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Abstract Approximate storage-reliability-resilience-yield (S-R-R-Y)
relationships are derived for over-year water supply systems fed by
autoregressive lag one Gamma and normal inflows. It is shown that a
two-state Markov model may be exploited along with S-R-R-Y relation-
ships to describe the general behaviour of over-year water supply
systems. The two-state Markov model is also used to relate the proba-
bility of n-year no-failure operations (the concept of reliability used in the
USA) to the steady-state probability of a system failure (the concept of
reliability used in Australia and elsewhere) yielding a unified view of
system reliability. Resiliency criteria are introduced which indicate
whether or not a reservoir system is likely to return to normal operations
once a failure has set in. These criteria indicate that the resilience of an
over-year water supply system is generally independent of its steady-state
reliability. The conditions under which finite reservoir systems behave
like semi-infinite reservoir systems are also documented, and a factor is
derived which describes the impact of the serial correlation of the inflows
on the derived S-R-R-Y relationship.

Indices approchés de fiabilité et de résilience de réservoirs
. interannuels alimentés par des apports autorégressifs d’ordre
1 suivant une loi Gamma ou Normale
Résumé Des relations approximatives entre stockage, fiabilité, résilience
et débit ont €été établies pour des systémes d’approvisionnement en eau
interannuels alimentés par des apports autorégressifs d’ordre 1 suivant
une loi Gamma ou Normale. On a démontré qu’un modéle markovien
deux états peut étre utilisé parallélement aux relations entre stockage,
fiabilité, résilience et débit afin de décrire le comportement global de
systémes d’alimentation en eau interannuels. Le modéle Markovien i
deux états a également été utilisé pour exprimer la probabilité d’absence
d’échec en n années (c’est la notion de fiabilité utilisée aux Etats-Unis)
en fonction de la probabilité d’échec du systéme en régime permanent
(c’est la notion de fiabilité utilisée en Australie et dans certains autres
pays) fournissant ainsi une conception unifiée de la fiabilité. Des critares
de résilience ont été introduits, qui indiquent si un réservoir est ou non
susceptible de revenir 4 un mode d’exploitation normal aprés un échec.
Ces critéres indiquent que la résilience d’un syst®me d’alimentation en
eau interannuel ne dépend généralement pas de sa fiabilité en régime
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permanent. Les conditions dans lesquelles des systémes de réservoirs
finis se comportent comme des systémes de réservoirs semi-infinis ont
également été étudiées et un parametre décrivant l'impact de la
corrélation sérielle des apports sur la relation établie entre stockage,
fiabilité, résilience et débit a été défini.

INTRODUCTION

Two general classes of reservoir systems exist: over-year (alternatively known
as carry-over) and within-year systems. Within-year systems are characterized
by reservoirs which typically refill at the end of each year. Such systems are
particularly sensitive to seasonal and even daily variations in both the
hydrological inflows and the system yield. Over-year systems do not typically
refill at the end of each year. Here a failure is defined as the inability of a
reservoir system to provide the contracted demand in a given year. Water
supply failures for within-year systems tend to be short-lived in comparison
with over-year systems since within-year systems tend to refill on an annual
basis. Naturally, all reservoir systems exhibit some combination of over-year
and within-year behaviour. However, for the moment consider two reservoir
systems having an equal steady-state probability of a failure year g, one being
a system dominated by exclusively over-year behaviour and the other domi-
nated exclusively by within-year behaviour. During an n-year period, one
would expect nq failures, yet for the within-year system those failure sequences
will typically last only a few days or months whereas for the over-year system
a typical failure may last years (if no new water is imported and demand
curtailment programmes are not implemented).

A prerequisite to the proper operation, management and design of over-
year reservoir systems is a thorough understanding of the likelihood, duration
and magnitude of potential reservoir system failure sequences. For this
purpose, the storage-reliability-yield (S-R-Y) relationship is one important
ingredient. However, reliability statements alone do not convey information
regarding the consequences of failure (system vulnerability) or the ability of the
system to recover from a failure (system resilience). This study formulates an
approximate yet general. approach to understanding the overall behaviour of
over-year reservoir systems focusing attention on both the S-R-Y relationship

_and the frequency, magnitude and duration of reservoir system failures.

