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[1] A regional envelope curve (REC) summarizes the current bound on our experience of
extreme floods in a region. Although RECs are available for many regions of the world,
their traditional deterministic interpretation limits the use of the curves for design
purposes, as magnitude, but not frequency of extreme flood events, can be quantified. A
probabilistic interpretation of a REC is introduced via an estimate of its exceedance
probability. The effect of intersite correlation on the exceedance probability is discussed.
Monte Carlo experiments are performed to assess the performance of the estimate of the
REC’s exceedance probability. Generalized curves are presented for assessing the
impact of regional intersite cross correlation on the likelihood of exceeding an observed
REC. We also discuss how future developments in the theory of records may improve our
ability to quantify the information content of a REC.
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Res., 41, W06018, doi:10.1029/2004WR003042.

1. Introduction

[2] A regional envelope curve (REC) represents the
bound on our current experience of extreme floods in a
region. The bound on our experience of extreme floods
gained up to the present through systematic observation of
flood discharges in a region is defined in terms of the largest
floods observed at all gauging stations in a region. Herein,
the largest flood is termed the record flood, and gauging
stations are referred to as sites. An example of a REC is
illustrated in Figure 1 which plots, for each site, the
normalized record flood, defined as the logarithm of
the ratio of the record flood to its basin area, versus
the logarithm of the basin area. The REC is the line
drawn on Figure 1 which provides an upper bound on
all the normalized record floods at present.
[3] The idea of bounding our flood experience dates back

to Jarvis [1925], who presented a REC based on record
floods at 888 sites in the conterminous United States.
Roughly 50 years later, Crippen and Bue [1977] and
Crippen [1982] updated the study by Jarvis [1925] by
creating 17 different RECs, each for a different hydrologic
region within the United States, based on a total of 883 sites.
Matalas [1997] and Vogel et al. [2001] document that the
RECs identified by Crippen and Bue [1977] and Crippen
[1982] still bound our flood experience gained from 1977–
1994 at 740 of the 883 sites compiled by Crippen and Bue.
Enzel et al. [1993] examine the REC bounding the historical

flood experience for the Colorado river basin and show that
the same REC also bounds the paleoflood discharge esti-
mates available for the basin.
[4] The development of RECs is not confined to the

United States; they have been developed for Italy [Marchetti,
1955], western Greece [Mimikou, 1984], Japan [Kadoya,
1992], and elsewhere. RECs have been used to compare
record flood experience in the United States, China, and the
world by Costa [1987] and, more recently, by Herschy
[2002].
[5] The REC provides an effective summary of our

regional flood experience. The pioneering work of Hazen
[1914], who formalized flood frequency analysis, a formal-
ism still in use, and who was among the first to suggest a
method for improving information at a site through the
transfer of information from other sites (i.e., substitution of
space for time), has tempered the use of a flood magnitude
as a design flood without an accompanying probability
statement. Our objective is to provide a probabilistic inter-
pretation of the REC. In the almost 80 years since Jarvis
[1925] introduced the envelope curve, a probabilistic inter-
pretation of a REC has never been seriously addressed.
RECs have continued to be constructed and viewed mainly
as summary accounts of record floods, rather than as
meaningful tools for the design of measures to protect
against ‘‘catastrophic’’ floods.
[6] It has been suggested that there is no obvious way to

assign a probabilistic statement to a REC [see, e.g., Crippen
and Bue, 1977; Crippen, 1982; Vogel et al., 2001]. Water
Science and Technology Board, Commission onGeosciences,
Environment and Resources [1999] argued that the
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determination of the exceedance probability of a REC is
difficult due to the impact of intersite correlation. As a
consequence, RECs are assumed to have little utility beyond
the suggestion of the U.S. Interagency Advisory Committee
on Water Data [1986] that they are useful for ‘‘displaying
and summarizing data on the actual occurrence of extreme
floods.’’ A probabilistic interpretation of the REC offers
opportunities for several engineering applications which
seek to exploit regional flood information to augment the
effective record length associated with design flood esti-
mates. A potential advantage of assigning a probabilistic
statement to a REC is that this approach avoids the need to
extrapolate an assumed at-site flood frequency distribution
when estimating a design event.
[7] Our primary goals are to provide a probabilistic

interpretation of the REC, to approximate its exceedance
probability, and to quantify the effect of intersite correlation
on estimates of the exceedance probability. Our secondary
goal is to place the problem of estimating the exceedance
probability of a REC within the context of the theory of
records [Arnold et al., 1998] in the hope that future develop-
ments in that theory will be extended to this problem.

2. A Probabilistic Interpretation of an Envelope
Curve

[8] It is common practice to construct a REC, as in
Figure 1, which plots the logarithm of the ratio of the record
flood to the drainage area, ln(Q/A) versus ln(A). Jarvis
[1925] suggested modeling the REC for the United States
using,

ln
Q

A

� �
¼ aþ b ln Að Þ: ð1Þ

with a = 9.37 (or a = 4.07 if log is used in (1) instead of ln)
and b = �0.50, where Q and A are in cubic feet per second

and square miles, respectively. Together with Jarvis [1925],
other empirical studies showed that b is negative and greater
than �2/3 for various portions of the world [Linsley et al.,
1949; Marchetti, 1955; Crippen and Bue, 1977; Matalas,
1997; Herschy, 2002].
[9] Assuming a fixed value of b, the intercept a in (1)

may be estimated by forcing the REC to bound all record
floods to the present, say up to the year n. Let Xj

i denote the
annual maximum flood in year i = 1, 2, . . .n at site j = 1, 2,
. . .M, where M is the number of sites in the region. Let Xj

(i)

denote the flood flow of rank (i) at site j, where ranking is
from smallest (1) to largest (n). The REC’s intercept up to
the year n can then be expressed as

a nð Þ ¼ max
j¼1;...;M

ln
X

nð Þ
j

Aj

 !
� b ln Aj

� �( )
ð2Þ

where Aj is the area of site j = 1, 2, . . .M.

