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[1] Envelope curves are often used to provide summary accounts of our flood experience,
but their operational use has been limited by our previous inability to assign to them
an exceedance probability ‘‘EP.’’ General expressions are derived for the EP of an
envelope curve at a particular site in a heterogeneous region, as well as measures of central
tendency of EP across sites. Analytic results are reported for the case when floods follow a
Gumbel or generalized extreme value distribution, and these results are contrasted with
those of previous studies that sought to estimate the exceedance probability of
extraordinary floods such as the flood of record (FOR) and the probable maximum flood
(PMF). A case study involving FOR and PMF discharges for 226 rivers across the
U.S.A. indicates that relatively consistent estimates of the average exceedance probability
associated with both FOR and PMF envelope curves can be obtained using the theoretical
approach introduced here.
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1. Introduction

[2] Estimates of extraordinary flood magnitudes and their
associated probability are needed in a wide range of
hydrologic engineering studies, particularly for situations
in which there are either severe hazards and/or potential loss
of human life such as in dam safety risk analyses. Here we
define an extraordinary flood as one whose magnitude is
equal to or greater than the probable maximum flood
(PMF). Although such floods are likely to have catastrophic
consequences and their recurrence times are likely to be
measured in geologic time, we do not consider these issues
here. Deterministic and stochastic approaches are available
for estimation of extraordinary flood magnitudes [National
Research Council (NRC), 1988]. Much greater attention has
been given to the development of deterministic methods,
than stochastic methods, for estimating extraordinary flood
magnitudes including the PMF and the probable maximum
precipitation (PMP) [Cudworth, 1989]. These widely used
deterministic design procedures developed over the past
50 years are mature, used for the design and operation of
large dams, and are considered as state of the practice. The
PMF is derived from a PMP, where the PMP is defined as
‘‘theoretically the greatest depth of precipitation for a given
duration that is physically possible over a given size storm
area at a particular geographic location during a certain time
of year.’’ To many hydrometeorologists, implicit in this
definition is the concept that the PMP describes the level of
precipitation that has ‘‘virtually no risk of being exceeded’’
[Myers, 1969]. Technical assumptions in deriving PMF

estimates from PMP estimates depend on a number of
factors including antecedent moisture, loss rates, unit hydro-
graph shapes, and initial reservoir levels. These assumptions
are not consistently considered among the different federal
water agencies [Newton, 1983]. Barker et al. [1997] dem-
onstrated the factors that affect PMF estimates when the
PMP is held constant and documents that a unique value of
PMF does not exist. The PMF is still used widely for asses-
sing the capability of hydraulic structures to withstand
extraordinary events in spite of the fact that, heretofore,
there has not been an accepted measure of its exceedance
probability [Interagency Advisory Committee on Water Date
(IACWD), 1986; American Society of Civil Engineers
(ASCE), 1988; NRC, 1985, 1988, 1999; Resendiz-Carrillo
and Lave, 1987, 1990; Shalaby, 1994].
[3] The IACWD [1986] concluded that ‘‘no procedure

proposed to date is capable of assigning an exceedance
probability to the PMF or to near-PMF floods in a reliable,
consistent, and credible manner.’’ Their primary criticism
relates to the large errors associated with the extrapolation
of flood frequency curves beyond the length of record over
which they are based, as well as the inherent sensitivity of
extrapolations of extreme floods to the assumed form of the
flood frequency distribution. Since 1986, there has been
significant progress in the field of flood frequency analysis
in arriving at a consensus as to the choice of an appropriate
distribution. For example, there is now an increasingly
global consensus that the generalized extreme value
(GEV) distribution introduced by Jenkinson [1955] pro-
vides a meaningful distribution for floods based on both
empirical [Vogel and Wilson, 1996; Robson and Reed, 1999;
Castellarin et al., 2001] and theoretical evidence [Beirlant
et al., 2005]. In addition to the GEV distribution, the log
Pearson type III distribution (LP3) and three-parameter
lognormal (LN3) distributions have received widespread
(global) support in flood frequency analysis [see Vogel
and Wilson, 1996, Tables 3 and 4] as well as the Gumbel
distribution, which is a special case of the GEV distribution.
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[4] Envelope curves are simple empirical relationships
between the maximum peak flow experienced in a region
and drainage area. The primary objective of this study is a
determination of the exceedance probability associated with
an envelope curve. Normally, an envelope curve is a curve
drawn to envelope our flood experience based on the
observed floods of record (FOR) in a region. However,
one can also draw envelope curves based on estimates of
PMFs in a region. An example of both types of envelopes
are given in Figure 1 for 226 basins located across the
U.S.A. The 226 basins upon which Figure 1 is based are a
subset of 561 basins for which PMF estimates were sum-
marized by the U.S. Nuclear Regulatory Commission
[USNRC, 1977]. Further details regarding these basins and
the methodology for estimating the envelopes are summa-
rized below in a case study.
[5] Our goal is the development and application of a

methodology for determining the exceedance probability
associated with either of the two envelope curves drawn in
Figure 1. We begin by reviewing previous research relating
to a probabilistic assessment of envelope curves. Those
discussions are followed by a theoretical treatment of the
problem, which in turn is followed by a case study that
provides a probabilistic assessment of both envelope curves
in Figure 1.