Storage reservoirs tend to be large and complex systems requiring
equally complex mathematical models to simulate their behaviour. Historically,
one modelling approach has been replaced by or appended to another more
complex one to deal with such issues as the Hurst phenomenon, model para-
meter uncertainty, optimal operations, spatial and temporal disaggregation
schemes, etc. What is lacking are simple yet accurate "back-of-the-envelope”
type methods which give insight into a wide range of reservoir storage system
characteristics and reliability indices before one embarks on a complex
modelling expedition. Such "back-of-the-envelope” methods would also be
useful for the education of future water supply analysts.
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As academics who attempt to teach future water resource engineers, the
authors have found it challenging to explain the deterministic and stochastic
behaviour of water supply systems similar to the manner in which flood fre-
quency analysis and other hydrological concepts are taught. Most current
textbooks recommend the simulation of water supply system behaviour using
either the historical record or synthetic streamflow traces, the latter often in
conjunction with the sequent peak algorithm. Yet such exercises do not always
impart much knowledge of overall reservoir system behaviour other than state
the desired S-R-Y relationship. What is needed are simple yet accurate alge-
braic expressions which can be easily manipulated to describe a host of resi-
lience and vulnerability indices in addition to the S-R-Y relationship so that, for
example, one could illustrate the frequency, magnitude and duration of reser-
voir system failure sequences. Otherwise, one is often lost in the myriad of
computer output from more complex reservoir system simulation exercises.

The goal of this study, similar to that of Vogel & Bolognese (1995), is
to develop a set of simple expressions which both enhance our understanding
of the behaviour of water supply systems and provide an explanation of over-
year reservoir system behaviour.

This study is similar to Vogel & Bolognese (1995), yet the approach
taken here is quite different. Vogel & Bolognese (1995) derive S-R-R-Y
relations for AR(1) normal and lognormal inflows, whereas this study derives
S-R-R-Y relations for AR(1) normal and Gamma inflows using an entirely dif-
ferent approach. This study employs a very simple storage-reliability-yield
relationship introduced by Gould (1964), as opposed to the multivariate
regression equations developed by Vogel & Stedinger (1987) which are used
by Vogel & Bolognese (1995). A similar study by Vogel (1987) uses a two-
state Markov model of the states of reservoir system to derive relationships
among n-year no-failure reliability and steady-state reliability for reservoir
systems dominated by within-year behaviour. However, that study does not
connect reliability indices to other system parameters such as storage capacity,
yield or streamflow statistics as is done here, nor does it deal with over-year
systems. Reliability indices such as the average recurrence interval of a reser-
voir system failure, derived by Vogel (1987), are useful for describing the
likelihood of future reservoir system failures; however, they do not expose the
consequences of that failure. Hashimoto er al. (1982) describe the use of
vulnerability and resilience indices for exposmg the consequence of reservoir
system failures.

A REVIEW OF GENERAL STORAGE-RELIABILITY-YIELD
RELATIONSHIPS

What is needed for a unified understanding of the behaviour of storage reser-
voir systems is a model which relates system storage to system reliability,
yield, inflow characteristics and release rule. McMahon & Mein (1986),
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Kleme$ (1987), Vogel & Stedinger (1987), Votruba & Broza (1989) and
Phatarford (1989) provide a review of the literature relating to the development
of general S-R-Y relationships. Essentially, two schools of thought exist
regarding the development of S-R-Y relationships. In the USA, (S-R-Y)
relationships are usually based on an interpretation of reliability which depends
upon the most critical drawdown period of a reservoir over its planning
horizon. Basically, these methods utilize the automated equivalent of Rippl’s
(1883) mass curve approach, known as the sequent peak algorithm (see Loucks
et al., 1981, Section 5.3.2), in conjunction with stochastic streamflow models
to obtain the probability of no-failure reservoir operations, p, corresponding to
a specific reservoir capacity-yield combination. Alternatively, in Australia and
elsewhere, a common approach to estimating the S-R-Y relationship is to
determine the steady-state probability of failure, g, corresponding to a specific
reservoir capacity-yield combination (McMahon & Mein, 1986; Votruba &
Broza, 1989).

A two-state Markov model of reservoir system states is adopted in order
to be able to relate system storage, reliability and yield to the frequency,
magnitude and duration of reservoir system failures. In addition, the two-state
Markov model allows one to relate steady-state reliability, 1 — g, to n-year no-
failure reliability, p. Others have successfully exploited a two-state Markov
model for representing sequences of reservoir surplus and failures (Hirsch,
1979; Stedinger et al., 1983; Vogel, 1987; Vogel & Bolognese, 1995).
However, those studies have not provided a direct link between the two-state
Markov model and a reservoir system model.