2.1. Theoretical Assumptions

[10] We propose a probabilistic interpretation of a REC
based on two fundamental assumptions. The implications of
these simplifying assumptions are discussed in the discus-
sion section (i.e., section 4.1), together with other possible
limitations of our probabilistic interpretation. The two
assumptions read as follows.
[11] 1. The study region is homogeneous in the sense of

the index flood hypothesis [see, e.g., Dalrymple, 1960] and
therefore the probability distribution of standardized annual
maximum peak flows is the same for all sites in the region.
Here, region has its broadest possible meaning, including
the geographical sense (i.e., traditional index flood hypoth-
esis), and also a pooling group of sites, which are climat-
ically and hydrologically similar without being necessarily
geographically contiguous [e.g., Burn, 1990; Castellarin et
al., 2001]. The standardized annual maximum peak flow, X0,
is defined for a given site as the annual maximum peak
flow, X, divided by a site-dependent scale factor, mX (i.e., the
index flood), assumed in this study to be equal to the at-site
mean of X. Under this assumption, the flood quantile with
exceedance probability p, xp, is

xp ¼ mX x
0
p ð3Þ

where x0p is the regional dimensionless flood quantile with
exceedance probability p.
[12] 2. The relationship between the index flood mX and

basin area A is of the form,

mX ¼ CAbþ1 ð4Þ

where C is a constant and b is the same as in (1) and (2).
[13] Combining (3) and (4) leads to a relation between

ln(xp/A) and ln(A) that is analogous to (1),

ln
xp

A

	 

¼ ln

mX x
0
p

A

� �
¼ ln Cx0p

	 

þ b ln Að Þ: ð5Þ

The formal analogy between (1) and (5) originates from our
simplifying assumptions and implies that, if the index flow
scales with the drainage area, then the slope of the REC for

Figure 1. Flood experience accrued prior to 1925, Q in
feet3/s (1 foot = 0.3048 m) and A in miles2 (1 mile =
1.609 km) [Jarvis, 1925]: elements of experience (pluses)
and element of experience (circle) defining the intercept of
the envelope curve (shaded line).
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a region can be identified from this scaling relationship.
More importantly, we show below that the assumptions also
imply that (1) a probabilistic statement can be associated
with the intercept a(n) of (1), which is determined from the
largest standardized annual maximum peak flow observed
in the region (here standardization is achieved via the
flood index method using (4) to express the index flood),
and (2) the exceedance probability (p value) of the REC is
equal to the p value of the standardized maximum flood.
Implications 1 and 2 can be shown by combining (2) and
(4) as follows,

a nð Þ ¼ max
j¼1;...;M

ln
CAbþ1

j X
0 nð Þ
j

Aj

 !
� b ln Aj

� �( )

¼ ln Cð Þ þ ln max
j¼1;...;M

X
0 nð Þ
j

n o� �
; ð6Þ

where Xj
0(n) is equal to Xj

(n)/mX,j, with mX,j index flood of
site j = 1, 2, . . .M, and max

j¼1;...;M
{Xj

0(n)} is the standardized

maximum flood (hereafter referred to as regional record
flood, Y0). Under these assumptions, the original problem of
estimating the p value of the REC reduces to estimating the
p value of the regional record flood, the maximum of n�M
standardized annual maximum peak flows. If the regional
data do not exhibit either spatial or temporal correlation, an
unbiased estimate of the exceedance probability p of the
regional record flood can be computed using the Weibull
plotting position by setting the overall sample length equal
to the total number of sample years of data (n�M) in the
region [Stedinger et al., 1993]. Although annual maximum
flood series are often assumed to be serially uncorrelated,
intersite correlation among flood flows observed at different
sites in the same year should not be ignored [e.g., Matalas
and Langbein, 1962; Stedinger, 1983; Hosking and Wallis,
1988; Vogel et al., 2001]. Below we consider the impact of
cross correlation on the REC using the concept of equivalent
(or effective) sample years of independent data.

2.2. Approximation to Variance of Regional Record
Flood for a Correlated Region

[14] It is well known that intersite correlation leads to
increases in the variance of flood statistics [see, e.g.,
Hosking and Wallis, 1988]. For the case of M normally
distributed and spatially correlated flood sequences with
constant mean and variance, each with record length n, Yule
[1945] and Matalas and Langbein [1962, equation (16)]
document that the variance of a regional mean is inflated by
a factor which depends upon the average correlation among
the sites r,

Var x rj½ 
 ¼ s2X
Mn

1þ r M � 1ð Þ½ 
; ð7Þ

where x indicates the regional sample mean and sX
2 the

population variance of the M sequences, each of length n; if
r = 0 the variance of x reduces to sX

2/(M n). Matalas and
Langbein [1962] defined the relative information content, I,
of the mean of M spatially correlated flood series, each of
length n, as the ratio,

I ¼ Var x½ 

Var x rj½ 
 ¼ 1þ r M � 1ð Þ½ 
�1 ð8Þ

The information content of the mean, I, in (8), is measured
relative to the variance of the mean associated with spatially
and serially uncorrelated flows. Hence I = 1 when r = 0 and
I < 1 when r > 0. Values of I < 1 reflect the fact that intersite
correlation reduces the overall information content of the
regional sample. The effective number of regional samples
associated with estimation of the regional mean Mx is then

M�x ¼ M I ð9Þ

Similarly, Stedinger [1983, equation (35)] derived the
variance of an estimate of the regional variance of M
cross-correlated sequences of length n as

Var s2X r2
h i

¼ 2s4X
M n� 1ð Þ 1þ r2 M � 1ð Þ

h i
¼ Var s2X

h i
1þ r2 M � 1ð Þ
h i

; ð10Þ

where s2X stands for the estimator of the regional variance
that, for samples of different length, is a weighted average
in which each sample variance is weighted proportionally to
the record length of the corresponding site, and r2 is the
average squared correlation of concurrent flows. Analogous
to the effective number of regional samples (sites) for
estimation of the regional mean given in (9), the effective
number of regional samples (sites) for the estimation of the
regional variance, Ms2x

, can be computed as follows:

Ms2x
¼ M 1þ r2 M � 1ð Þ

� ��1
: ð11Þ

In general, (11) yields a number of effective sites that is
higher than the result produced by (9).
[15] Our study focuses on the estimation of the exceed-

ance probability, p, of the regional record flood, which
under the assumptions adopted in this study, coincides with
the p value of the REC bounding our regional experience of
extreme floods. This problem is equivalent to determining
the number of effective sites associated with estimation of
the regional record flood which in turn defines the REC. We
show below that neither (9) nor (11) are suitable for this
problem, because they both markedly underestimate the
number of effective sites. Consequently, we consider a
theoretical first-order approximation to guide us to an
empirical relation which can approximate the regional
information content associated with a REC.
[16] If we assume that a Gumbel distribution [e.g.,

