose one had a long calibration
data set and the best models were almost perfect (se

2 = 0, R2

(q̂MLE) 
 1), one would then find as entirely unreasonable a
parameter set with R2 (qi) = 0.80. On the other hand, if n is
small and the best model only achieves R2 (q̂MLE) = 0.81, then
a parameter set with R2 (qi) = 0.80 is probably just as credible
as the optimal parameter set. The informal likelihood func-
tions in equations (14), (15) and (16) that are so often used
with GLUE fail to recognize this critical message.
[37] Vick [2002, pp. 37–38] calls Bayes Theorem the

‘‘crowning achievement of the classical probabilists’’. ‘‘By
melding evidence from frequency-based observations with
prior belief based on other kinds of knowledge and judg-
ment, it rationalized for us how they could be so apparently
adaptable to both’’. However, if we replace the statistically
correct interpretation of the evidence represented by our
best description of the probability of seeing the observed
sample (as a function of the parameters), with an arbitrary
and subjective likelihood function, then the correct and
appropriate link to the real data is lost. Bayesian analysis
is an algebra for probabilistic statements. Knowingly choos-
ing to forego this algebra is like saying, as a reviewer
pointed out, ‘‘We elect not to use the formal Navier-Stokes
equation because the boundary conditions are unknown.
Instead, we will use a subjective equation that does not
preserve mass continuity since our assumed boundary con-
ditions would be inaccurate anyway’’.

4. An Illustration

4.1. A Linear Watershed Model

[38] Here a simple linear regression model is adopted
because it enables us to compare the uncertainty intervals
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generated using commonly adopted GLUE likelihood meas-
ures, with exact confidence and prediction intervals based
on classical statistical theory which are known to generate
intervals that in repeated trials contain the target parameters
with the required frequency.
[39] Let the annual streamflow observations Qt be related

to annual rainfall observations Pt by

Qt ¼ aþ b � Pt þ et; ð19Þ

wherein a and b are model parameters, and et are NID
model errors with zero mean and constant variance se

2. Here
et represents the failure of the observed precipitation Pt to
capture the true watershed average, and the inability of the
linear model to perfectly predict runoff even if it had as
input the true watershed average precipitation. For simpli-
city, we assume that the marginal distributions of Q and P
are normally distributed. Suppose that mean values of P
and Q are mp = 100 cm and mQ = 60 cm respectively, and
their respective standard deviations are sP = 20 cm and
sQ = 15 cm. Thus coefficients of variation of P and Q are
0.20 and 0.25. We will consider a range of cases
distinguished by the sample size n, the place at which we
predict Q, and the model precision determined by the model
error variance se

2. We describe model precision by RModel
2 , so

as a result

s2
e ¼ 1� R2

Model

� �
s2
Q; ð20Þ

where the corresponding values of the parameters are

b ¼ R � sQ

sP

 !
¼ 0:75 � RModel ð21Þ

a ¼ mQ � b � mP ¼ 60� 0:75 � RModel � 100: ð22Þ

To define a prior distribution of the parameters we must
consider the possible values of a and b. If all the rain runs
off, then b = 1. If it all evaporates, b would be zero.
However, our point rain gauge may not reflect the average
rainfall for the basin hence we consider as our prior on b a
uniform distribution on the interval (0, 2).
[40] For the prior on a, if the rain gauge is uncorrelated

(b = 0) with the runoff for the basin, then a would be the
mean runoff. If we assume the mean rainfall is 60 cm, then
a could be as large as 60 cm; however, if our rainfall gauge
is inaccurate, then a could be larger; perhaps 200 cm. To be
safe and to reflect possible losses in the basin and
possible values of b, we might assume a lower bound for
a = –100 cm. Thus an uncertainty range could be (�100,
200). We do not really believe independent and uniform
distributions over these ranges are reasonable. In fact our
discussion reveals the linkage between the two parameters.
Still, we tried to follow the logic GLUE applications adopt
to provide a reasonable implementation of that method.
[41] For the purposes of streamflow simulations with

both good and poor parameter estimates, the estimate of
the flow based on the linear model is taken to be

Q̂ ¼ max½0; aþ b � P�; ð23Þ

where a and b are ordinary least squares (OLS) estimates of
the parameters a and b, respectively.