A MEASURE OF THE RESILIENCE OF RESERVOIR
SYSTEMS

Hazen (1914), followed by Sudler (1927) and Hurst (1951), introduced one of
the most useful indices of reservoir system performance, here defined as the

resiliency index:

m

_a —aa)u - (lga) ' (1)

14

where « is the annual yield as a fraction of the mean annual inflow 4, o is the
standard deviation of the annual inflows, and C, is the coefficient of variation
~ of the annual streamflows. Figure 1 shows the relationships among m, « and
C, given in equation (1). Perrens & Howell (1972) termed m the standardized
inflow. After its use by Hurst (1951), the non-dimensional index m has
subsequently found use in both analytical investigations in "water storage
theory" (Pegram et al., 1980; Buchberger & Maidment, 1989) and in
Monte Carlo investigations of the storage-reliability-yield relationship (Perrens
& Howell, 1972; Vogel & Stedinger, 1987). Vogel & Stedinger (1987) suggest
that as long as 0 < m < 1, the system is dominated by over-year behaviour,
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whereas if m > 1, the system is dominated by within-year behaviour. It is
shown later on that m is related to the probability that a storage reservoir will
recover from a failure and hence it is an ideal measure of reservoir system
resiliency. Over-year reservoirs with values of m near O are less likely to
recover from a failure than reservoirs with values of m near unity. Systems
with low resiliency (m near zero) are characterized by having either very large
values of C, or « or both (see Fig. 1). Similarly, reservoirs with values of m
near or above unity are more likely to refill once empty and hence such
systems are more likely to exhibit within-year rather than over-year behaviour.
When m > 1, the theory presented here does not apply and the reservoir
exhibits predominantly within-year behaviour, that is, the reservoir refills in
most years.

0 1 2 Cy 3
Within - year storage system’
V] Over - year storage system

Fig. 1 The demand level « as a function of the resiliency index m and the
coefficient of variation of the inflows C,.

Since resilient reservoir systems (large resiliency index m) tend to have
either small demand levels o or small coefficients of variation, one expects that
regions with low streamflow variability will contain more resilient reservoir
systems than regions with high streamflow variability, for a fixed demand
level. Similarly, demand levels generally increase over time, and so one
expects a general reduction in the overall resiliency of reservoir systems over
time.

APPLICABILITY OF GENERAL STORAGE-RELIABILITY-
YIELD RELATIONSHIPS

Most general analytical S-R-Y relationships are inadequate for design purposes
because they cannot be general and at the same time account for complexities
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such as the seasonal nature of evaporation, precipitation, streamflow and
operating rules. Phatarford (1989) recommends using Monte Carlo simulation
methods for handling specific reservoir design problems and using general
analytical S-R-Y relationships for obtaining qualitative results and for obtaining
insight into the mathematics of reservoir operations. Monte Carlo simulations
of reservoir systems using monthly or even daily time steps are so detailed that
it is easy to miss general yet important features of the reservoir operations. For
example, significant attention has been devoted in the literature to the
development and application of monthly stochastic streamflow models for use
in reservoir operations studies, yet few studies have evaluated the general
relationships among reservoir system reliability, resilience and vulnerability.

Many investigators dispense with general over-year S-R-Y relationships
immediately since they are thought to be too simple to capture the overall
complexity of real water supply systems. To the contrary, it is shown later on
that as long as the resiliency index m in equation (1) is in the range
0 < m < 1, the seasonal behaviour of the system is damped out. For example,
Vogel & Hellstrom (1988) showed that for the Quabbin Reservoir system,
which provides the water supply for much of eastern Massachusetts, USA, an
annual simulation of the system was almost indistinguishable from a monthly
simulation of the system. This is expected, since the firm yield corresponds to
a = 0915 and C, = 0.34, hence m = 0.25. As long as m remains in the
range 0 < m < 1, the system will be dominated by over-year behaviour, and
seasonal variability of the operations and hydrological processes will be masked
in terms of the overall reservoir system behaviour.

In the following sections, simple yet general S-R-Y relationships are
developed for reservoir systems dominated by over-year behaviour and fed by
autoregressive lag one (AR(1)) normal or Gamma inflows. Although the
derived relationships are approximate, the results can be applied to a wide class
of real reservoir systems.

STORAGE-RELIABILITY-YIELD RELATIONSHIPS BASED
ON THE STEADY-STATE PROBABILITY OF A FAILURE

S-R-Y relationships for independent normal and Gamma inflows

Perhaps the simplest approach to estimating the S-R-Y relationships for systems
dominated by over-year behaviour was first introduced by Kritsky & Menkel
(1932) (see Votruba & Broza, 1989, pp 196-198, for an English translation of
their work). Independently, Gould (1964) suggested a similar procedure (see
also McMahon & Mein, 1986) for a description of Gould’s method). As
Kritsky & Menkel (1932) published their work in Russian, Gould (1964) did
not cite it.