Stedinger et al., 1993], with population mean mX0 and
variance sX0

2 , is a suitable regional parent distribution for
the M spatially uncorrelated sequences of length n of
standardized annual maximum peak flows, then the regional
dimensionless flood quantile associated with a given value
of the exceedance probability p, reads,

x0p ¼ mX 0 þ Kp

ffiffiffiffiffiffiffi
s2X 0

q
;with Kp ¼ �

ffiffiffi
6

p

p
gþ ln � ln 1� p½ 
½ 
½ 
 ð12Þ

where Kp is termed the frequency factor and depends on p,
whereas g = 0.5772 is Euler’s number [see, e.g., Stedinger
et al., 1993]. Under the same assumptions, it can be shown
that the regional record flood, Y0 = max

j¼1;...;M
{X0

j
(n)}, also

follows a Gumbel distribution [Ang and Tang, 1990], with
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population variance sX0
2 . The quantile y0p associated with a

given exceedance probability p is

y0p ¼ mX 0 þ KM �n;p

ffiffiffiffiffiffiffi
s2X 0

q
; ð13aÞ

with

KM �n;p ¼
ffiffiffi
6

p
ln M � nð Þ � ln � ln 1� pð Þð Þ � gð Þp�1; ð13bÞ

where frequency factor KM�n,p depends on M�n and p. By
substituting the sample moments, x0 and sx0

2, for their
corresponding population moments, mX0 and sX0

2 in (13), we
obtain a sample estimate of the regional record flood
quantile, ŷ0p. Employing a first-order Taylor series approx-
imation to the variance of ŷ0p, we obtain

Var ŷ0p

h i
�

@ŷ0p
@x0

� �2

Var x0½ 
 þ
@ŷ0p
@s2x0

� �2

Var s2x0
� �

þ 2
@ŷ0p
@x0

� �
@ŷ0p
@s2x0

� �
Cov x0; s2x0

� �
þ

@ŷ0p
@p

� �2

Var p½ 
 ð14Þ

where p is a random variable across flood samples and we
assume that Cov[x0, p] = Cov[sx0

2, p] = 0.
[17] The presence of intersite correlation inflates Var[x0]

and Var[sx0
2] in a way which is analogous to what was

reported in (7) and (10), and may produce effects on Cov[x0,
sx0
2] and Var[p] as well. For the case of M spatially and
temporally independent flood series, each with record
length n, expanding (14) about the values x0 = mX0, sx0

2 =
sX0

2 and p = po, that is a given value of exceedance
probability, expressing Var[x0], Var[sx0

2] and Cov[x0, sx0
2] as

functions of sX0 and the third and fourth central moments
through the relationships proposed by Kendall and Stuart
[1963], and noting that the variable p is uniformly distrib-
uted with Var[p] = 1/12, leads to

Var ŷ0po

h i
¼ s2X 0

Mn
1þ 1:1K2

M �n;po

h
þ 1:14KM �n;po þQ M ; n; poð Þ

i
ð15Þ

where KM�n,po is obtained by substituting po for p in (13b)
and

Q M ; n; poð Þ ¼ Mn

2 p 1� poð Þ ln 1� poð Þð Þ2
: ð16Þ

[18] The first three terms within square brackets in (15)
correspond in this order to Var[x0], Var[sx0

2] and Cov[x0,
sx0
2], whereas the function Q corresponds to Var[p]. The
presence of the M�n sample years of data in the numer-
ator of Q suggests that this term, may dominate Var[ŷ0po].
Figure 2 reports the ratio of Q(M, n, po) to the sum of
the first three terms of (15) as a function of the sample
years of data, M�n. The solid line in Figure 2 depicts the
minimum value of this ratio as a function of M�n,
whereas the dashed and the dot-dashed lines report the
values of the ratio for po equal to 0.25 and 0.75,
respectively. Figure 2 shows that Q dominates the sum
of the first three terms of (15) because the minimum
value of the ratio is larger than 2 for M�n = 100 and
increases rapidly as M�n increases.
[19] Given the considerable influence of Var[p] in (15)

our attention focuses on the impact of intersite correlation
on this term using Monte Carlo experiments. The experi-
ments used the simulation algorithm described in Appendix
A to generate 20,000 samples of M = 2, 5, 10, 20, 50, 100,
200 and 500 random sequences of multivariate normal
deviates with zero mean and unit variance, each with length
n = 2, 5 10, 20, 50, 100 and 200, with mean correlation
coefficient among the sequences r = 0.0, 0.2, 0.4, 0.6 and
0.8. We refer throughout the text to a mean coefficient r for
simplicity, even though the Monte Carlo experiments utilize
a realistic spread of the synthetic correlation coefficients
between sequences (see Appendix A, step 1, and Table 1).
For each replicate s = 1, 2, . . .20,000, the true exceedance
probability of the largest among the M largest deviates of all
synthetic series, zs

max, was computed using,

pM ;s ¼ 1� F zmax
s

� �n ð17Þ

where F(�) stands for the normal cumulative distribution
function (cdf) with zero mean, and F(�)n is the cdf of the
maximum of a series of n independent variates with cdf

Figure 2. Equation (15): ratio of Q to the sum of the first
three terms within square brackets for various sample years
of data, M�n, and exceedance probability po.

Table 1. Average Values of Correlation Coefficients to the Power

of 1, 2, 3, and 4 for the Generated M-by-M Correlation Matrix P,

With M = 2, 20, and 200a

M r r2 r3 r4

2 0.200 0.040 0.008 0.002
2 0.400 0.160 0.064 0.026
2 0.600 0.360 0.216 0.130
2 0.800 0.640 0.512 0.410
20 0.200 0.165 0.134 0.122
20 0.400 0.271 0.194 0.156
20 0.600 0.445 0.334 0.267
20 0.800 0.680 0.573 0.490
200 0.200 0.083 0.047 0.032
200 0.400 0.204 0.121 0.081
200 0.600 0.389 0.266 0.192
200 0.800 0.651 0.535 0.444

aSee Appendix A, step 1.
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F(�). The variance of the 20,000 pM,s values obtained for
each set [M, n, r] was then calculated. For the spatially
uncorrelated case (i.e., r = 0), the values of Var[pM,s]
obtained from the Monte Carlo experiments were practically
coincident (i.e., differences always smaller than 3.5%) with
the theoretical result [e.g., Loucks et al., 1981, equation
(3.55)],

Var pM½ 
 ¼ M

M þ 2ð Þ M þ 1ð Þ2
; ð18Þ

which is simply the variance of an estimate of the
exceedance probability associated with the largest of M
observations.
[20] The Var[pM,s] values obtained from the Monte