2. Previous Studies

[6] In contrast to the deterministic PMP and PMF meth-
ods, research on probabilistic approaches to dealing with
extraordinary floods is in its infancy. On the basis of
recommendations by NRC [1985] and ASCE [1988], in
the mid-1990s, the Bureau of Reclamation began efforts
to estimate probabilities of the PMF and PMP. While the
NRC [1985] estimated PMF peak flow probabilities in the
range of 10�4 to 10�6, subsequent efforts by the Bureau of
Reclamation led to a range of 10�6 to 10�12, depending on
storm type and subjective geographic criteria (Reclamation
Flood Hydrology Group, 1996, unpublished notes). Shalaby
[1994] found a similarly wide range of probabilities
corresponding to PMF estimates for the mid-Atlantic region
depending on which probability distribution was extrapo-
lated. Shalaby [1994] extrapolated several probability dis-

tributions fitted to observed flood series at 46 watersheds in
which PMF estimates were available. Resendiz-Carrillo and
Lave [1987, 1990] followed the same approach as the work
of Shalaby [1994] but for fewer sites and found similarly
wide discrepancies in the exceedance probabilities associ-
ated with observed PMFs depending on which probability
distribution was considered. The studies by Resendiz-
Carrillo and Lave [1987, 1990] and Shalaby [1994] all
estimated the exceedance probability of observed PMFs by
the simple extrapolation of ‘‘at-site’’ flood frequency curves
based on relatively short records. Each of these studies was
concerned with the estimation of the exceedance probability
of a PMF at a particular site, unlike this study, which
formulates the problem in the context of envelope curves.
Most importantly, none of the previous studies employed a
theoretical probabilistic interpretation of an envelope curve
as is introduced in the next section and which is later
documented to yield significantly different results than a
simple extrapolation of the flood frequency curve. Further-
more, none of the previous studies employed the generalized
extreme value (GEV) distribution, which has found wide-
spread acceptance in flood frequency analysis over the past
few decades [see Vogel and Wilson, 1996, Table 4] due in
part to recent innovations in our ability to evaluate alterna-
tive distributional hypotheses [Hosking and Wallis, 1997] as
well as the fact that the GEV model arises as the limiting
distribution for extreme value processes such as floods.
[7] Bullard [1986] reported PMF estimates along with

estimates of the flood of record (FOR) for 61 watersheds
distributed roughly uniformly across the United States of
America. Since none of the FOR values exceeded the PMF
for over 18,000 station-years of data included in the analysis
of Bullard [1986], Lave et al. [1990] argued that the
probability of a PMF is less than 1/18,000 if one assumes
that the PMFs were estimated uniformly and that flood
series at the 61 watersheds are spatially independent of one
another. Baldewicz [1984] found no evidence of exceedance
of a PMF in more than 600,000 dam-years of observation,
leading Lave et al. [1990] to conclude an annual likelihood
of a PMF at a site to be 1/600,000 or less.
[8] In the report ‘‘Improving American River Flood

Frequency Analyses’’ [NRC, 1999], the NRC committee
said, in reference to envelope curves, ‘‘This combination
of strong heterogeneity and spatial correlation makes it
difficult to estimate probabilities of exceeding envelope
discharges.’’ The statement implies that an exceedance pro-
bability can be attached to an envelope curve, but that the
value of the probability is difficult to determine owing to
regional heterogeneity and spatial correlation. The NRC
[1999] further states that ‘‘PMF estimates for the American
River [and for any other river] provide some information
about the upper tail of the flood distribution,’’ and empirical
data indicate that (presumably for the American River) the
exceedance probability of the PMF ‘‘should probably be
smaller than 10�4 and almost surely less than 10�3’’.
[9] Our study is not the first to estimate the exceedance

probability associated with an envelope curve. Envelope
curves are often based upon observed floods of record
(FOR) in a region, and Douglas and Vogel [2006] docu-
mented some of the theoretical properties of the FOR.
Castellarin et al. [2005] proposed a probabilistic interpre-
tation of a regional envelope curve (REC) derived from

Figure 1. Envelope curves of flood of record (FOR) and
the probable maximum flood (PMF) for the United States of
America (1 mi2 = 2.59 km2; 1 cfs = 0.0283 m3/s).
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FORs generated by the index flood assumption and a simple
power law scaling relationship between drainage area and
the index flood. Under those assumptions, Castellarin et al.
[2005] showed that the REC probability is simply the
exceedance probability associated with the largest standard-
ized annual maximum peak flow in the region. Importantly,
their approach accounts for the influence of the spatial
correlation of flood series. Castellarin [2007] introduced
innovations for handling unequal record lengths, an unbi-
ased plotting position for the GEV distribution, and a
suitable approach for modeling the spatial correlation of
flood records. Castellarin et al. [2007] extended the work of
Castellarin et al. [2005] to a multivariate framework where
both the index flood and the REC depend on multivariate
basin attributes. This study approaches the same problem
using a more general probabilistic formulation which does
not depend upon the index flood assumption.
[10] Until this study, and the other recent studies cited

above, the consensus view was that it is simply not possible
to assign an exceedance probability to an envelope curve.
For example, Linsley et al. [1949, p. 572], in their book
‘‘Applied Hydrology,’’ suggested that ‘‘the appropriate
frequency for values determined from the enveloping curve
and the related formulas cannot be defined.’’ More recently,
in reference to the method of envelope curves, the ‘‘Hand-
book of Hydrology’’ [Pilgrim and Cordery, 1993, chapter 9
p. 37] suggested that ‘‘Probabilities of floods cannot be
estimated objectively by this method.’’