Assuming annual streamflows are independent and arise from either a
normal or Gamma distribution, then the sum of »n annual flows, each with mean
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p and standard deviation o, will follow either a normal or Gamma distribution
respectively, with mean nu and variance no?. Note that one could also invoke
the central limit theorem to generalize this approach to any underlying flow
distribution. If the n-year flows (the sum of annual flows) are termed Zx(n),
then Xx (n) = np + tqon“2 is the gth percentile of those annual sums, where
t, is the gth percentile of a standardized random variable from either a normal
or Gamma distribution. Assuming one wishes to deliver a total yield of anp
during an rn-year period with reliability 1 — g, then a reservoir of capacity:

Sq(n) = qnu —Exq(n) " @
= anu —np — tqan

is required. Now the critical drought will correspond to the largest value of
S,(n) among all possible capacities. Kritsky & Menkel (1932) suggested using
iterative procedures to find the length of the critical drawdown sequence #,
which maximizes S (n). Instead, one may follow Gould (1964) who found the
length of the critical drawdown sequence n* by differentiating equation (2) with
respect to n and equating to zero, which leads to:

2
- =[ t,0 ;l (3)
21 =a)p

Combining equations (1) and (3) produces the simple result:

2
n* = @)

which is much simpler, yet equivalent to the iterative procedures suggested by
Kritsky & Menkel (1932).

For example, if flows are normally distributed and the annual reliability
1s98%, then g = 0.02, £, o, = —2 and the critical reservoir drawdown period
n* is equal to 1/m?. As m approaches one, the drawdown period approaches
one year as expected for within-year systems.

Substitution of n* from equation (4) into equation (2) léads to the desired
reservoir capacity of:

t2a
§ =4 &)

9 am
which may be termed Gould’s method. Another interpretation of S is as
follows. In a given year, the yield is au, hence (1 — a)u is available to fill the
reservoir. Thus during the critical drawdown period the reservoir capacity must
be Sq = n*(1 — a)u or simply S, = n*mo, which is identical to equation (5).
When annual inflows are normally distributed, the simple estimate of

t, = 7, may be used (Tukey, 1960):

Zq =491 (q0,141 -Q _q)0.14l) (6)
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which provides a good approximation of the inverse of a standard normal
variate in the range 0.01 < g < 0.99.

When Gould (1964) derived this procedure for flows which arise from
a Gamma distribution, he developed an approximation for z, which used the
fact that the difference between the lower quartiles of a standard normal and
a standard Gamma variate are approximately fixed for a given value of g over
a range of coefficients of variation. However, that approximation, which Gould
developed using a slide rule, is only useful over a limited range of ¢ and C,,
hence it is better to use a direct approximation to the inverse of a standardized
Gamma random variable using z, = w, where w, is given by:

3

2 @)
2y 1Y LA _
w, = 1 {?] [__6__] 1

with y = 2C, when inflows follow a Gamma distribution. Equation (7),
introduced by Wilson & Hilferty (1931), was shown by Chowdhury &
Stedinger (1991) to have less than 1% error in the range |vy| < 3.

Teoh & McMahon (1982) and McMahon & Mein (1986) used 35 Austra-
lian streams and 12 Malaysian rivers to show that Gould’s approach in equation
(5) yields a satisfactory approximation to the required capacity of a storage
reservoir obtained using the more complex probability matrix methods. Of all
the preliminary design procedures investigated, McMahon & Mein (1986)
recommend Gould’s approach. That approach (equation (5)) is also suggested
for the preliminary design of storage reservoirs in Maidment (1992).
Monte Carlo simulation experiments described in a later section of this study
summarize the validity of Gould’s approach.

When Kritsky & Menkel (1932) introduced their approach they did not
limit it to independent normal or Gamma inflows, since it is possible to use
graphical flow duration curve procedures to estimate Lx,(n) from a sample of
annual streamflows derived from any probability density function (pdf). The
normal and Gamma pdfs are introduced here simply so that general analytical
results can be formulated.

S-R-Y relationships for serially correlated normal and Gamma inflows

In the derivation of equation (5), it was assumed that, for independent inflows,
the variance of the sum of n annual inflows is equal to the sum of the variances
and hence the annual flow sums, Zx(n), had variance equal to no?. However,
it is well known that, for serially correlated flow processes, the variance of a
flow sum is inflated in proportion to the serial correlation of the process. For
example, for a first-order autoregressive process, Loucks et al. (1981) showed
that:
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Var(Ex) = Var(nx) = no? 1+2 n__1-¢ ®
n{(1-p) (1-p)?

where p is the lag-one serial correlation of the annual flows. For most

situations encountered in practice, the term (1 — p")/(1 — p)? is negligible in

comparison to n/(1 — p), in which case equation (8) can be simplified after

some algebra to yield:

Var(Zx) = no’ (11 _p )) )]

Substitution of the square root of equation (9) into equation (2) (instead of just
on'?) and repeating the derivation described by equations (3), (4) and (5) leads

to:
i 1+
n* _q_[ P] (10)
am? | 1-»p
2
< zfcﬁ[lw] (11)
9 4dm|1-»p

Equation (11) can be used with either equation (6) or equation (7) to obtain the
relationships among required storage, yield and reliability when inflows follow
either a first-order autoregressive process and are normally distributed,
AR(1)-N, or Gamma distributed, AR(1)-G, respectively. If flows are AR(1)-G,
then one must substitute v, into equation (7) instead of y, where v, is given by:

_ 1+p (12)
Yo T {(1 2)3/2:|

in order to preserve the skewness of the generated flows (Fiering, 1967).