Carlo simulations increase as r increases and as n
decreases. The observed increase of Var[pM,s] with r
was expected, as intersite correlation inflates the variance
of pM reducing the overall information content; as the
sample length n increases, though, the effect of r on
Var[pM] diminishes.
[21] An estimate of the number of effective sequences

(equivalently, sites) associated with an estimate of the
exceedance probability of the regional record flood is
denoted as MEC because it represents the effective number
of sites associated with the REC. MEC was computed by
finding the M value that satisfies (18) for each value of
Var[pM,s] resulting from the Monte Carlo experiment for a
particular set of [M, n, r]. Among several relations tested,
the expression

M̂EC ¼ M

1þ rb M � 1ð Þ
; with b :¼ 1:4

nMð Þ0:176

1� rð Þ0:376
ð19Þ

produces satisfactory estimates of the MEC values obtained
through Monte Carlo simulation. The empirical model (19)
is characterized by an overall Nash and Sutcliffe [1970]
efficiency measure E = 0.996, with E 2 [�1, 1] and E = 1
for the perfect fit. Figure 3 compares the MEC values
obtained from the Monte Carlo experiments versus the
corresponding values estimated from (19). It is important to

stress that the bar over rb and 1� rð Þ0:376 in (19) implies
that these terms are average values of the corresponding

functions of the correlation coefficients (i.e., rb is the
average of the M(M � 1)/2 values of rk,j

b , where rk,j is the
correlation coefficient between sites k and j, with 1 � k <
j � M). This feature of the empirical model takes into
account the actual distribution of correlation coefficients
for a particular study region and makes the empirical
model itself suitable for different spatial structures of the
cross-correlation model.
[22] Even though IEC was developed empirically, (1) it

reproduces the dependence of IEC on the overall sample
years of data, n�M, through the exponent b in (19) and (2) it
amplifies this dependence for a higher degree of intersite
correlation through the term 1

1�rð Þ0:376
in (19). Most impor-

tantly, IEC tends to the theoretical values 1 and M�1, when r
tends to 0 and 1, respectively.

2.3. Exceedance Probability of the Envelope Curve

[23] As in the work of Matalas and Langbein [1962],
spatially and serially uncorrelated flow sequences are
adopted as the reference basis of information content.
For uncorrelated sequences, an approximate estimate of
the variance of the regional record flood is given by (15).
It was shown that (15) is dominated by the term Q. In terms
of the number of effective sites, the empirical relation in (19)
expresses the reduction of the regional information content
due to cross correlation, ignoring all terms except for those
associated with Var[p]. Given the significant role played by
Q on (15), (19) is a better approximation than either (9) or
(11) of the number of effective sites in a region with cross-
correlated floods. Under the assumptions adopted here, we
recommend the use of (19) for estimation of the exceedance
probability, p̂EC, of the REC.
[24] Through a series of Monte Carlo experiments (see

Appendix A), the accuracy of the estimator

p̂EC ¼ 0:56

M̂EC nþ 0:12
; ð20Þ

is assessed. This estimator uses the Gringorten [1963]
plotting position and sets the regional sample years of
data to M̂EC � n, with M̂EC estimated using (19); the
Gringorten plotting position provides unbiased quantiles
for the Gumbel distribution [see, e.g., Stedinger et al.,
1993].

Figure 3. Values of the number of effective sites: values obtained from the Monte Carlo experiments
versus values estimated with the empirical equation (19).
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[25] Figure 4 illustrates the progression of regional
record flood experience using RECs for two different
cross-correlated synthetic regions generated through the
simulation algorithm, each region having M = 50 sites and
each site having n = 200 years of data. Figure 4 (left)
reports the record flood experiences (pluses) and the largest
regional flood (circle), which defines the intercept of the
REC (shaded line). Figure 4 (right) shows the progression
in time of the REC from n = 1 to 200 years (shaded lines),
numbering the gains in regional flood experience. Figure 4
also reports the traces of the theoretical RECs with a given
exceedance probability p (for spatially independent region,
dashed lines), obtained as the envelope of the flood
quantiles with exceedance probability p. The range of r =
0.1–0.6 in Figure 4 is typical of flood flows [e.g., Benson,
1965; Stedinger, 1983].
[26] The average intercept a(i) resulting from the 20,000

Monte Carlo simulations for time step i (see Appendix A,
step 4) yields the expected REC for a region of given
characteristics (i.e., the REC that on average is expected to
bound the flood experience for a group of M sites with
record length i, and mean intersite correlation r). An

estimate of the p value associated with the expected REC,
or equivalently a(i), can be obtained from (20), and then
converted into the corresponding Gumbel reduced variate
�ln(�ln(1 � p̂EC)). The Gumbel reduced variate of the
average intercept a(i) can also be computed as,

� ln � ln 1� p a ið Þ
	 
	 
	 


¼ gþ
p exp a ið Þ� �

� mX 0
� �

ffiffiffiffiffiffiffiffiffi
6s2X 0

p : ð21Þ

Figure 5 uses solid lines to compare the Gumbel reduced
variates of the average intercept a(i) estimated using (20)
and (21), that is, using the proposed empirical model and
Monte Carlo experiments, respectively. We express p in
terms of the Gumbel reduced variate to improve the
readability of Figure 5 for high values of p. Overall, the
agreement is good though it is somewhat better for small
degrees of cross correlation, and tends to deteriorate as cross
correlation increases. Still, (20) produces rather accurate
estimates of the exceedance probability of a REC, and it
captures its overall behavior over a broad range of M and r
values. All scenarios that do not appear in Figure 5 (i.e.,

Figure 4. Synthetic index flood regions and dynamics of the envelope: M = 50 annual flood series of
length n = 100 years and mean correlation coefficients, r = 0.2 and r = 0.6.
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M = 5, 10, 50, 100 and 500 for r = 0.2, 0.4 and 0.6, and
all M values for r = 0.8) yielded similar agreement.