3. Distribution of the Flood of Record

[11] Assume that a region has m sites, at each of which
observations of annual floods are concurrent, spanning a
period of n years {xi,t: i = 1,. . ., m; t = 1,. . ., n}. At each site,
the observations are independent and identically distributed
(iid) as follows:

F Xi;t

� �
¼ F Xi½ � ¼ Pr Xi < x½ �8i; t ð1Þ

In general, the floods at one site are dependent upon those at
the other sites, and therefore

F X1;X2; . . . ;Xm½ � 6¼ F X1½ �F X2½ � 	 	 	F Xm½ � ð2Þ

[12] The structure of dependence may be represented by
the correlation matrix R as follows:

R ¼

1 r1;2 r1;3 r1;4 r1;m
r2;1 1 r2;3 r2;4 r2;m
r3;1 r3;2 1 r3;4 r3;m
r4;1 r4;2 r4;3 1 r4;m
rm;1 rm;2 rm;3 rm;4 1

2
66664

3
77775 ð3Þ

As is well known, R is a symmetric matrix: rj,k = rk,j 8j,k.
For each sequence, the flows may be ordered from smallest
to largest: {xi

(u): i = 1,. . ., m; u = 1,. . .,n} where u denotes
rank: u = 1, smallest, to u = n, largest; the lowest value is the
lower record value, and the largest value is the upper record
value. The flow xi

(n) is the flood of record (FOR) at site i.
Given that, at each site, the observations are iid, the
distribution of the FOR in a sequence of length n is

G nð Þ Yi½ � ¼ Fn Xi½ � ¼ Pr Yi < yi½ � ð4Þ

where xi
(n) = yi 
 1. The correlation matrix for the largest

observations is

WWW ¼

1 w1;2 w1;3 w1;4 w1;m

w2;1 1 w2;3 w2;4 w2;m

w3;1 w3;2 1 w3;4 w3;m

w4;1 w4;2 w4;3 1 w4;m

wm;1 wm;2 wm;3 wm;4 1

2
66664

3
77775 ð5Þ

where

lim
n!1

WWW ! I ð6Þ

where I denotes the identity matrix; all off-diagonal terms
are equal to zero. The correlation between record values is
asymptotically zero [Sibuya, 1960; Husler and Reiss, 1989].
[13] For nonnormal observations, the elements of R and

W may not provide a meaningful measure of the linear
association between the sequences and the record values,
respectively, particularly if association is measured by
product moment correlations. The effect of nonnormality
on the elements of R and W is not assessed herein.

4. Envelope Curve Definitions and Probabilistic
Framework

4.1. Envelope Curves as a Summary of Flood
Experience

[14] Envelope curves are simple empirical relationships
between the maximum peak flow experienced in a region
and drainage area. The variables xi, yi, and zi represent three
different random variables equal to the annual maximum
flood at site i, the flood of record at site i, and the ordinate
of the point on the envelope curve corresponding to site i,
respectively. Let Ai denote the drainage area at site i. The
scatter diagram of ln( yi) versus ln(Ai), where yi  xi

(n), is
an expression of our flood experience over the period t = 1
to t = n. The experience may be bound by an enveloping
line; that is, a line below which all our experience, expressed
in terms of the FORs and their relation to drainage area, lies
(see the black line in Figure 1) To give meaning to the
enveloping line, the line is set with a slope b and passed
through that point, such that all other points lie below the
line, hence the name, envelope line. The envelope line is
defined as

ln zið Þ ¼ aþ b ln Aið Þ ð7Þ

The slope b may be specified in a number of ways. For
example, the value of bmay be taken to be equal to the slope
of the line of regression of ln(y) on ln(A). Another
specification might be b = (b* + 1), where b* is the slope
of the enveloping line of the scatter diagram formed by
ln( yi/Ai) versus ln(Ai). The Myer slope is b* = �1/2 [Jarvis,
1926], whereby for the scatter diagram ln(yi) versus ln(Ai),
the corresponding slope is b = 1/2.
[15] One may also estimate the values of a and b by

solving the following linear optimization problem:

Min
Xm
i¼1

ln yið Þ � a� b ln Aið Þ½ � ð8aÞ
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subject to

ln yið Þ � a� b ln Aið Þ 
 0 8i ð8bÞ

The optimization problem given in equations (8a) and (8b)
is easily solved for the model parameters a and b using a
linear programming algorithm such as the simplex algo-
rithm which is widely available. For the remainder of this
study, we assume b = 0.5.
[16] Assume that W = I. Consider a region of m sites. The

size of the region is denoted as Ae:

Ae 

Xm
i¼1

Ai ð9Þ

[17] Because one site may be upstream (downstream) of
another site, Ae is equal to or less than the sum of the
drainage areas of the m sites; Ae is the size of the effective
area of the region. Given two regions, the assumption W = I
is operationally more viable for the larger of the two
regions. In the larger region, the average distance between
sites is greater; correlation between flood sequences at two
sites tends to diminish with increasing distance between the
sites. In a region of pronounced orographic features, the off-
diagonal elements of R are, in absolute value, smaller than
they otherwise would be in the absence of the orographic
features. In turn, the off-diagonal elements of W are, in
absolute value, smaller than they otherwise would be.