4.2. Confidence and Prediction Intervals for A Linear
Regression

[42] Most introductory statistics textbooks provide the
derivation of confidence and prediction intervals for the
linear regression analysis that would be associated with
calibration of the linear watershed model in (19). Substitu-
tion of OLS estimates a and b of the regression model
parameters into (19) yields a model prediction of Q, denoted
Q̂, for a particular value Po of precipitation,

Q̂ ¼ aþ bPo: ð24Þ

The variance of a prediction Q̂ describes the likely difference
between that prediction and a possible future flow Qf for a
particular precipitation value Po, and is given by

s2
Pred ¼ E Qf � Q̂

� �2h i
¼ s2

e 1þ 1

n
þ

Po � P
� �2

Pn
t¼1 Pt � P
� �2

 !
; ð25Þ

where we estimate se
2 by s2 the classic unbiased estimator of

the residual variance. Note that for large sample sizes, the
uncertainty in the two model parameter estimates a and b
slowly vanishes like 1/n. Thus sPred

2 reduces to just se
2 which

is independent of n because the dominant error is the inability
of even the best model to perfectly forecast individual values
of Q.
[43] Similarly if one’s interest is in a mean prediction

based on the regression Q̂ = a + bPo, then the variance of
concern will be less than in (25) and is given by

E Q̂� a� bP
� �2h i

¼ s2
e

1

n
þ

Po � P
� �2

Pn
t¼1 Pt � P
� �2

 !
; ð26Þ

where we estimate se
2 by se

2.
[44] In ordinary statistical parlance, equations (25) and

(26) would be used to generate prediction and confidence
intervals, respectively, given the linear model in (19). On
the basis of (25) and (26) and using a Students t distribution
with n - 2 degrees of freedom (because se

2 is an estimator),
Figure 1 displays 95% prediction intervals for a future
observation and 95% confidence intervals for the model
mean for different P values. Figure 1 is based on a single
sample of length n = 40 generated from (19). Clearly the
GLUE methodology should yield similar intervals when
applied to this sample with the linear model because
equations (25) and (26) are the correct answer. Using a
correct Bayesian analysis with a noninformative prior yields
essentially the same result, though the Bayesian interpreta-
tion would be different [Zellner, 1971].

4.3. Uncertainty Intervals Using GLUE

[45] Here we evaluate the ability of GLUE to reproduce
the correct prediction and confidence intervals provided by
equations (25) and (26), respectively. That exercise will
demonstrate the importance of using the Bayesian likeli-
hood function derived in (7)�(10). Our experiment pro-
ceeded as follows: (1) For the linear model Qt = a + b � Pt +
et with RModel

2 = 0.90, compute the model error variance,
and the values of a and b using (20)�(22). (2) Generate a
single sample of precipitation Pt, model errors et and
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corresponding streamflow Qt observations t = 1,. . .n (n =
40) to mimic the problem faced by a hydrologist who
typically only has a single record of n observations. (3)
Compute the ordinary least squares estimates a and b for
model parameters a and b. In this case, the OLS estimators
are the MLEs. (4) For Figure 1, compute the exact 95%
confidence intervals for the mean flow associated with
precipitation using (26), and the 95% prediction intervals
for an observed flow using (25), for a simple linear
regression based on the n = 40 observation. Confidence
intervals and prediction intervals are similarly computed for
a specific value Po (the 90th percentile of P) for comparison
with GLUE results described below. (5) Following the
standard GLUE procedures, generate m = 10,000 parameter
sets (ai, bi) drawing from uniform distributions over the
intervals [�100, 200] and [0, 2]. (6) For each set of
parameters (ai, bi) compute model predictions Q̂ for n =
1, . . .40 using the n precipitation Pt observations. (7)
Compare each of the m sets of Q̂ to the observations Qt,
to compute the goodness-of-fit statistic, R2(qi) for i =
1,. . .,m. (8) Using the m values of R2(qi) for i = 1,. . .m
along with n, R(Q̂MLE) and sQ, compute the Bayesian
likelihood function (10), and the GLUE likelihood measures
LNS with shaping factor N = 1 and 30, and LIV with N = 1.
(9) If a behavioral threshold is adopted, reject nonbehavioral
parameter sets. (10) For each set of behavioral parameters
compute probabilities p(ai, bi), i = 1,. . .,m, using the
different likelihood functions. (11) Each set of parameters
is used to generate one estimate of the streamflow Q
associated with precipitation Po. The probability associated
with each parameter set is assigned to the flow estimate it
produces. (12) Sort the flows with their corresponding
probabilities to create the pdf for forecast uncertainty, and
use these to generate uncertainty intervals. See Figure 2.

5. Results

5.1. Impact of Likelihood Functions on Uncertainty
Intervals

[46] This section compares the uncertainty intervals gen-
erated by GLUE with different likelihood functions, with

confidence intervals based on classical regression theory.
Figure 2 compares the posterior probability distribution for
the mean flow associated with precipitation Po = 125.6 cm
generated by 10,000 GLUE repetitions using four likelihood
functions: The likelihood function for normal and indepen-
dent distributed (NID) model errors in (4), the Inverse
Variance (IV) likelihood function in (14) with N = 1, and
the Nash-Sutcliffe (NS) efficiency index in (15) with N = 1
and 30. Some 90% of the generated parameter sets had
negative values of R2(q). The inverse variance likelihood
function assigned to these parameter sets a probability of
over 40%. This was judged to be unreasonable, so for the IV
likelihood behavioral thresholds of R2(q) = 0 and 50% were
adopted resulting in cases IV00 (N = 1) and IV50 (N = 1).
[47] For the uncertainty distribution of the mean flow