3. A Different Perspective: Envelope Curve and
Records

[27] A record event is defined as an event whose magni-
tude either exceeds or is exceeded by all previously ob-
served events. The REC provides an upper bound on
record-breaking flood experiences to date [Vogel et al.,
2001] and therefore is closely connected with the theory
of records, which, as it is shown in this section, may offer a
promising framework for representing the probabilistic
behavior of RECs.
[28] Despite the rich literature on the mathematics of

record events, from the pioneering work of Chandler
[1952] to a recent textbook on the subject [Arnold et al.,
1998], there are only a few water resources investigations
which have employed the theory of records. Vogel et al.
[2001] used the theory of records for identifying nonstatio-
narities in flood series, taking into account the presence of
spatial correlation among the series. Nagaraja et al. [2002]
analyzed the statistical properties of univariate and bivariate
series of flood records and used the results to predict the
number of record-breaking annual floods at two sites along
the Missouri river during the next 50 years. N. C. Matalas
and J. R. Olsen (Correlation between records from sequen-
ces derived from bivariate normal-Markov Processes,
submitted to Water Resources Research, 2003) use Monte
Carlo experiments to assess the relation between the corre-
lation of record events and the correlation of the sequences
from which the record events attain, using bivariate normal
and bivariate lognormal distributions for representing the
population of annual floods.
[29] The main goals of this section are (1) to analyze the

gains in regional flood experience summarized by the REC
in the context of record breaking events and (2) to use
Monte Carlo simulations to evaluate the behavior of sequen-
ces of regional record floods for cross-correlated regions,
and (3) to illustrate an alternative approach to identify the
regional information content associated with a REC.

[30] Assume that (1) annual floods are independent and
identically distributed (iid) random variables, (2) their
probability distribution is a continuous distribution, which
yields no unbreakable record floods, whether or not the
distribution is bounded above, and (3) counting the first
observation in a sequence as a (trivial) record, then the
number of records in an annual flood series of length n,
termed R, is a random variable with mean, mR, and variance,
sR
2, defined as [Glick, 1978; Vogel et al., 2001],

mR ¼
Xn
i¼1

1

i
; and s2R ¼

Xn
i¼1

1

i
�
Xn
i¼1

1

i2
: ð22Þ

It is interesting to note that mR and sR
2, as well as the

probability distribution of R, are independent of the
distribution of floods.
[31] The regional gain in flood experience that causes

an upward shift in the REC involves all M sites simul-
taneously ‘‘competing’’ to break the upper bound that
forms the REC as was illustrated earlier in Figure 4. In a
region with M sites a new record event (hereafter referred
to as envelope record) occurs when at least one site
experiences a record flood event and the magnitude of
that flood also exceeds the upper bound identified by the
current REC. When a new envelope record event is
experienced, the REC is shifted upward to bound the
new gain in regional flood experience.
[32] Under the hypotheses adopted here, the temporal

dynamics of the REC coincides with the temporal dynamics
of the record breaking process of the series of maxima of the
M standardized annual floods, which is a univariate iid
sequence even in the presence of intersite correlation.
[33] Figure 6 compares the theoretical average number of

records mR, for a univariate iid sequence, based on (22), with
the average number of envelope records obtained from our
Monte Carlo experiments. Figure 6 considers regions with
M = 2 to 200 sites each with sample lengths n = 1 to
200 years both with and without cross correlation. All curves
reported in Figure 6 are nearly coincident, and analogous
outcomes were obtained for the variance of the number of

Figure 5. Nonexceedance probability, expressed in terms of Gumbel reduced variate, of the expected
REC for a cross-correlated region with 2, 20, and 200 sites as the sample length increases from 1 to
200 years: estimates resulting from (21) (Monte Carlo) and obtained through (20) by evaluating MEC

with (19) (empirical model) or (24) (theory of records).
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record events, showing the equivalence between the tempo-
ral dynamics of the record series for a realization of an iid
sequence of random variables and of a REC. Unfortunately,
these results do not assist us in understanding how cross
correlation affects the exceedance probability of the
expected REC as discussed below.

[34] In the analysis of theM series of flood flows, the first
set of M observations is defined to be a (trivial) envelope
record event, experienced concurrently at all M sites in the
region. In order to have an envelope record in the year i with
i = 2, 3. . .n, the following condition must be met,

M* ¼
XM
j¼1

I ln
X i
j

Aj

 !
> a i�1ð Þ þ b ln Aj

� � !
� 1

with I Sð Þ ¼
1 if S is true

0 if S is false

 ; ð23Þ

in which M* is the number of sites simultaneously
experiencing an envelope record and Xj

i represents the
annual flood observed at time i = 1, 2, . . .n for site j = 1, 2,
. . .M. If an envelope record is experienced, the new upper
bound (i.e., the intercept a(i)) is created for the entire region
by referring to the site associated with the largest gain in
flood experience.
[35] In year 1, M* = M by definition (trivial envelope

record). If an envelope record is experienced at a later year,
i = 2, 3 . . .n, then 1 � M* � M. In general, for a cross-
correlated region experiencing an envelope record we
expect to have, on average, higher M* values than for an
uncorrelated region. Figure 7 illustrates the estimates of
E[M*] for the first six gains in flood experience (i.e., REC
updates) obtained from the Monte Carlo experiments for a
range of cross correlations and regions. The first gain
reported in Figure 7 is the trivial envelope record in year
1, and the sixth gain is the last reported in Figure 7 because
the average number of records mR is approximately 6 for
sequences of length equal to the maximum length consid-
ered in the simulation experiments (i.e., mR = 5.88 for n =
200). Figure 7 illustrates for a range of M values and
degrees of cross correlation that aside from the trivial initial
record which is experienced by all M sites, the expectation
of M* assumes values close to one, starting from the second
gain in flood experience if r = 0 and tends to be higher for
higher r values. If the M sequences are perfectly correlated
with one another (r = 1), then M* = M for every gain.
[36] For a region with M concurrent sequences of annual

flood flows of length n and mean cross correlation equal to
r, one may argue that there exists a relationship between the

Figure 6. Values of mR for a univariate iid sequence of
record-breaking events and average number of envelope
records obtained through Monte Carlo experiments for
different cross-correlated regions.