4.2. Estimating Envelope Curve Probabilities

[18] Here we derive the probability of exceeding the
envelope curve at a particular site i at time t = n + 1,
where perhaps, at the site, a water project is envisaged.
Consider a hypothetical region consisting of m sites where
the sequence length n at each site is sufficiently long [to the
limit n ! 1, see equation (6)] such that the matrix of the
correlations between record values may be represented by
an identity matrix, W � I [Sibuya, 1960; Husler and Reiss,
1989]. At time t = n + 1, the flood at site i will be a flood of
record at that site, Ri with probability as follows:

P Rið Þ ¼ nþ 1ð Þ�1; 8i ð10Þ

Given that the flood of record event Ri occurs at site i, the
record flood will exceed the envelope value at that site, Ei

with probability given by

P EijRið Þ ¼
Z1
zi

dG nð Þ Yið Þ ð11Þ

where zi denotes the ordinate of the point on the envelope line
given in equation (7) corresponding to the abscissa ln(Ai).
[19] Of interest here is the occurrence of both events Ei

and Ri at time t = n + 1, that is, having observed at time t =
n + 1 a record flood at site i, that also exceeded the
envelope. This particular event, which we term EiRi, will
occur with exceedance probability given by

P EiRið Þ ¼ P Rið ÞP EijRið Þ

¼ nþ 1ð Þ�1

Z1
zi

dG nð Þ Yið Þ
ð12Þ

Note that all sites are not equal in our analysis, because site
i = i0 is the site that identifies the current (t = n) envelope
and for which the record flood, zi0 = xi0

(n), falls on the
envelope curve. All future record floods at that site will
exceed the envelope line, so that

P Ei0 jRi0ð Þ ¼
Z1

zi¼x
nð Þ
i0

dG nð Þ yi0ð Þ ¼ 1 ð13Þ

whereby

P Ei0Ri0ð Þ ¼ P Ri0ð ÞP Ei0 jRi0ð Þ

¼ P Ri0ð Þ

¼ nþ 1ð Þ�1

ð14Þ

[20] If a water project is contemplated at site i, then of
particular interest at that site is the local exceedance
probability in year (n + 1) of the envelope line set in year n,
i.e., the probability that the flow in year (n + 1) at site i will
exceed the envelope line set in year n:

Fi zið Þ ¼ P Ei0Ri0ð Þ; if i ¼ i0

P EiRið Þ; if i 6¼ i0

�

¼

1þ nð Þ�1; if i ¼ i0

1þ nð Þ�1

Z1
zi

dG nð Þ Yið Þ; if i 6¼ i0:

8>><
>>:

ð15Þ

[21] Equation (15) yields an exceedance probability
corresponding to the ordinate of the point on the envelope
line zi corresponding to the abscissa, ln(Ai), based on m
samples, each of length n, hence the probability Fi(zi) is a
random variable with a distribution and moments which
depend upon the distributional properties of both the
ordinate of the envelope line zi as well as the flood series
at site i. We consider two summary measures of Fi(zi), (1)
its expectation E[Fi(zi)] which we term the expected
exceedance probability of an envelope (EEPE) and (2)
Fi(E[zi]) which we term the exceedance probability of the
expected envelope (EPEE). The EEPE is defined by

E Fi zið Þ½ � ¼

1þ nð Þ�1; if i ¼ i0

R1
0

1þ nð Þ�1 R1
zi

G nð Þ Yið Þdz
" #

g mnð Þ zið Þdz; if i 6¼ i0

8>>><
>>>:

ð16Þ

where g(mn)(zi) =
dG mnð Þ zið Þ

dz
and Fi(zi) is given in equation (15).

Here g(mn) (zi) represents the pdf associated with the value
of the envelope curve at a particular site i. Since the envelope
is defined by flood series at m-independent sites, each of
length n, the record length, associated with the pdf of z, g(mn)
(zi), is equal to mn. Similarly, the EPEE is defined by

Fi E zi½ �ð Þ ¼

1þ nð Þ�1; if i ¼ i0

1þ nð Þ�1

Z1
mz

dG nð Þ Yið Þ; if i 6¼ i0

8>>>><
>>>>:

ð17Þ
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wheremz denotes the expectation of z. Since the case for i= i
0 is

somewhat trivial, we ignore that case in our remaining
analysis.
[22] The summary measures EPEE and EEPE represent

two different probabilistic statements regarding an envelope
curve. Previous efforts to identify the exceedance probabil-
ity of an envelope by Castellarin et al. [2005] have focused
on EPEE, whereas we are unaware of anyone who has
computed EEPE. If ones concern is with making a
probabilistic statement regarding the single envelope based
on historical observations, then EEPE is an appropriate
summary measure, whereas if ones concern is with making
a probabilistic statement regarding the expected envelope,
then EPEE is an appropriate summary measure.

5. Envelope Exceedance Probabilities: Gumbel
Case

[23] Consider the case in which flood series x arise from a
Gumbel distribution with cumulative distribution function

FX xð Þ ¼ exp � exp � x� xð Þ
a

� �� �
ð18Þ

defined for �1 
 x 
 1 with mean and variance of x
given by mx = x + ga and sx

2 = (pa)2/6, respectively, where
g = 0.5772. . . is the Euler constant. Gumbel [1958, p. 201]
showed that the expected record flood my from a Gumbel
series of length n is given by

my ¼ x þ a g þ ln nð Þð Þ ð19Þ

Since the envelope curve is based on mn iid Gumbel
observations, the expectation of the envelope curve is given by

mz ¼ x þ a g þ ln mnð Þð Þ ð20Þ

[24] Substitution of equation (18) into equation (4) yields
the cdf of the record flood at site i denoted as G(n)(Yi) so that
the exceedance probability of the envelope in equation (15)
becomes