Interestingly, Phatarford (1986) derived an identical factor,
R = (1 + p)/(1 — p), in equation (11) using an entirely different approach.
Phatarford terms R a correction factor which is the ratio of the reservoir size
with p as the annual serial correlation to the size when p is assumed equal to
Zero.

Figure 2 illustrates the relationships among S/o, m, p and C, for
AR(1)-N and AR(1)-G inflows, corresponding to a fixed reliability 1 — g equal
to 99%. Here the subscript g from S is dropped, so that § = §,. Figure 2(a)
compares the use of equation (11) for estimating S/o for AR(1)-N and AR(1)-G
inflows when C, = 0.25, 0.5 and 1.0. The impact of the distributional
assumption is most significant for systems with m near zero. Figure 2(b)
illustrates the impact of serial correlation on the required capacity of a reservoir
system. Comparing Figs 2(a) and 2(b), one observes that the impact of serial
correlation on the required capacity of a storage reservoir can be as important
as the distributional assumption.
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Fig. 2 Comparison of (a) the impact of different inflow distributions, and
(b) different values of serial correlation coefficient, on the relationship
between reservoir capacity S/o and resiliency index for a fixed reliability
(1 — g) equal to 99%. :

A TWO-STATE MARKOV MODEL OF RESERVOIR SYSTEM
STATES

Equations (1) to (12) provide a comprehensive description of reservoir system
behaviour in terms of system storage, yield and reliability, yet such relation-
ships are unable to describe the system resilience and vulnerability in terms of
the duration and magnitude of reservoir system failures. For this purpose, a
two-state Markov model is considered here.

Klemes§ (1969) employed an s-state Markov chain model in an effort to
describe the complex structure of sequences of reservoir surpluses and failures
that arise from reasonable assumptions regarding the character of inflow and
demand processes. Here s denotes the number of discrete states of the
reservoir. In the study, s is assumed to be equal to 2. Since a primary objective
of this study is to derive simple "back-of-the-envelope" expressions to aid
understanding the S-R-Y relationship, the s-state Markov chain model formula-
tion employed by Moran (1954), Kleme§ (1969) and others must be simplified
considerably at the potential expense of misrepresenting the complexity of
reservoir surplus and failure sequences. Kleme§ (1967), Jackson (1975), Hirsch
(1979), Stedinger et al. (1983) and Vogel (1987) used a two-state Markov
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chain model to characterize sequences of water supply system surpluses and
failures. Vogel (1987) found that a two-state Markov model gave a satisfactory
representation of the complex structure of sequences of within-year surpluses
and failures derived from the Pacific Northwest hydroelectric power system.
Recently, Vogel & Bolognese (1995) have shown that a two-state Markov
model can accurately represent over-year reservoir systems.

Klemes (1977) showed that the number of discrete storage states required
to assess the reliability of a storage reservoir with a desired level of accuracy
is usually well above two states. It is usually infeasible for an over-year
reservoir system to pass from full (state 1) to empty (state 2) in one year,
hence most investigators have employed more than two states to model reser-
voir state transitions. However, if one defines one state as the failure state and
another as the non-failure state, Vogel & Bolognese (1995) showed that such
a two-state Markov model of reservoir state transitions provides an adequate
description of the frequency and magnitude of reservoir system failure
durations.

Let Y, ,, Y, , be the respective probabilities that a reservoir system is in
the failure state (1) and regular (non-failure) state (2) and let ¥, = (y,, y2,).- A
failure state occurs when the water in storage plus the inflow during year ¢ are
less than the contracted demand ou. Assume that the states associated with Y,
t =1, ..., Nform a Markov chain with probability transition matrix:

1—r r ' (13)
A=
7]

where f = probability that a failure year follows a regular year, and r = the
probability that a regular year follows a failure year. The probabilities of the
states of the Markov chain are given by:

Y, - YA (14)

As t increases, Y, reaches a steady-state and the solution to equation (14)
becomes:

lim, - [ for } (15)

oo ref’ref
Jackson (1975) provided a derivation of this result. Thus, the steady-state
probability that the reservoir will be in the failure or regular states are f/(r + f)
and r/(r + f) regardless of the initial state of the reservoir system. The steady-
state system reliability (1 — ¢) can be related to the two-state Markov model
using (1 — q) = r/(r + f), or:

q=1-71 (16)