Figure 7. Average number of sites experiencing envelope records as a function of the number of gains
in flood experience: results of the Monte Carlo experiments and estimates computed by (24).
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expectation of M* and the number of effective sites MEC for
which an approximate formula is provided by (19) (e.g., if
the cross correlation increases then MEC decreases and the
expectation of M* increases; if r = 1, then MEC = 1 and
M* = M). Moreover, one may formulate such a relation
assuming the following simple proportion holds

E M*jr ¼ 0½ 

E M*jr½ 
 ¼ IEC ¼ MEC

M
: ð24Þ

The validity of (24) was evaluated in two ways. First,
estimates of E[M*jr] were computed by substituting into
(24) the values of E[M*jr = 0] obtained from the Monte
Carlo experiments and estimates of MEC obtained from
(19) for different degrees of cross correlation and M values
and for n values equal to 4, 11, 30 and 83; according to (23),
the four n values, in this order, are the sample lengths
associated with mR values that are as close to 2, 3, 4 and 5 as
possible. Figure 7 reports estimates of E[M*jr] obtained for
different M and r values and the n values indicated before
(solid circles), showing fairly good agreement with the
E[M*jr] values resulting from the simulation experiments.
[37] Also, for n values equal to 4, 11, 30, and 83, MEC

was expressed by (24) in terms of E[M*jr], E[M*jr = 0] and
M, and estimates ofMEC were computed by using the values
of M* obtained from the simulation experiments. Such MEC

values were then used in (20) to estimate the nonexceedance
probability of the average intercept of the RECs obtained
from the series of Monte Carlo experiments, 1 � p̂EC.
Figure 5 also reports these estimates (theory of records) in
terms of Gumbel reduced variate, using solid circles for
various M and r values and n = 4, 11, 30, and 83. Again, the
agreement shown in Figure 5 is rather good.
[38] The above experiments illustrate that the number of

sites in a region experiencing simultaneous envelope record
breaking events, M*, depends significantly upon the degree
of cross correlation among the flood sequences. It was also
shown that M* can be quite useful for describing the
regional information content associated with a REC and
hence could be useful for estimating the exceedance (or
nonexceedance) probability of a REC (see Figure 5). It is
our hope that future developments in the theory of record-
breaking processes will focus on the relationship between
M* and M, n and r, which could replace our need to resort
to (empirical) Monte Carlo experiments for describing the
probabilistic behavior of a REC.

4. Discussion and Recommendations

4.1. Applicability of the Key Assumptions

[39] Our goal was to formulate a probabilistic interpreta-
tion of the REC in order to develop an estimator of the
exceedance probability associated with a REC. For this
purpose, it was necessary to adopt a number of simplifying
assumptions that necessarily affect the applicability of our
results. The fundamental assumptions were (1) flood sequen-
ces are iid, (2) flood sequences are of equal and concurrent
length, (3) annual maximum floods follow a Gumbel
distribution, (4) the procedure proposed by Hosking and
Wallis [1988] can be used to model the covariance among
flood series, (5) the index flood hypothesis applies to
the study region, and (6) the index flood is determined

by drainage area alone. These simplifying assumptions
enabled the development of a probabilistic interpretation
of the envelope curve. Relaxing any or all of the assumptions
would in no way negate the existence of a probability
statement. Relaxation would simply change the form of
statement, but the statement would still be a probabilistic one.
[40] Assumption 1 is a classical assumption in regional

flood frequency analysis [e.g., Stedinger et al., 1993].
Although assumption 2 is adopted in several studies dealing
with regional flood frequency analysis and intersite corre-
lation [e.g., Matalas and Langbein, 1962; Stedinger, 1983],
future analyses should incorporate a more realistic temporal
distribution of data within the region. Assumption 3 is also a
common hypothesis in flood frequency analysis [see, e.g.,
Morrison and Smith, 2002] and enabled the empirical
identification of (19) (see section 2.2). Although some
record properties of floods are independent of the distribu-
tional assumption [e.g., Arnold et al., 1998], future research
should investigate whether the parent distribution of the
standardized annual floods, F0

X, affects the applicability of
our results. Regarding assumption 4, the empirical model
(19), for estimating the effective number of independent sites
MEC implicitly considers the actual distribution of correla-
tion coefficients among series by referring to the average
value of functions of the correlation coefficients (e.g.,
correlation coefficient to the power of b). Nevertheless, the
impact of the intersite correlation model on the regional
information content of a REC needs further research.
[41] The existence of homogeneous regions (assumption

5) in the strict sense is probably questionable aside from
some trivial cases (e.g., very small regions in terms of
geographic extent and number of sites). Nevertheless,
several studies [see, e.g., Lettenmaier et al., 1987; Stedinger
and Lu, 1995] evaluated the index flood assumption show-
ing that limited degrees of regional heterogeneity do not
significantly affect the reliability of resulting regional esti-
mates of a flood quantile. We hypothesize that the index
flood assumption is also a convenient working hypothesis
for analyzing the probabilistic behavior of RECs con-
structed for slightly heterogeneous regions. Furthermore,
we expect the practical utility of RECs derived for highly
heterogeneous regions to be limited, because a few of the
discordant sites, i.e., sites for which the distributions of
floods have very thick tails, are likely to dominate the REC.
[42] A simple simulation experiment was performed to

better clarify this point, even though we are persuaded that
this particular topic needs to be addressed by additional and
more focused investigations. Using Monte Carlo techniques
we repeatedly (i.e., 20,000 times) generated a set of syn-
thetic regions with a range of regional heterogeneity. Each
region consists of 20 spatially uncorrelated flood series of
length n. The experiment neglects the effects of heteroge-
neity in the spatially correlated case, which is left for future
research. The Gumbel distribution with theoretical mean
equal to one and Cv equal to 0.4, EV1(1,0.4), was selected
as the parent distribution for the generation of all series but
one (i.e., discordant series); the discordant series was
generated from a EV1(1,Cv*), with Cv* = 0.1, 0.2, . . .1.0.
Figure 8 illustrates how the expected regional record flood
(i.e. average value of the 20,000 regional maxima) varies as
a function of Cv* for n equal to 10 and 50. Figure 8 clearly
shows that a single discordant site can exert a strong control
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on the regional record flood (that is on the REC under the
hypotheses adopted in our study), and the control gets
stronger as the length of the series increases.
[43] We also measured the degree of heterogeneity of the

synthetic regions using H1, the statistic that quantifies the
heterogeneity of a group of series by comparing the regional
variability of the sample L coefficient of variation, L-Cv, to
the variation that would be expected in a homogeneous
group [see Hosking and Wallis, 1993]. Hosking and Wallis
[1993] suggest that a group of sites may be regarded as
‘‘acceptably homogeneous’’ if H1 < 1, ‘‘possibly heteroge-
neous’’ if 1 � H1 < 2, and ‘‘definitely heterogeneous’’ if
H1 � 2. We referred to the average of 20,000 H1 values
obtained for each set of simulations (i.e., each value of
Cv*). On the one hand, it is interesting to observe that for
short series (n = 10) heterogeneity may have a small
influence on the REC, but it is also hard to detect (i.e.,