Fi zið Þ ¼
1� G nð Þ zið Þ

nþ 1
¼

1� exp �n exp � zi�x
a

� �� �
nþ 1

; if i 6¼ i0

ð21Þ

The EPEE is obtained by substitution of zi = mz from
equation (20) to equation (21), which after subsequent
algebra, leads to

Fi mzð Þ ¼ EPEE ¼
1� exp � exp �gð Þ

m

� �
nþ 1

; if i 6¼ i0 ð22Þ

where Fi (mz) denotes the exceedance probability associated
with the expected envelope curve mz, at site i, when flows
are iid Gumbel. Castellarin et al. [2005, equations (19) and
(20)] used Monte Carlo simulation to show that the
exceedance probability associated with the expected
envelope (EPEE) for independent Gumbel floods can be
expressed through the plotting position of Gringorten
[1963]. Their result

FCastellarin
i mzð Þ ¼ 1� mn�l

mnþ1�2l ; where l ¼ 0:44; and therefore

ð23aÞ

FCastellarin
i mzð Þ ¼ 0:56

mnþ 0:12
ð23bÞ

is nearly identical to equation (22) as shown in Figure 2.
[25] The expected exceedance probability of the envelope

EEPE for the Gumbel case is obtained by the substitution of

Fi (zi) given by equation (21) and g(mn) (zi) =
dG mnð Þ zið Þ

dz
into

equation (16) which leads to

E Fi zið Þ½ � ¼ EEPE

¼
Z1
0

1� exp �n 	 exp � z�x
a

� �� �
nþ 1

dG mnð Þ zið Þ
dz

dz if i 6¼ i0

¼ 1

nþ 1

�
1� m

mþ 1

�
1� exp

�
� n mþ 1ð Þ

	 exp p

Cv

ffiffiffi
6

p � g
� ����

� 1

nþ 1ð Þ mþ 1ð Þ ð24Þ

where Cv is the coefficient of variation of the annual
maximum flood flows x. Figure 3 illustrates the ratio of the
exact and approximate expressions for EEPE given in equa-
tion (24) as a function of the product mn and Cv. Figure 3
illustrates that the approximation is generally excellent
whenever the product mn > 3, regardless of the value of Cv.
[26] Figure 4 provides a comparison of the values of

EPEE and EEPE for the Gumbel case and illustrates that the
values of EEPE are always greater than EPEE.

Figure 2. Comparison of EPEE estimated from this study
[equation (22)] and the work of Castellarin et al. [2005] for
Gumbel case.

Figure 3. Comparison of the exact and approximate
expressions for EEPE given in equation (24) as a function
of mn, the product of the number of sites m and record
length n, in years.
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[27] Figure 5 illustrates that, over the range of values of m
considered, the value of the ratio EEPE/EPEE increases as
m increases in a manner strongly indicating that the ratio
converges to a value equal to approximately 1.781.

5.1. Monte Carlo Experiments: Gumbel Case

[28] We conduct experiments to confirm that the analytic
expressions for EPEE and EEPE are correct for the iid
Gumbel case. Since Castellarin et al. [2005] used Monte
Carlo experiments to arrive at the estimate of EPEE in
equations (23a) and (23b) and since equations (22), (23a),
and (23b) are in such good agreement, it is unnecessary to
provide further confirmation of equation (22). Instead, we
evaluate the expression for EEPE in equation (24) using a
Monte Carlo experiment in which we generate m series of
floods, each of length n, from a region defined by the index
flood assumption

mðiÞ
x ¼ CAbþ1

i ð25Þ

where mx
(i) is the mean annual flow at site i, C is a constant,

and b = 1/2. For the index flood assumption, the coefficient
of variation is assumed constant in the region, and drainage
areas are assumed to be uniformly distributed over the range
(1,1000). The Monte Carlo experiment can be described as
follows:
[29] 1. Generate m series of Gumbel floods each of length

n, xi,t, i = 1,. . ., m; t = 1,. . ., n.
[30] 2. Estimate the record flood at each site yi ¼ Max

t
xi;t
� �

and estimate the envelope intercept a using a ¼ Max
i

lnð
yi=Aið Þ � b ln Aið ÞÞ.

[31] 3. Generate an additional M1 = 10,000 flows at each
of m sites and count the total number of flows which exceed
the envelope curve at each site denoted Counti and compute
the average exceedance probability FCount

i ¼
PM1

i¼1 Counti=
M1m. An average estimate of Fi

Count is obtained by repeat-
ing the above experiment M2 = 1,000 times and reporting
its average value �FCount

i ¼
PM2

i¼1 F
Count
i =M2. The estimate

�FCount

i is termed a Monte Carlo counting estimate and pro-
vides an estimate of the average exceedance probability
associated with many envelope curves (EEPE).
[32] 4. For each of the M1 = 10,000 flow sequences

generated in step 3, also estimate the probability of exceed-
ing the envelope at each site using Fi

extrap = Fx(zi), where
Fx(zi) is given in equation (18). Then report the average
exceedance probability as �Fextrap

i ¼
PM1

i¼1 Fi=M1 which is
termed a Monte Carlo extrapolation estimate, because it
involves extrapolation of the flood frequency curve.
[33] The results of the above Monte Carlo experiments

are reported in Figure 6. What we observe is excellent
agreement between the analytic exceedance probability
EEPE given in equation (24) and both of the Monte Carlo
counting and extrapolation estimates �Fextrap

i and �FCount

i .