Equation (16) provides the link between the two-state Markov model and S-R-Y
relationships based upon a steady-state probability of failure such as
equation (11).
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To specify fully the two-state Markov model, one requires an estimate
of r and f in equation (16). Estimation of the transition probability r is
accomplished by first recalling its definition as the probability that the reservoir
system transfers from the failure (empty) state to the normal (non-empty) state.
The failure state is defined as the condition when the water in storage plus the
inflow for that period Q, are less than the demand ou. Once a failure has
occurred, r becomes the conditional probability:

r= P{Qt+1 2 CX,LL!Q[ < alu'} (17)
which can be approximated, as shown by Vogel & Bolognese (1995), using:

m— ,0(271')4/2
B(—m)exp(m?/2) (18)

\/1—p2

when Q follows an AR(1) normal process with ® denoting the cdf of a standard
normal random variable. Note that equation (18) reduces to r = $(m) when
p = 0.

Once r is determined from equation (18), fis easily found by rearranging
equation (16) to obtain:

,f=rI:1_q_q:| . (19)

The duration of a reservoir system failure

r=49%

Vogel (1987) showed that the probability function for the length of a reservoir
system failure for a two-state Markov model is given by:

PIL =0} =r1=n"" forf =1 (20)
where L is the length of a failure sequence. Since L is geometrically
distributed, it has mean E[L] = 1/r, variance Var[L] = (1 — r)/?, and
coefficient of variation C,[L] = (1 — r)"2. This theoretical description of the
length of reservoir system failures has been confirmed via simulation by Vogel
& Bolognese (1994).

VALIDATION OF THE GENERAL S-R-Y RELATIONSHIPS
AND THE TWO-STATE MARKOV MODELS

Design of Monte Carlo experiments

Monte Carlo simulation experiments were performed to test the validity of the
analytical S-R-Y relationships (equations (5) or (11)) and the two-state Markov



Reliability and resilience indices of over-year reservoirs 87

model. All of the experiments follow the same general procedure. First, 30
million streamflows were simulated from the AR(1) normal model:.

0,1 = k+p(Q,—p) +goy1 —p? , (21)

withp = 1, 0 = 03 and p = 0.0 and p = 0.3. Vogel & Bolognese (1995)
and others have shown that the storage-reliability-yield relationship for systems
fed by AR(1) normal inflows is independent of C,, hence the results herein are
completely general, even though it was assumed that C, = o/p = 0.3. In other
words, the generalized storage-reliability-yield relationships developed for
normal inflows (see Vogel & Bolognese, 1995) are standardized relationships
which apply for .all values of C,. Note that large values of C, imply that
negative streamflows-can occur more frequently, hence the assumption of
normality applied only to basins with small values of C,. Thirty million
streamflows were required to obtain statistically stable results. Assuming
system reliabilities (1 — ¢) of 90%, 95% and 99% and values of m from 0.05
to 1.0 in steps of 0.05, equation (11) was solved to determine the required
reservoir storage capacity S necessary to deliver a contracted demand of
op = p — mo with reliability (1 — g) for each of the combinations of m, p
and ¢g. Assuming a full reservoir equal to S at the beginning of each 30 million
year simulation, the experiment proceeded by determining the amount of water
in storage in each of the 30 million years. If the reservoir contents plus the
inflow in a given period were less than the demand op, a failure was
documented. In addition, the duration of consecutive failures L was
documented. If the reservoir contents plus the inflow in a given period were
greater than the storage capacity S, the excess or surplus was spilled or lost
from the system. The output of the simulation experiments consisted of
estimates of the system reliability as well as estimates of the mean E[L] and
coefficient of variation C[L] of the failure durations.

Validation of the two-state Markov model for describing failure
durations

Figures 3 and 4 compare the theoretical and simulated mean E[L] and
coefficient of variation C,[L], respectively, of system failure durations as a
function of the resilience index m, serial correlation p, and failure probability
g. In all cases, approximate agreement was obtained between the theoretical
and simulated mean and coefficient of variation of failure durations. It was
concluded that the two-state Markov model provides an adequate description
of the distribution of reservoir system failure durations.

The theoretical expressions for P[L = £], E[L] and C,[L] document that
the distribution of L is independent of system reliability, (1 — ¢q). Figures 3
and 4 verify that both E[L] and C|[L] are approximately independent of g.
Interestingly, the ability of the system to recover from a failure is independent
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of its reliability. Hence, increasing the reliability of an over-year water supply
system will not necessarily have an impact on its ability to recover from a
failure.
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Fig. 3 A comparison of the theoretical (solid lines) and simulated average
failure duration as a function of resilience index m, serial correlation p, and
failure probability g.