associated with Po = 125.6 cm, illustrated in Figure 2, the
NID likelihood is the correct description of the error
distribution, so those results provide the correct posterior
distribution for the mean flow. One observes that the
posterior distribution generated by the inverse-variance
likelihood IV with both thresholds, are different, and both
are much wider than the correct posterior distribution
obtained using the true likelihood function for NID model
errors. The Nash-Sutcliffe (NS) results with the commonly
used shaping factor N = 1, are very similar to those for
IV00, and both grossly overestimates the uncertainty in the
mean flow. With N = 30, the NS likelihood generates a
posterior distribution that better resembles the correct dis-
tribution. Clearly the choice of likelihood function and the
shaping factor N matter.
[48] Figure 3 further illustrates the effect of the shaping

factor N. Figure 3 shows the end points of a 95% uncer-
tainty interval for the mean flow associated with a precip-
itation value of Po = 125.6 cm obtained using equation (26)
and classical regression theory (REGR), GLUE with the
NID likelihood which matches those results, and GLUE
with the IV (IV00 and IV50) and NS likelihoods, with N
values from 1 to 100. With NS, the GLUE values match the
correct intervals for N values in the 20–30 range; with IV,
the GLUE values would only match the correct result for N

Figure 1. Example of confidence (uncertainty) intervals (CI) for the mean flow associated with each
precipitation value and prediction intervals (PI) for an observed flow given each precipitation value for a
simple linear regression based on n = 40 observations computed using equations (25) and (26) with the
Students t distribution with n – 2 degrees of freedom to reflect uncertainty in the sample variance.
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greater than 100 for either threshold. For N < 10, NS and IV
uncertainty intervals diverge and are much too large.
[49] As noted above, sample size is very important in

determining the precision of parameter estimators. Figure 4
is the same as Figure 3, except the sample size changes from
10 to 100. While NS with N = 30 and n < 20 comes close to
the correct result, it is far away for n > 60. NS and IV results
with N = 1 are absurd.
[50] A concern with subjective GLUE likelihood meas-

ures is their lack of dependence on sample size n. One
expects the uncertainty intervals for a regression model to
become narrower as more observations are available for
calibration [Mantovan and Todini, 2006]. As Figure 4
shows, the uncertainty intervals for the mean flow associ-
ated with Po = 125.6 cm generated using GLUE likelihood
measures as likelihood functions remain relatively constant
regardless of sample size. This makes no sense: more data
tell us something and thereby increase the precision of
parameter estimators; the problem here is that the NS and
IV likelihood measures fail to reflect the value of sample
information. Beven et al. [2007] have suggested that this

incoherence can be resolved by using informal likelihood
measures for separate blocks which could be combined with
Bayes theorem; whether this would produce the correct
result in the end depends upon whether a correct likelihood
function is employed for each block, and if blocks are
effectively independent so that it is correct to multiply their
likelihood functions.
[51] Figure 5 looks at this issue in yet another way by

reporting the values of the probabilities assigned to different
parameter sets. Each parameter set can be described by the
goodness-of-fit value R2(q) computed using equation (10b).
Equation (10a) for NID, equation (18) for IV, and LNS =
[R2(q)]N for NS express the three likelihood functions in
terms of R2(q). Figure 5 displays the different probabilities
that result. IV50 is only employed for R2(q) > 0.50. One
can see that probabilities obtained with NS (N = 1) and
IV00 (N = 1) are similar, though IV00 probabilities are
more peaky while larger probabilities also are assigned to
very poor models until its behavioral threshold of R2(q) = 0
is reached.

Figure 3. Effect of shaping factor N for NS and IV likelihoods on generated uncertainty intervals for the
mean flow associated with precipitation value Po = 125.6 cm, relative to the confidence intervals
computed for the simple linear regression using equation (26) with the Students t distribution (n = 40).

Figure 2. Posterior probability density functions for the mean flow associated with precipitation value
Po = 125.6 cm generated by GLUE with several likelihood functions (n = 40).
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[52] Figure 5 illustrates very important differences among
the probabilities generated with different likelihood func-
tions. With 10,000 randomly generated parameter pairs (2
parameters per set), the best sets come very close to the best
possible R2(q) value for this data set of almost 0.90, which
corresponds to the vertical line in Figure 5. A correct
statistical analysis using GLUE with the NID likelihood
function indicates that parameter sets with R2(q) values less
than 0.85 have miniscule probabilities: that is with n = 40
observations, we can be nearly certain that such parameter
sets do not represent the true parameter values. However,
GLUE with the NS and IV informal likelihood functions
find many parameter sets to be plausible when they are
actually beyond the realm of credibility. This explains the
need in many GLUE analyses to impose a behavioral
constraint on parameters sets. No such constraint was
needed when applying GLUE with the correct likelihood
function for NID data.