average H1 < 2 for Cv* = 1 in Figure 8). On the other hand,
heterogeneity may have a stronger control on the REC for
longer samples (n = 50), though this case is easier to
diagnose (i.e., average H1 � 2.5 for Cv* = 0.6 in Figure 8).
[44] Although there is still the tendency to compile RECs

for large regions without a critical evaluation of the degree
of hydrological homogeneity associated with the pooled
sites [see, e.g., Herschy, 2002], we maintain that the
practical utilization of a REC should attempt to group river
basins with similar hydrological behavior as done by
Crippen and Bue [1977], who partitioned their data set into
17 hydrologic regions. Analogous to focused pooling tech-
niques for regional flood frequency analysis [Reed et al.,
1999], RECs should be compiled for pooling groups of sites
that have strong hydrological similarity, without necessarily
belonging to the same geographical region. Recent literature
reports several reliable techniques for assessing the hydro-
logic homogeneity of a region [e.g., Hosking and Wallis,
1993] and shows that for the regional frequency analysis of
extreme floods it is important to pool information from
hydrologically similar river basins [e.g., Castellarin et al.,
2001].
[45] The power law model reported in (4) (Assumption

6) can limit the applicability of the analysis because it
uses drainage area as the only explanatory variable and,
thereby, leaves a substantial portion of the variance of mX
unexplained. Climatic and geomorphic information have
been shown to improve the accuracy of multiple regres-
sion models for estimating mX [e.g., Brath et al., 2001].
However, the basin area A normally explains at least 60%
of the variability of mX [e.g., Brath et al., 2001], and the
significance of A becomes higher for flood events with
lower exceedance probabilities, as proven by the limited
scattering of record floods bounded by the envelope
curves compiled by Crippen and Bue [1977]. Further-
more, (4) allows for a direct connection to the slope of
envelope curve (see section 2.1). While we could relate
mX to drainage area and other factors (e.g., basin slope,
forest cover, etc.) it is not clear just how this relation
could be connected to the envelope curve that takes
account of only a single factor, namely, drainage area.
This is an open question for future consideration.
[46] Future analyses should also address the investigation

of the effects of considering a fixed value of b in (1) and (4),
which is indeed a strong assumption and may significantly
impact the results of the analysis. If b is assumed to be a
value other than �0.5, our analysis would not be affected in
any significant way. However, if we were to introduce a
nonlinear slope or if we were to assume a linear or nonlinear
slope to be a random realization of a ‘‘true’’ underlying
slope, then our discussions would be significantly affected.
Nevertheless, the assumption of a linear slope has empirical
support, and several studies document for different regions
around the world a limited variability of b values around
�0.5 [e.g., Jarvis, 1925; Marchetti, 1955; Herschy, 2002].
Therefore (4) with a fixed b = �0.5 value is an adequate
assumption for the scope of this initial study.

4.2. Graphical Representation of the Exceedance
Probability of a REC

[47] The overall result of this study in (19) enables us to
assess the impact of record length n, size of region M, and

Figure 8. Expected regional flood obtained through
Monte Carlo experiments for a heterogeneous group of
20 independent series of length n = 10 and 50. Nineteen
series are generated from a Gumbel distribution with unit
mean and Cv = 0.4, and one (discordant site) is generated
with unit mean and Cv = Cv*. The heterogeneity is
quantified by the Hosking and Wallis [1993] heterogeneity
measure.
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cross correlation on the exceedance probability of the
expected REC. A recurrence interval can be computed as
the inverse of the expected REC exceedance probability,
and plotted against n and M for different degrees of cross
correlation. It is important to highlight that such a recur-
rence interval refers to the expected envelope curve and
does not represent the expected recurrence interval of a
REC. The frequency distribution of the time to a new record
does not have moments, and therefore the mean number of
years one must wait until the exceedance of Xj

(n), does not
exist, where Xj

(n) is the largest flood observed at site j over
an n-year period. This paradoxical result was proven by
Wilks [1959] and Gumbel [1961] but has received little if
any attention in the water resources literature.
[48] Figure 9 reports the return period of the expected

REC as a function of sample length n and number of sites M
for three different degrees of cross correlation, summarized
in Figure 9 with the average values r = 0.2, 0.4, and 0.6.
The recurrence intervals reported in Figure 9 were com-
puted by estimating the number of effective sites, MEC,
using (19) which in turn was used to estimate the exceed-
ance probability of the intercept of the expected envelope
curve, p̂EC, by using the Weibull plotting position,

p̂EC ¼ 1

M̂EC nþ 1
; ð25Þ

which is designed to give unbiased estimates of exceedance
probabilities, for all distributions [e.g., Stedinger et al.,
1993].
[49] The applicability of the diagrams of Figure 9 requires

the study region to be homogeneous in the sense of the
index flood hypothesis. It is worth noting that Figure 9
refers to series of equal length n and to a particular
distribution of correlation coefficients among series (see
Appendix A). One must also keep in mind that Figure 9 was
obtained from an approximation of the regional information
content based on (19). Nevertheless, the accuracy of the
empirical estimator was extensively analyzed using Monte
Carlo experiments both within the context of the theory of

extremes (see Figure 5) and the theory of record-breaking
events (see Figure 7).

5. Conclusions

[50] The study investigates the probabilistic behavior of
the regional envelope curve (REC) which bounds our
experience of extreme floods in a region. Our primary
objective was to formulate a probabilistic interpretation of
the REC and to approximate its exceedance probability,
pEC, as a function of the available sample years of regional
flood data. Primary attention was given to the impact of
intersite correlation on the exceedance probability associated
with a REC.
[51] First, our study introduced an empirical estimator of

pEC as follows: (1) it is shown that if the index flow
hypothesis and a power law relationship between the
drainage area and the index flow hold for the study region,
then pEC is the p value associated with the largest standard-
ized annual maximum peak flow observed in the region;
(2) by developing a first-order approximation to the variance
of the estimated standardized regional flood quantile asso-
ciated with a given p value, ŷp, it is shown that the variance
of p controls the variance of ŷp; (3) by analyzing the
variance of p resulting from a series of Monte Carlo experi-
ments, an empirical relation was identified to estimate the
equivalent number of independent series (effective number
of sites) for a cross-correlated region as a function of the
number of sequences M, their length n (equal for all series)
and the mean spatial correlation among the flood series, r;
(4) the estimated number of effective sites is used for the
evaluation of pEC using a plotting position formula; (5) the
reliability of the estimated pEC is assessed through another
series of Monte Carlo experiments by generating a large
number of cross-correlated regions with different numbers
of sites and degrees of cross correlation among the series.
[52] Second, by studying the temporal dynamics of the