5.2. Discussion: Gumbel Case

[34] The theoretical expression introduced in this study
for the exceedance probability of an envelope curve Fi (zi)
given by equation (15) differs considerably from the
approach taken in previous studies by Resendiz-Carrillo
and Lave [1987, 1990] and Shalaby [1994]. Previous
studies simply extrapolated the fitted frequency curve so
that their estimate of the exceedance probability of the
envelope was obtained as the at-site exceedance probability
given by �Fi zið Þ ¼ 1� Fi zið Þ, which for the Gumbel case
reduces to

�F i zið Þ ¼ 1� exp � exp � zi � x
a

� �� �
¼ 1� exp � exp �wið Þð Þ

ð26Þ

where wi = (zi � x)/a is termed a reduced variate. The
correct exceedance probability Fi(zi), is given in
equation (21) for the Gumbel case and is a function of n,
the record length in years, unlike equation (26). We compare
estimates of the two exceedance probabilities given by
equations (21) and (26) in Figure 7. These results clearly
show that, for the Gumbel case, the exceedance probabilities
were always overestimated in those previous studies, though

Figure 4. Comparison of EPEE and EEPE for the Gumbel
case.

Figure 5. The ratio EEPE/EPEE as a function of m for the
Gumbel case.

Figure 6. Comparison of Monte Carlo results with EEPE
given by equation (24).
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for very large values of the reduced variate w, equations (21)
and (26) appear to converge for n > 1.

6. Envelope Probabilities: GEV Case

[35] Consider the case in which flood series x arise from a
GEV distribution [Jenkinson, 1955] whose cumulative form
is

FX xð Þ ¼ exp � 1� k
x� xð Þ
a

� �1=k
" #

ð27Þ

where x + (a/l) 
 x 
 1 when k < 0 and �1 
 x 
 x +
(a/k) for k > 0, with mean and variance of x given by mx =
x + a[1 � G (1 + k)]/k and sx

2 = a2 {G(1 + (2/k)) � [G(1 +
(1/k))]2}, respectively. Note that, when k = 0, the GEV
distribution reduces to the Gumbel distribution. Stedinger
et al. [1993] and Hosking and Wallis [1997] provided
further information on the GEV distribution. Douglas and
Vogel [2006] showed that the expected record flood my,
from a GEV series of length n, is given by

my ¼ x þ a
k

1� G 1þ kð Þ
nk

� �
ð28Þ

Since the envelope curve is based on mn iid GEV obser-
vations, the expectation of the envelope curve is given by

mz ¼ x þ a
k

1� G 1þ kð Þ
mnð Þk

� �
ð29Þ

[36] Substitution of equation (27) into equation (4) yields
the cdf of the record flood at site i denoted G(n)(Yi) so that
the exceedance probability of the envelope in equation (15)
becomes

Fi zið Þ ¼
1� G nð Þ zið Þ

nþ 1
; if i 6¼ i0 ð30Þ

The EPEE is obtained by substitution of zi = mz from
equation (29) into equation (30), which, after subsequent
algebra, leads to

Fi mzð Þ ¼ EPEE ¼
1� exp � G 1þkð Þð Þ1=k

m

h i
nþ 1

; if i 6¼ i0 ð31Þ

We were unable to obtain a closed form solution for EEPE
for the GEV case.
[37] As expected, EPEE for the GEV case in equation

(31) reduces to EPEE for the Gumbel case [equation (22)]
as k approaches zero. Castellarin [2007, equations (5) and
(9)] reports the exceedance probability associated with the
expected envelope for independent GEV floods as

FC
i mzð Þ ¼ 1� mn� l

mnþ 1� 2l
ð32aÞ

where l ¼ exp gð Þ � 1

exp gð Þ � p 2k
12 exp gð Þ ¼ 0:439� 0:462k ð32bÞ

which holds for k values between �0.5 and 0.5 and returns
the plotting position of Gringorten [1963] when k = 0
(Gumbel distribution). EPEE in equations (32a) and (32b)
turns out to be nearly the same as the EPEE in equation
(31) as shown in Figure 8. In general, the agreement
between equations (31), (32a), and (32b) increases as both
m and n increase. This result was expected because
equations (32a) and (32b) is an asymptotic formula;
Castellarin [2007] recommended its use for samples larger
than 10 sample-years of data (i.e., mn > 10).

7. Exceedance Probability of PMF Envelope Line

[38] A PMF envelope line may be set above and parallel
to the FOR envelope line. In reference to the PMF envelope
line, the exceedance probability for the line can be obtained
in the manner outlined above for determining the exceed-
ance probability of the FOR envelope line. Similarly, the
exceedance probability can be obtained for any other line
placed parallel to and even higher than the FOR envelope
line. For a region where at each site values of the FORs and
the PMFs are given, the exceedance probability of a line
bounding the PMFs in relation to drainage area can be
determined on the basis of the exceedance probability of the
envelope line for the FORs. Assume that
[39] 1. The slope of the envelope line for the PMFs is the

same as the slope of the envelope line for the FORs;
[40] 2. The PMFs follow the same distribution as the

FORs; and
[41] 3. The PMF envelope curve overrides (is above) the

FOR envelope curve.

Figure 7. Comparison of exceedance probability of an
envelope given in equation (26) and used in previous
studies with the results derived here in equation (21) for the
Gumbel case and for different record lengths n in years.