5.2. Effect of RModel
2

[53] Figures 1–5 consider the case where the true model
had an RModel

2 of 0.90. Figure 6 is like Figures 3–4 except
different values of RModel

2 are considered. Thus we explore
the use of GLUE to solve a range of possible problems
wherein the precision of the model changes. Figure 6
describes the effect of the value of RModel

2 on 95% uncer-
tainty intervals computed with different likelihood func-
tions. In Figure 6 one sees that if the correct NID likelihood
function is adopted, the 95% confidence intervals for the
mean flow associated with Po collapse to a point as
RModel
2 goes to 1, as is expected from equation (26). If the

model is perfect, it only takes a few data points to determine
the values of the coefficients exactly. However, that truth is
only honored with REGR and NID.
[54] Use of the subjective likelihood functions NS and

IV results in intervals that do not collapse to a point as
RModel
2 goes to 1. The width of their probability intervals

Figure 5. Comparison of the probabilities assigned to different parameter sets employing GLUE
likelihood functions as a function of model goodness of fit R2(q), for the proposed parameter vector q for
n = 40 when RModel

2 = 0.90.

Figure 4. Effect of sample size n on uncertainty intervals for the mean flow associated with
precipitation value Po = 125.6 cm for simple regression using equation (26) with the Students t
distribution compared with the corresponding uncertainty intervals obtained using various likelihood
functions.
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obtained with NS and IV are insensitive to the true value of
RModel
2 . The quality of the fitted model does not seem to

matter in a GLUE analysis with NS or IV, unless a solution
falls below a nonbehavioral threshold which is imposed on
the analysis. How can it be true that the precision of the
estimated parameters does not depend on the precision of
the model?

5.3. A Reappraisal of the Concept of ‘‘Equifinality’’

[55] The understanding one gains from Figures 5 and 6,
and GLUE’s acceptance of statistically implausible param-
eter sets, suggest a reappraisal of the repeated claim for
equifinality: ‘‘that there are . . .many different parameter sets
within a chosen model structure that may be behavioral or
acceptable in reproducing the observed behavior of that
system’’ [Beven and Freer, 2001, abstract]. While alterna-
tive optima and redundancy in models certainly are a reality
and a concern, much of the ‘‘equifinality’’ that has been
reported is most likely a result of the use of informal
likelihood measures that do not distinguish a statistically
valid alternative parameter set from just a bad fit. In
reference to the dotty plot in Figures 1a�1c of Beven and
Freer [2001, p. 15] showing likelihoods versus the value of
three parameters, the paper observes that, ‘‘There are many
simulation . . .that, on the basis of the error variance alone,
are virtually indistinguishable from one another’’. Figure 1
of Beven [2006a], provides many examples to support his
manifesto. What we see in these plots of informal like-
lihoods versus the values of different parameters are many
poor solutions which could have been identified as such, if a
statistically realistic likelihood function were employed.
Often it only takes one parameter in the set of parameters
to have a bad value for a model to perform poorly.
[56] Rather than the performance of the model outputs

corresponding to different parameter sets being indistin-
guishable, we assert that a problem is that GLUE with NS
and IV fails to distinguish good solutions with statistically
valid parameters from poor model fits resulting from
parameters that are statistically invalid. Also of critical
importance we would ask that, having created a few
thousand alternative behavioral parameter sets by indepen-
dently and randomly drawing tens of thousands of values

for each parameter, why should we believe with complex
models that even one truly good set of parameters has been
examined to reveal what is possible?

5.4. Prediction Intervals for Future Observations

[57] Most applications of GLUE have used the generated
parameters with their assigned probabilities to construct
intervals which the investigators have asserted will contain
future observations with the specified frequency. For exam-
ple, Beven and Freer [2001, p. 24] observe that GLUE
prediction limits generally bracket the observations, sug-
gesting that GLUE output provides an appropriate descrip-
tion of the range within which individual observations may
occur. They state in the abstract that, ‘‘Any effects of model
nonlinearity, covariation of parameter values and errors in
model structure, input data or observed variable, which the
simulations are compared, are handled implicitly within this
procedure’’. How is it possible that a simple subjective
likelihood measure can understand and represent all these
issues? As has been observed above, this is clearly an
inappropriate expectation because previous GLUE analyses
have generally ignored themodel error (et in equation 19) that
describes the likely difference between the observations Qt

and their mean values a + b Pt. Of course, Bayes Theorem
can be used to compute the predictive distribution of an
observation as illustrated in equation (12). Here we illustrate
how this can be done using Monte Carlo simulation.
[58] The most rigorous approach would be to compute the

convolution of the uncertainty distribution for the parame-
ters with the error distribution describing the probability of
different errors et in (19). For example, if one performed a
GLUE Monte Carlo analysis with a statistically valid
likelihood function, one would generally find the distribu-
tion of the predictions a + b Pt due to parameter error was
approximately normally distributed. Combining this with a
normal distribution for the errors et in our example, would if
done correctly result in the distribution in (25), so we
include those prediction intervals as our standard.
[59] To show that an essentially equivalent result can be

obtained by a more general and less restrictive procedure,
we also provide the results for a GLUE Monte Carlo
procedure. In this case, using uniform priors on the param-