REC, that is, the progression in time of the gains in regional
flood experience, we are able to show how this problem
relates to the theory of record-breaking events. Under the
hypotheses adopted, our analysis (1) showed that the

Figure 9. Recurrence interval (years), i.e., inverse of the exceedance probability, of the expected REC
bounding the flood experience for M 2 [2, 200] sequences of annual floods, with sample length n 2
[1, 50] and different degrees of cross correlation summarized by r, with r equal to (a) 0.2, (b) 0.4,
and (c) 0.6.
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temporal dynamics of the REC coincides with the temporal
dynamics of a serially uncorrelated univariate record-break-
ing process, and (2) indicated how future developments in
the theory of records may provide useful analytical results
to aid in the quantification of the information content of a
REC.
[53] Finally, the overall results of this study are summa-

rized in Figure 9, which illustrates the return period of the
expected REC versus M, n, for three different degrees of
cross correlation, assuming the index flood hypothesis to
hold for the study region.
[54] On the one hand our results are approximate, yet this

is only an initial effort at a probabilistic description of a
REC. Further analyses should investigate the effects of
the following issues on the information content of a REC:
(1) the intersite correlation model, (2) a realistic variability of
the series lengths within the region, (3) the applicability
of the index flow hypothesis, and (4) the scaling relation-
ship between the drainage area and the index flood. Assign-
ing a probabilistic statement to a REC is a fundamental and
necessary step if RECs are to be used as a design tool.
Without an accompanying probabilistic statement, a REC is
only a compilation of record floods in a region.

Appendix A: Simulation Algorithm

[55] The simulation algorithm introduced by Hosking and
Wallis [1988] is used to generate a large number of cross-
correlated synthetic regions. The algorithm assumes that if
each site’s flood frequency distribution were transformed to
normality using the transformation F, then the joint distri-
bution for all sites in the region would be multivariate
normal. The simulation algorithm involves the following
steps: (1) generation of the matrix P of intersite correlation
coefficients, (2) generation of a multivariate vector y having
a multivariate normal distribution with correlation matrix P,
and (3) application of the inverse transformation F�1 to
obtain data with the required marginal distribution. A brief
description of the simulation algorithm is given below.
[56] Assume a region withM sites having record length n,

parent distribution of the regional standardized annual flood
denoted as FX0 and drainage area Aj for site j. Also assume
the mean correlation coefficient among the normalized
floods is r.
[57] 1. Generate the M-by-M correlation matrix P. To

achieve a realistic spread of the ri,j values while ensuring
that P is positive definite, the following procedure was
adopted [e.g., Hosking and Wallis, 1988, p. 590]: (1) choose
the M sites to be points uniformly distributed within the unit
square; (2) set rk,j to be exp(�a�dk,j), where dk,j is the
distance between sites k and j, whereas a is selected so that
the mean of the M(M � 1)/2 rk,j coefficients, for 1 � k < j �
M, is r. Table 1 illustrates the actual spread of ri,j values
generated by this procedure reporting the average values of
rk,j
b for 1 � k < j � M, with M = 2, 20 and 200 sites, and b =
1 (r), b = 2 (r2), b = 3 (r3) and b = 4 (r4).
[58] 2. Generate the regional sample: (1) Generate a

matrix z = [z1, z2, . . ., zM] with M columns and n rows.
Each column zj, j = 1, 2, . . .M, contains n multivariate
normal deviates with zero mean, unit variance, and covari-
ance matrix P. (2) Transform each element of the matrix z
into a realization from the correct marginal distribution by
setting xj

0i = FX
0�1(F(zj

i)), with i = 1, 2, . . .n and j = 1, 2, . . .M

and where F is the cdf of the standard normal distribution.
(3) Obtain M series of annual floods Xj

i by multiplying each
element xj

0i by C Aj
1+b.

[59] 3. Analyze the dynamics of the REC bounding the
experience of extreme floods for the generated region, in
time. The first year of the synthetic sample is by definition,
a gain in flood experience; accordingly, the intercept of the
REC for this time step, a(1), is set to

a ið Þ ¼ max
j¼1;...;M

ln
X i
j

Aj

 !
� b ln Aj

� �( )
; ðA1Þ

where i = 1, and Xj
1 is the first annual flood generated for

site j, a record flood by definition; for all time steps i 2
[2, n] the possible gain in regional flood experience is
analyzed as follows: if the REC bounding the flood
experience in year i � 1 is exceeded at time step i (i.e.,
gain of new experience), then the REC is shifted upward by
evaluating the intercept a(i) using (A1), where Xj

i is the
flood generated for site j at time step i; otherwise (i.e., no
gain in regional flood experience at time step i), the
intercept a(i) is set equal to a(i�1).
[60] 4. Repeat steps 2 and 3 a large number of times and

calculate the mean a(i) of the series of a(i), for i = 1, 2, . . .n.
a(i) identifies the expected REC, the envelope curve that, on
average, is obtained for a region with M sites having record
length i and a degree of cross correlation identified by r (see
Table 1).
[61] The algorithm generated 20,000 synthetic regions for

each pair (M, r), where M = 2, 5, 10, 20, 50, 100, 200 and
500 sites, with maximum sample length n = 200 years, and
r = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.
[62] A Gumbel distribution was used as parent distribu-

tion of the regional standardized annual floods, FX0, with
Cv* = 0.4 (i.e., mX0 = 1 and sX0

2 = 0.16). The same
distribution was used for generating cross-correlated an-
nual floods in homogeneous regions by Hosking and
Wallis [1988, sect. 4, p. 591].
[63] The parameter b in (1), (2), (4), (5), and (A1) was set

to �0.5. Although any negative value could have been used
without modifying the results of the analysis, b = �0.5 is
the value suggested by Jarvis [1925] and is consistent with
the empirical values observed worldwide [e.g., Herschy,
2002]. Furthermore, slope values ranging from �0.45 to
�0.50 can be obtained by analyzing the data set compiled
by Crippen and Bue [1977] for the 17 regions proposed by
the authors and collectively. With no loss of generality, the
coefficient C of (4) and (5), is assumed to equal 1.
[64] To produce a realistic spread of the drainage areas in

a region, even though this has no influence on the results of
the analysis, the areas of all sites in the simulated region, Aj

with j = 1, 2, . . .M, are generated randomly by sampling
from the empirical distribution of the basin areas contained
in the Hydro-Climatic Data Network (HCDN), a data set
compiled by Slack et al. [1993].
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