Validation of derived S-R-Y relationships (equation (11))

Next, the ability of equation (11) to approximate the S-R-Y relationship was
evaluated for systems dominated by over-year behaviour. Figure 5 also
illustrates the simulated steady-state failure probabilities corresponding to the
Monte Carlo experiments described above. Here, steady-state failure
probability ¢ is defined as the total number of years which experienced a
failure divided by 30 000 000. The figure also describes the actual reliabilities
one would experience had one designed a reservoir using equation (11) with the
values of failure probability g, resilience index m and serial correlation p,
shown. Overall, the agreement between theoretical and simulated failure proba-
bilities was poor. However, the agreement was satisfactory for values of the
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Fig. 4 A comparison of the theoretical and simulated coefficients of
variation of system failure durations as a function of the resilience index m,
serial correlation p, and failure probahility g.

resilience index in the range 0.2 < m < 0.8, values of failure probability
0.01 = g = 0.05, and for p = 0.3. These ranges of m, ¢ and p correspond
to realistic values for many systems dominated by over-year storage. As shown
in Fig. 2, values of m < 0.2 lead to reservoir capacities which approach
infeasible (infinite) dimensions.

COMPARISON OF APPROXIMATE S-R-Y RELATIONSHIP
DERIVED HERE (EQUATION (5)) WITH OTHER STUDIES

The approximate analytical S-R-Y relationship for reservoirs fed by inde-
pendent normal inflows derived here (equation (5)) is compared with exact
analytical expressions given by Buchberger & Maidment (1989). Those authors
provided exact analytical expressions for the relationships between the storage
ratio S/o (which they termed K), resilience index m (which they termed ¢) and
the steady-state probability of a failure g (which they termed H(0)) for sysiems
fed by independent normal inflows. Figure 6 compares their exact relationships
with the approximate relationships derived here. It may be concluded from
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Fig. 5 A comparison of the theoretical and simulated failure probability g
(using equation (11)) as a function of the resilience index m and serial
correlation p.

Figs 5 and 6 that equation (5) provides a reasonable approximation to the
overall S-R-Y relationship if one is interested in obtaining a preliminary "back-
of-the-envelope” estimate of the S-R-Y relationship for a site. This view is
consistent with a similar conclusion reached by Teoh & McMahon (1982).

This Study (Equation 5)
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100 (1989, Equation 27)
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Fig. 6 A comparison of the storage ratio S/o computed from equation (5)
and from the relationships in Buchberger & Maidment (1989), as a function
of steady-state failure probability ¢, and the resxllence index m, for
independent normal inflows:



Reliability and resilience indices of over-year reservoirs 91
A UNIFIED VIEW OF RESERVOIR SYSTEM RELIABILITY

In general, there are two approaches to the determination of the yield or
storage capacity of a reservoir system. One approach used in the USA, is to
determine the no-failure yield (often called the firm yield) which can be met
over a particular planning period with a specified reliability. The alternative
approach used in Australia and elsewhere is to determine the yield which can
be delivered with a specified steady-state reliability (1 — g), as is the case in
this study. Unfortunately, these two approaches are often seen as unrelated and
disconnected. Both of these schools of thought can be linked using a two-state
Markov model, leading to completely consistent estimates of the reliability of
reservoir systems, regardless of which school of thought one happens to follow.
When the sequent peak algorithm (Loucks ef al., 1981) is used to
determine the smallest reservoir system design capacity S required to assure
regular or failure-free operation over an n-year planning period with probability
D, then p is a probability over that planning period. If one employs the two-
state Markov model, the probability of regular (failure-free) operation over an
n-year period, p, is simply the probability of normal operations in the first year
(I — ¢), times the probability that subsequent years remain free of failures:

p=U-g-H* @
Equation (22) relates the index of reliability commonly used in the USA (the
probability p of failure-free opérations over an n-year period) to the index of
reliability commonly used in Australia and elsewhere (the steady-state system
reliability (1 — g). Hence one can employ the two-state Markov model to
compare S-R-Y relationships developed using completely different interpre-
tations of system reliability. Figure 7 shows such a comparison. Since the
S-R-Y relationships derived in this study are only approximate (Fig. 6), the

Vogel (1985) and Two-State
. ., Markov Model (N = 50, p = 0)
10.0 |- T e Buchberger and Maidment
(1989, Equation 27)
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s e g=0.01
c

1.0

05 | 1 ] ] i H " 1 1

00 041 62 03 04 05 06 07. 08 09 10

Fig. 7 A comparison of the exact relationship between the storage ratio S/o,
failure probability ¢ and resilience index m, using Buchberger & Maidment
(1989) with the approximation derived using the sequent peak algorithm .
(Vogel, 1985) and a two-state Markov model for independent normal annual
inflows.
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exact S-R-Y relationships developed by Buchberger and Maidment (1989) for
independent normal inflows have been employed. For comparison, the corres-
ponding S-R-Y relationships obtained using the sequent peak algorithm for
independent normal inflows has been plotted. Here the value of no-failure
reliability p is obtained from equation (22) for each value of steady-state
reliability (1 — ¢) using an n = 50 year planning period. The general S-R-Y
relationships corresponding to the use of the sequent peak algorithm and
independent normal inflows were obtained from Vogel (1985).