Figure 6. Effect of RModel
2 on 95% uncertainty intervals for the mean flow when Po = 125.6 cm

obtained with different likelihood functions.
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eters and the correct likelihood function for our regression
model, sets of parameters and their associated probabilities
were generated. Those parameters were then used to devel-
op estimates of the streamflow Qt for each of the observed
rainfalls Pt (t = 1,. . .n, with n = 40). Then to include the
distribution of possible errors et, 50 different and indepen-
dent zero-mean random normal variates with variance ŝe

2

were added to capture the possible model errors that could
be associated with the prediction of the mean obtained with
each observed P. There is no magic to the choice of 50, but
in practice having gone to the work of generating model
parameters and simulating a system to determine the like-
lihood function value for those parameters, it would be
computationally efficient to generate a number of possible
errors.
[60] Combining the 10,000 different possible sets of

parameters that provide predictions of Q for each observed
P, with 50 normal replicates, yields 500,000 possible values
of the Q that go with P0. These were used to construct the
95% prediction intervals in Figure 7. Figure 7 illustrates the
effect of RModel

2 on 95% prediction intervals for a future flow
Q for Po = 125.6 cm obtained with different likelihood
functions. One can see that the results with the NID
likelihood function are almost identical with the correct
statistical result obtained with equation (25), denoted
REGR. Also shown are the GLUE prediction intervals with
NS and IV, which in some instances are wider than they
should be and in other instances too narrow. The result
clearly shows that the correct effect of RModel

2 is not
reproduced at all by GLUE with the NS and IV likelihood
functions. Again, when RModel

2 approaches unity, the pre-
dictions intervals should collapse to a point, which again
only occurs with REGR and NID. Christensen [2004] and
Montanari [2005] illustrated the same problem with GLUE
intervals that ignore model errors.
[61] Table 1 provides another way to represent the results

in Figure 7. It reports the number of observations K in the
three n = 40 period records (for RModel

2 = 0.80, 0.90, and
0.95 respectively) that fall outside of the 90% prediction
intervals for each observation in each record. With 90%
prediction intervals and n = 40, on average four observa-

tions should fall outside the intervals, E[K] = 4, neglecting
the fact that the prediction intervals are based on an analysis
of the record with which they are compared. Clearly REGR
and NID provide very reasonable results as expected with
3 � K � 5. NS (N = 1) and IV00 (N = 1), intervals are
absurdly wide with no observations falling outside the
prediction interval. The NS (N = 30) intervals are much
too narrow for RModel

2 = 0.80–0.90 resulting in K = 18–19
observations outside the prediction intervals. IV50 (N = 1)
intervals go from being too narrow for RModel

2 < 0.80 to too
wide for RModel

2 > 0.90.
[62] Figure 7 and Table 1 illustrate that use of the correct

likelihood function with the GLUE methodology will lead
to prediction intervals which perform as expected, whereas
use of an arbitrary and subjective likelihood function will
lead to arbitrary intervals without statistical validity, and
which fail to include future observations with the target
frequency.

5.5. Calibration of Prediction Intervals

[63] GLUE users are resourceful and the suggestion has
been made to adjust the behavioral threshold for R2 (q), and
perhaps the shaping factor N, so that generated uncertainty
intervals contain observations across the calibration period
with the desired frequency. Blasone et al. [2008a, p. 639–
640, 646] suggest this ‘‘tuning’’ resolves the subjectivity of
the choice of a threshold because one now has an objective

Figure 7. Effect of RModel
2 on 95% prediction intervals for the future flow when Po = 125.6 cm

obtained with different likelihood functions for n = 40.

Table 1. Number of Observations K in the Three n = 40 Period

Records That Fall Outside the 90% Prediction Intervals for Each

Recorda

Model

RModel
2

0.80 0.90 0.95

REGR 3 4 5
NID 3 4 4
NS (N = 1) 0 0 0
NS (N = 30) 19 18 2
IV00 (N = 1) 0 0 0
IV50 (N = 1) 9 3 1

aAnticipate K 
 4.
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selection criterion for the threshold; however, they then
observed that when sufficient parameter sets were retained
to achieve the average coverage desired, the accuracy of the
median forecast was significantly compromised. Further-
more, they correctly observe that the calibrated prediction
intervals misrepresent the real uncertainty over different
flow ranges.
[64] Basically this is a terrible idea. By comparing equa-