Figure 8. Comparison of EPEE from equation (31) and
from the work of Castellarin [2007] for the GEV case for
different shape parameters k and record lengths n in years.
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[42] These three assumptions need to be examined.
Future research should determine whether empirical evi-
dence provides reasonable support for assumptions (1) and
(3). A more difficult question is whether or not assumption
(2) is reasonable and supportable. The distributions of the
floods themselves, F(X), and of the FORs, G(Y), are
interrelated [see equation (4)]. It remains to be seen to what
extent, if any, that the distribution of the PMFs is interrelated
to F(X) and G(Y).

8. Case Study

[43] In this section we apply the theoretical approach
introduced here for estimation of the average exceedance
probability associated with the flood envelopes illustrated
earlier in Figure 1. Previously, we showed that, for a
heterogeneous region (defined as a region in which the
matrix of the correlations between record values is approx-
imated by the identity matrix W = I), the exceedance
probability of the envelope at a particular site i, Fi zið Þ,
may be obtained from equation (15). The assumption W = I
is likely to be plausible if the sequence length n at each site
is sufficiently long [for example, see equation (6)] and/or
the region is extremely large so that orographic influences
are pronounced and climatic influences are heterogeneous,
leading to uncorrelated flood series. In addition, for each
site i, a flood series of adequate length ni is needed as well
as an estimate of the PMF. The database described below
attempts to satisfy, at least approximately, all of these
conditions. Future work may benefit by separating flood
series into snowmelt versus rainfall driven floods and
frontal versus convective storms, because correlations
among flood series are likely to be influenced by the
physical mechanisms which give rise to those floods. On the
one hand, one would like the envelope curves to be based
on as many site-years of flood data as possible such as the
recent data set derived from 14,815 U.S. Geological Survey
gauging stations across the U.S.A. [O’Connor and Costa,
2004]. On the other hand, to assure that the assumption W =
I is operationally viable, the distance between sites should
be large, leading to a smaller national data set, certainly
much smaller than the one developed by O’Connor and

Costa [2004]. To our knowledge, the largest national data
set of PMFs was compiled by the U.S. Nuclear Regulatory
Commission [USNRC, 1977] for 561 sites. We only
considered basins listed in that report for which it was
possible to identify a U.S. Geological Survey streamgauge
at or near the project for which a PMF was computed and
the U.S. Geological Survey gauging station had a record
length of at least 50 years. The resulting 226 sites
(see Figure 9 for location map) had flood sequences
ranging in length from n = 50 to 132 years, with a mean
sequence length of 72.2 years.
[44] A primary assumption underlying this case study is

that the time series of floods upon which the envelopes are
based are uncorrelated in space, so that W = I, at least
approximately for these 226 sites, where W is given in
equation (5). That assumption is tested in Figure 10a, which
plots the cross correlation ri,j between each pair of
sequences relative to the 226 sites and the distance between
the sites i and j and in Figure 10b, which plots the empirical
cumulative distribution of the values of ri,j. Figure 10b
shows that 90% of the intersite correlations are less than
0.37 and 95% of the intersite correlations are less than 0.49.
We conclude from Figure 10a that, for some of the sites
which are only a few hundred kilometers apart, the intersite

Figure 9. Location of 226 U.S. Geological Survey
gauging stations used to construct envelope curves.

Figure 10. (a) Plot of cross correlation between site i and
site j, ri,j versus the distance between sites i and j and (b) the
cumulative probability distribution of estimates of cross
correlation ri,j.
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correlations can be significant (i.e., above 0.5). However,
over 95% of the intersite correlations are less than 0.49, so
that the assumption W = I, for this data set is at least
approximated (keeping in mind that the elements of W will
always be less than the elements of R). Estimates of Fi(zi) in
equation (15) and its average value across the 226 sites are
obtained for both the FOR and PMF flood envelope curves
depicted in Figure 1. We consider the following most
common three-parameter distributions now in use for flood
frequency analysis: generalized extreme value (GEV),
lognormal (LN3), log Pearson type III (LP3), and the
generalized logistic (GL) distributions. L-moment ratio
diagrams [see Hosking and Wallis, 1997], constructed for
the 226 sites considered here, confirmed that the GEV, LN3,
and GL pdfs all provide plausible flood frequency models.
These results are consistent with the results of Vogel and
Wilson [1996] who examined L-moments diagram for flood
flows at 1455 sites in the U.S.A. Although the three-
parameter distributions considered here provide a good fit to
complete series of annual maximum floods, it remains an
open question whether they provide a good probabilistic
description of the extreme tail behavior of flood series as is
the focus here. At-site estimates of Fi(zi) are obtained at all
226 sites using L-moment estimates of distributional
parameters, and the expectation of Fi(zi) across sites
(EEPE) is obtained using the record-length weighted
estimator as follows:

�F ¼

Pm
i¼1

niFi zið Þ

Pm
i¼1

ni

ð33Þ

Table 1 summarizes estimates of EEPE given by �F in
equation (33) for the FOR and PMF national envelope
curves corresponding to each pdf. Figure 11 summarizes the
significant variability in individual at-site estimates of
log10[Fi(zi)] for both the FOR and PMF envelopes using
boxplots. The record-length-weighted average values of �F
reported in Table 1 and depicted in Figure 11 (using circles
with cross hairs) are remarkably similar for the four
different pdfs considered here. This result is quite different
from the results of Shalaby [1994], who found differences
of several orders of magnitude across distributions, in
average exceedance probabilities associated with PMF
observations for 46 watersheds in the mid-Atlantic region
of the U.S.A. The relatively consistent values of �F
corresponding to the PMF envelope, across distributions,
also differs considerably from the previous conclusions
drawn by Resendiz-Carrillo and Lave [1987, 1990]. We did
not consider the Gumbel model for the estimation of