WHEN DOES A FINITE STORAGE RESERVOIR BEHAVE
LIKE A SEMI-INFINITE STORAGE RESERVOIR?

Buchberger & Maidment (1989) defined the index P, analogous to the Peclet
number:

p- % (23)
20

for the purpose of determining when a storage reservoir of finite capacity
behaves as one with a semi-infinite capacity and is defined as a reservoir that
may be either topless or bottomless. They show that finite reservoirs with
P < —1or P > 1 behave as if they have no top or bottom, respectively.
Essentially, the relationship between storage, reliability and yield for a semi-
infinite reservoir reduces to a relationship between reliability and yield. It may -
be very important to understand whether or not a finite reservoir behaves like
a semi-infinite reservoir. For example, if an existing finite reservoir system
behaves like a semi-infinite reservoir system, then efforts to increase storage
capacity will have little or no impact on the system behaviour. The use of
simple indices like equation (23) could obviate the need to perform detailed
simulation studies which would lead to identical conclusions.

For independent inflow, Buchberger & Maidment (1989, Tables 3, 4
and 5) showed that finite reservoirs behave like semi-infinite reservoirs only for
extremely high reliabilities. However, systems fed by inflows which exhibit
serial correlation will have larger values of P in equation (23) than systems fed
by independent inflows. Fig. 8 illustrates the critical reliability (1 — g*)
necessary for systems to achieve a value of P = 1 as a function of m and p.
The solid lines correspond to the use of Buchberger & Maidment’s (1989) exact
S-R-Y relationships corrected for the impact of serial correlation. Here the
impact of serial correlation on storage capacity was allowed for using the factor
(1 + p)/(1 — p) derived here (equations (8) to (11)) and by Phatarford (1986).
For comparison, the critical reliabilities computed using equation (23) are
depicted with the S-R-Y relationship derived here (equation (11)). It is typical
for reservoir system design reliabilities to be in the range 0.95-0.99 and hence
Fig. 8 illustrates that many existing finite reservoir systems probably behave
like bottomless semi-infinite reservoirs. These results apply only to normally
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distributed inflows and, again, equation (11) provides only a rough approxi-
mation. Reservoir systems fed by inflows which exhibit skewness will result
in smaller values of P than systems fed by normal inflows, since values of Sq
tend to be smaller (Fig. 2).
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Fig. 8 The critical reliability (1 — g*) for which finite reservoir systems
fed by normal inflows behave like semi-infinite reservoir systems as a
function of the resilience index m and serial correlation of the inflows p.

Critical reliability, 1-q* for
Semi-Infinite behavior

CRITERION FOR WITHIN-YEAR VS OVER-YEAR
RESERVOIR OPERATIONS

In this section, a simple criterion is introduced for determining whether or not
a reservoir system is dominated by over-year storage requirements. Systems
dominated by over-year storage requirements are less likely to recover from a
failure than systems dominated by within-year storage requirements. To
determine whether a reservoir is likely to return to normal operations, one is

0.0
00 02 04 06 08 10 12 14 16 18 20
m
Fig. 9 The probability of returning to normal operations r, as a function of

resilience index m and serial correlation p, corresponding to AR(1) normal
inflows.
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(equation (11)) which describes the approximate behaviour of over-year reser-
voir systems fed by AR(1) normal and AR(1) Gamma inflows. Monte Carlo
experiments and comparisons with other studies revealed that equation (11) can
provide a reasonable approximation to the storage capacity of an over-year
reservoir system; however, it must be used cautiously when estimating system
reliability. More accurate general analytical relationships among storage
capacity, reliability and yield are available for over-year reservoir systems fed
by independent normal inflows (Buchberger & Maidment, 1989), autoregres-
sive normal (Vogel, 1985; Vogel & Bolognese, 1995) and autoregressive log-
normal inflows (Vogel & Stedinger, 1987).

The conditions when one can expect a finite reservoir system to behave
like a semi-infinite reservoir system have also been documented. For serially
correlated normal inflows, the conditions when increases in the storage capacity
no longer produce increases in either the system yield or the system reliability
have been described.

In addition, in equation (11), a factor has been derived which accounts
for the impact of serial correlation on reservoir storage capacity. This factor
is identical to the factor derived by Phatarford (1986) using entirely different
reasoning.
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