tions (25) and (26) whose results are displayed in Figure 1,
one sees that the uncertainty intervals which describe
parameter uncertainty in (26) flair at the extremes, and are
different than those representing prediction uncertainty
which have almost fixed width. Thus if one inflates the
parameter uncertainty intervals so they have the correct
average coverage when used as prediction intervals, one
will over estimate the uncertainty associated with large and
small flows, while underestimating the uncertainty associ-
ated with average flows. For his groundwater example,
Christensen [2004, p. 56] observes that a tuned threshold
that generates the correct coverage for the head at one
location failed to solve the problem elsewhere. And hope-
fully, no one would use such calibrated results to construct
uncertainty intervals for parameters. Clearly if one wants
prediction intervals, they should use the calibration-period
errors to construct a valid description of prediction errors
[Mantovan et al., 2007], including the period-to-period error
correlations if such descriptions of prediction uncertainty
are to be used in an operational setting.

6. Manifesto or Misguided Epistle?

[65] Beven [2006a, p. 18] in his manifesto for GLUE
notes with some amazement that other authors have fixated
on finding the optimal parameter set which yields the
minimum observed forecast error. Instead the GLUE focus
appears to be the generation of a large number of solutions
that exceed some nominal threshold that defines behavioral
solutions. Beven admits the threshold selected is arbitrary,
and inspection reveals that even many of the behavioral
solutions provide mediocre if not just poor performance.
Beven’s [2006a] manifesto which advocates the notion of
equifinality fails to reflect the intent of most rainfall-runoff
studies which is to develop an operational model that allows
us to make the best predictions that we can, as well as to
describe the precision of those predictions and the precision
with which the operationally best parameters can be re-
solved. It would be naive to believe that all the data are
accurate and that we have the correct model structure, or
that other mathematical structures could not yield input-
output relationships that are operationally indistinguishable
across the range of the data and anticipated predictions. Our
data have limited precision and our models are very crude
approximations of reality, and mathematically such approx-
imations can be expressed in an infinite number of ways.
[66] Beven [2006a] provides a long discussion of the

problems of model identification and calibration to justify
the manifesto of ‘‘equifinality’’. We think that discussion
fundamentally misunderstands the points above and the
purpose and aims of uncertainty analysis in operational
rainfall-runoff modeling. The goals are to find the best
model for predicting future events given the observed data
that are available for model calibration, to quantify potential
errors associated with future predictions, and to quantify

watershed model parameter uncertainty to guide model
development. GLUE as generally applied to date with
informal likelihood functions such as NS and IV fails in
all three aspects.

6.1. Model Identifiability

[67] As often applied, GLUE does not identify the best
model for use in operational studies. In fact no explicit
effort is made to identify the best parameters or to demon-
strate that parameters that have been generated include the
best that are possible.

6.2. Quantification of Model Prediction Error

[68] As discussed above, GLUE (as generally applied in
the past) does not provide a correct uncertainty analysis that
yields prediction intervals which are consistent with correct
classical or Bayesian statistical theory, and thus they have
been observed to perform poorly. Most applications of
GLUE have only included the influence of parameter
uncertainty and have neglected the importance of model
errors as well as measurement errors associated with both
inputs and outputs, all of which often dominate the differ-
ence between model predictions and observed values. It is
important to acknowledge that even if the values of the
parameters are known, most models would still exhibit
significant forecast errors [see Kuczera et al., 2006], and
GLUE, as generally implemented, fails to recognize this
reality.

6.3. Quantification of Model Parameter Uncertainty

[69] Watershed modeling studies need to have descriptions
of the statistical precision of watershed model parameter
estimators. These are needed to determine the appropriate
complexity of a model given one’s ability to resolve
parameters describing different hydrologic processes. But
as documented here, GLUE as often applied does not
correctly quantify the precision of the model parameters
because it does not use a correct likelihood function.
Its analysis is not statistically valid and the assumed rela-
tionship between data and parameter precision is grossly
misrepresented.

6.4. What Do We Have?

[70] Overall, GLUE fails to provide the discriminating
statistical analysis needed to support the model develop-
ment processes. Thus we find the manifesto articulated by
Beven [2006a] based upon GLUE analyses with subjective
likelihood measures to be a misguided and unwise call for a
modeling revolution.