EEPE ¼ �F in Table 1 and Figure 11 because previous
research [Vogel and Wilson, 1996] and L-moment diagrams
constructed for this 226-site data set both indicate that a
Gumbel model is not a plausible model for the entire U.S.A.
If floods were Gumbel then equation (24) implies that the
FOR envelope would have an average exceedance prob-

ability of EEPE � 1=
P226
i¼1

ni = 6.15 � 10�5 which is an order

of magnitude smaller than the values of EEPE reported in
Table 1 for more plausible distributions. The Gumbel
distribution has a fixed value of skewness, whereas flood
sequences yield a wide range of positively valued skews.

9. Conclusions

[45] Envelope curves representing the current bound on
flood experience have limited use because of our inability to
assign to them an exceedance probability. Castellarin et al.
[2005] and Castellarin [2007] offered an approach to the
estimation of the exceedance probability of the expected
regional envelope curve. This study introduced a general
expression for the exceedance probability of an envelope
curve Fi(zi) in equation (15) along with the following two
summary statistics: the expected exceedance probability of
the envelope (EEPE) in equation (16) and the exceedance
probability of the expected envelope (EPEE) in equation (17).
We document that, for the case of spatially independent
Gumbel and GEV flood series, the expression for EPEE in
equation (17) yields results nearly equal to the expressions
given by Castellarin et al. [2005], although their approach
involved a completely independent derivation.
[46] The expression for Fi(zi) in equation (15) is for a

heterogeneous region which we define as a region in which
the matrix of the correlations between record flood values
may be represented by the identity matrix W = I. In general,
the matrix of correlations between record flood values W
will have elements which are smaller than the correspond-
ing elements of the matrix of correlations among the
original flood series R. The assumption W = I is likely to be
plausible if the sequence length at each site is sufficiently
long and/or the region is extremely large so that orographic
influences are pronounced and climatic influences are hete-
rogeneous, leading to uncorrelated flood series. Castellarin

Table 1. Comparison of the Mean Values of FOR and PMF

Envelope Exceedance Probabilities �F Corresponding to the 226

Sites for Each of Four Distributions

Distribution
FOR PMF
�F �F

GEV 2.03 � 10�4 7.13 � 10�5

LN3 14.8 � 10�4 74.9 � 10�5

LP3 4.97 � 10�4 10.9 � 10�5

GL 2.59 � 10�4 9.10 � 10�5

Average 6.08 � 10�4 25.5 � 10�5

Figure 11. Boxplots of log10[Fi(zi)] corresponding to z
equal to the probable maximum flood (PMF) and flood of
record (FOR) for 226 sites in the U.S.A.
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et al. [2005] and Castellarin [2007] considered estimation
of EPEE for the more challenging case in which W 6¼ I.
Estimates of Fi(zi) in equation (15) may be obtained for any
distribution function via numerical integration. In addition,
this study derived analytic results for the moments ofFi(zi) for
the Gumbel and GEV cases. For the Gumbel case, theoretical
expressions are given for both EEPE [in equation (24)] and
EPEE [in equation (22)]. EPEE is also given for the GEV case,
but we were unable to obtain a closed form solution for EEPE
for the GEV case.
[47] One of the key benefits of our approach is that it is

easily extended to the estimation of the exceedance proba-
bility of an envelope curve on the basis of PMFs. A
comparison with previous studies indicated that estimates
of Fi(zi) given by equation (15) differ considerably from a
simple extrapolation of the flood frequency curve as
performed by Resendiz-Carrillo and Lave [1987, 1990],
Shalaby [1994], and others.
[48] A case study was implemented using historical flood

series from 226 sites located across the U.S.A. (Figure 9)
where estimates of the PMF were also available. Envelope
curves were developed for both the FOR and PMF obser-
vations (Figure 1). Estimates of EEPE were obtained
corresponding to four flood frequency distributions (GEV,
LN3, LP3, and GL), and the resulting FOR and PMF
envelopes had average exceedance probabilities of approx-
imately 6.08 � 10�4 and 2.55 � 10�4, respectively.
Although there was a great deal of variability associated
with individual estimates of envelope exceedance probabil-
ities Fi(zi), their record-length-weighted arithmetic average
values were relatively constant across the four distributions
considered. This result indicates that the approach intro-
duced here offers significant promise for the estimation of
exceedance probabilities associated with envelope curves
for heterogeneous regions.
[49] Promising future areas of research include the fol-

lowing: relaxing the assumption that flood series are iid;
developing expressions for EEPE and EPEE for other
distributions such as GEV, LN3, and LP3; investigating
the influence of the envelope curve slope parameter; and
developing a probabilistic approach for including single
observations of large floods at miscellaneous sites. Further
improvements in the determination of the envelope of flood
experience should result from the multivariate approach
introduced by Castellarin et al. [2007], which relates the
flood envelope to basin geomorphological and climatic
characteristics in addition to basin area. We also recommend
further evaluation of the shape of the flood envelope,
because its mathematical structure remains an open
question.
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