7. Recommendations for Improving GLUE

[71] In practice, environmental simulation models are far
more complex than the simple linear model with NID errors
used in our analysis. Thus error models should be adopted
that address nonnormal, heteroscedastic and serially corre-
lated residuals as well as other complexities. We believe that
improvements in our ability to characterize complex model
error structures provide a fruitful and richly rewarding path
for improving GLUE and other procedures used for uncer-
tainty analysis and/or calibration.
[72] A common challenge in hydrologic modeling

involves both the heteroscedasticity and nonnormality of
model residuals, owing to a variety of different processes
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whose importance varies over time with groundwater and
soil moisture values, and the distribution of rainfall. Heter-
oscedasticity and nonnormality are often related and some-
times, a single transformation of the residuals solves both of
these problems simultaneously. For example, Romanowicz
et al. [1994] used a logarithmic transformation of the
residuals to deal with both nonnormality and heteroscedas-
ticity. Square root and other power transformations have
also been employed by Kuczera and Parent [1998] and by
Sorooshian and Dracup [1980] who developed a hetero-
scedastic maximum likelihood estimator of the model
parameters. Schaefli et al. [2007] recommends the use of
a mixture distribution. Approaches to ensure homoscedas-
ticity of the residuals include (1) the use of a logarithmic or
other transformation of the residuals, (2) modeling portions
of the hydrologic record separately (i.e., high flows, non-
snow periods) and (3) use of weighted least squares where
weights on the residuals are inversely proportional to the
standard deviation of the residuals at a given time and flow
level.
[73] Another common concern is that residuals exhibit

temporal persistence. Again a variety of methods are
available including (1) use of seasonal autoregressive mov-
ing average (ARMA) models to describe the serial depen-
dence structure of residuals [Salas et al., 2006], (2) thinning
the hydrologic record by only considering say, every fifth
day, or (3) through the use of moving blocks (weekly/
monthly volumes), because weekly or monthly flows ex-
hibit far less serial correlation than daily flows, and (4)
state-space error updating to address correlation introduced
by input and some model errors [Vrugt et al., 2005;
Moradkhani et al., 2005b]. For example, a simple autore-
gressive model of residuals was employed by Sorooshian
and Dracup [1980], Duan et al. [1988], Romanowicz et al.
[1994, 1996], and Beven and Freer [2001]. Duan et al.
[1988] derive an MLE approach for watershed model
parameter estimation when model residuals follow a lag-
one autoregressive process which can be employed with
data collected at unequally spaced time intervals.
[74] Another critical challenge associated with uncertain-

ty analysis for highly nonlinear models with multidimen-
sional parameter spaces is to generate truly good sets of
parameters, as illustrated by papers in the volume edited by
Duan et al. [2003]. Attractive algorithms are presented by
Kavetski et al. [2002], Marshall et al. [2004], Vrugt et al.
[2005], Mugunthan and Shoemaker [2006], Tolson and
Shoemaker [2008] and Blasone et al. [2008a].
[75] Most environmental simulation models suffer from

the problem of having input measurements (i.e., rainfall and
potential evapotranspiration) whose accuracy is significant-
ly lower than the output (streamflow) measurements used
for model calibration. Much of the observed correlation in
model predictions is due to errors in estimated model inputs
such as rainfall working their way though a watershed
which has memory. Thiemann et al. [2001], Kavetski et
al. [2002, 2006a, 2006b], Kuczera et al. [2006], Vrugt et al.
[2005], Moradkhani et al. [2005a, 2005b], Clark and Vrugt
[2006], Huard and Mailhot [2006] and Ajami et al. [2007]
discuss very promising analyses which have the potential to
capture better the combined impacts of parameter uncer-
tainty and model error, as well as both input and output

measurement errors on the overall uncertainty of environ-
mental simulation model predictions.
[76] Many researchers believe, and claims have been

made that the basic GLUE methodology with the traditional
likelihood measures, equations (14)–(16) [Beven and Freer,
2001, Table 1 equation (1a)–(1c)], addresses concerns with
input-data errors, model errors, and corresponding correla-
tions in the observed calibration errors. (For example, see
quote in section 5.4). This is fundamentally not true.
[77] All three of these likelihood measures are monotonic

functions of se
2, the residual mean square error for a given

parameter set over the calibration period. Thus, while each
function, depending upon the shaping factor N, assigns
different likelihoods to different parameter sets, the rank
ordering of models corresponding to those sets is exactly the
same with all three likelihood measures and all positive
values of the shaping factor N. Thus, use of the resulting
subjective likelihood functions will do nothing to funda-
mentally reflect in the analysis nonnormal and heterosce-
dastic errors, or the high correlations in errors from period-
to-period in low-flow periods, and less correlation in high-
flow periods but greater dependence on input errors and less
accurate measurement of flows. No adjustment is made to
individual errors to account for differences in variances
(heteroscedasticity), distribution (nonnormality) or autocor-
relation (persistence).
[78] For GLUE studies to be effective at identifying

reasonable parameter sets and providing a valid sensitivity
analysis, given input-data errors, model errors, and output-
variable measurement errors, resulting in correlated hetero-
scedastic residual errors, effort needs to be invested to
develop goodness-of-fit criteria that reflect these error dis-
tributions, just as it is required to develop realistic statistical
likelihood functions. In fact, it is the same challenge,
because the goodness-of-fit criterion has to realistically
measure how well a model fits the data in the dimensions
of concern and, to describe if differences between observed
data and model predictions can reasonably be explained by
chance.

8. Conclusions

[79] Christensen [2004], Montanari [2005], Mantovan
and Todini [2006], and this study document that the widely
accepted GLUE approach to describing the impact of
parameter uncertainty for environmental models produces
prediction intervals which fail to agree with results based on
proven methods of uncertainty analysis. Here we docu-
mented this phenomenon using a simple linear regression
model. That choice enables us to compare uncertainty
intervals generated by GLUE using several recommended
informal ‘‘likelihood’’ measures with exact analytic uncer-
tainty intervals available in most introductory statistics
textbooks, which are known in repeated trials to generate
uncertainty and prediction intervals that contain selected
parameters with the anticipated frequency.
[80] We discussed why the choice of a likelihood function

is critical and needs to be a reasonable description of the
distribution of the model errors for the statistical inference
and resulting uncertainty and prediction intervals to be
valid. This warning is equally valid if GLUE with an
informal likelihood measure is to be used for model
calibration and sensitivity analysis: one needs goodness-
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of-fit criteria that reflect the nonnormality, heteroscedastic-
ity, and correlation among the residual errors if one is to
evaluate the reasonableness of different model-parameter
sets: the traditional subjective GLUE likelihood functions
fail to do that.
[81] Our findings document that in order to generate

uncertainty intervals using the GLUE methodology which
agree with classical and Bayesian statistical theory, the
assumed likelihood function must be based on the actual
statistical distribution of the errors, or at least a good
approximation. When we employed the likelihood function
for NID errors, a behavioral threshold was unnecessary and
the resulting uncertainty intervals become narrower as the
sample size increases or the precision of the model is
increased. We also showed that these relationships are not
honored when traditional goodness-of-fit-based/informal
likelihood functions recommended by Beven and Binley
[1992] and others are used with GLUE.
[82] Beven and Binley [1992], Beven and Freer [2001],

and others have suggested that the choice of the likelihood
measure used in GLUE is subjective as is the method for
combining likelihood measures. These recommendations
are made because to do otherwise, would require specifica-
tion of a particular error model structure which Beven et al.
[2000] and others are unable to justify. Their argument goes
as follows: ‘‘There would appear to be no reason why
subjective likelihood measures should not be precluded
from use in the conditioning process in cases where the
theoretical rigor of a truly objective likelihood function may
be difficult to achieve for all behavioral models’’ [Beven et
al., 2000]. Unfortunately, despite this claim, because the
absolutely correct likelihood function may be difficult to
construct, it is not the case that any function one subjec-
tively selects and calls a likelihood measure will yield
probabilities with any statistical validity. What is hopefully
made clear in this study is that many recommended choices
for a likelihood measure for use with GLUE lead to
prediction intervals for model predictions entirely inconsis-
tent with classical or Bayesian statistics which are known to
correctly represent the model uncertainties, nor do the
generated intervals reflect common sense or the actual
uncertainty in estimated parameters or in model predictions.
Blasone et al. [2008a, p. 632] observe that ‘‘. . .the GLUE
derived parameter distributions and uncertainty bounds are
entirely subjective and have no clear statistical meaning’’.
Montanari [2007] suggests that ‘‘GLUE should not be
considered a probabilistic method, but instead should be
considered a weighted sensitivity analysis. Therefore the
confidence limits provided by GLUE could be better named
sensitivity envelopes’’. Imposition of an arbitrary and sharp
behavioral threshold does not solve the problem, even if the
threshold is calibrated.
[83] Although the experiments performed in this paper

assume NID model errors, these assumptions are not a
necessary assumption to employ the general form of the
likelihood function introduced in (3). Equation (3) is the
general form of the likelihood function which should be
used, regardless of the assumed structure of the model
errors. The general likelihood function in (3) may be
adopted for situations when one has nonnormal, heterosce-
dastic and autocorrelated model errors. The fundamental
message here is that for every assumed model structure,

there is a corresponding likelihood function appropriate for
use with the GLUE methodology which will lead to
uncertainty analyses which remain consistent with both
classical and Bayesian statistics.
[84] Earlier studies by Christensen [2004], Montanari

[2005] and Mantovan and Todini [2006] have illustrated
and discussed problems with GLUE analyses. We document
how the GLUE methodology can be applied to generate
realistic uncertainty and prediction intervals using model
simulations which are consistent with Bayesian and classi-
cal statistical theory. The conclusion that should be drawn
from this work is that if the correct likelihood function is
employed to properly account for parameter uncertainty,
and the additional needed extensions are made to describe
prediction uncertainty, then the GLUE methodology should
be a valuable tool for both model calibration and for
estimating model uncertainty with the advantages that have
made it so popular. If an arbitrary likelihood measure is
adopted that does not reasonably reflect the sampling
distribution of the model errors, then GLUE generates
arbitrary results without statistical validity that should not
be used in scientific work.
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