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Abstract: Linear and dynamic programming formulations are introduced for optimizing the placement of distributed best management
practices (BMPs) at the watershed scale. The results of linear programming optimization of infiltration-based stormwater management BMPs
are compared with the results of genetic algorithm (GA)optimization using a nonlinear distributed model. Additionally, linear and dynamic
programming optimization of sediment-trapping BMPs are compared with GA optimization using a nonlinear distributed model. The results
indicate that the solution to stormwater peak-flow reduction is influenced primarily by distributed-flow arrival time, and a linear programming
analog to a nonlinear optimization model can efficiently reproduce much of the same solution structure. Linear and dynamic programming
solutions to the storm sediment-management problem indicate natural sediment trapping is an important consideration, and a solution to the
sediment-management-optimization problem can be efficiently found using a dynamic programming formulation. DOI: 10.1061/(ASCE)
WR.1943-5452.0000361. © 2013 American Society of Civil Engineers.
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Introduction

Simulation models are widely used for studying watershed best
management practice (BMP) system behavior, and it is likely that
their use will continue in developing total maximum daily loads
(TMDLs) and in designing solutions to nonpoint source pollution
problems (National Research Council 2001). Stormwater and
nonpoint load generation mechanisms are complex, as are the
models used to simulate them. Using complex simulation models
for management alternative scenario testing is a popular approach
to designing stormwater and nonpoint source pollution manage-
ment systems, whereby various management options are tested
in a simulation model, and the resulting stormwater and nonpoint
source loads are compared for selection of a management alterna-
tive. Where design choices may be limited by other factors, such
as available locations for construction, testing a few practical

alternatives using a simulation model is often a satisfactory
approach. But there may be other cases where flexibility in
construction sites, technology selection, and budget make many
combinations of alternatives possible. For these less-constrained
design situations, testing a few scenarios may not be adequate
to find a near-optimal solution. Contemporary optimization tech-
niques, such as GAs and other evolutionary algorithms, have been
employed to perform more comprehensive searches of large
decision spaces and have become popular for analyzing nonpoint
source pollution management designs. While contemporary optimi-
zation techniques expand the horizons for evaluation of nonpoint
source pollution management alternatives, the computational time
needed by the algorithms to perform many runs of a complex
simulation model can be burdensome.

Long waits for results may limit the practicality of using
evolutionary algorithms in typical forums for collaborative decision
making, such as stakeholder workshops and brainstorming
sessions, which lie at the heart of navigating the often contentious
process of making decisions regarding natural resources. Since
convening large groups of stakeholders is expensive, real-time
responses to questions and suggestions are desirable to make the
most of workshops and to move a decision process forward.
The many runs of computationally intensive simulation models,
which are required for genetic algorithm optimization, when com-
bined with the need for real-time stakeholder involvement, present
a conundrum regarding the selection of tools for natural resource
decision-making processes. Simulation models are needed to
adequately describe many of a watershed’s physical processes,
and at the same time, fast analyses and optimizations are needed
to facilitate collaborative processes for negotiating complex deci-
sions among groups of stakeholders. An approach that combines
rapid screening of ideas during a stakeholder workshop, followed
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by the refinement of results using a detailed simulation model, may
allow for the right balance between productivity and accuracy.

Classic optimization techniques, such as linear programming
and dynamic programming, have not been widely applied to the
contemporary problems of nonpoint source pollution management
optimization, though they have potential for overcoming the
limitation, at the screening stage, that is imposed by long
computation times needed by GA optimization. The use of classic
optimization techniques has potential for improving the productiv-
ity of stakeholder collaboration.

There is a small body of literature regarding the application
of classic optimization techniques to stormwater and nonpoint
source pollution management. Mays and Bedient (1982) devel-
oped a dynamic program for locating and sizing ponds for
dendritic detention systems with drainage channels connecting
detention basins. Jenq et al. (1983) used a linear program to ana-
lyze nonpoint source pollution reduction following the type of
analysis performed by ReVelle et al. (1968). In their analysis,
Jenq et al. (1983) lumped nonpoint source pollutant generating
areas and treated the discharge from these areas as point sources
of pollution to a stream. Schleich and White (1997) used linear
programming and a lumped watershed modeling approach to find
the least-cost management strategy to meet phosphorus and total
suspended solids reduction requirements for a watershed contain-
ing both point sources and nonpoint sources. Sample et al. (2001)
investigated the optimal mix of BMP controls at a site scale using
linear programming to calculate minimum cost land-use options
that met development goals while retaining predevelopment
rainfall initial abstraction.

The goal of this study is to further explore the application of
classic optimization techniques within the contemporary context
of distributed stormwater and nonpoint source pollution manage-
ment by comparing the results of distributed simulation models
and a GA optimization approach with the results obtained by
classic optimization techniques.

Linear Programming Optimization of
Infiltration-Based BMP Placement

Perez-Pedini et al. (2005) developed a distributed watershed model
using the Soil Conservation Service (SCS) curve number method
(USDA 1986) that was similar to the work of Moglen (2000), who
showed that a modified SCS curve number method could be
distributed on a watershed network, accounting for the transport
of water from upslope cells to downslope cells. Perez-Pedini et al.
(2005) modeled a small urbanized watershed with a distributed
model comprised of 1.44-ha connected hydrologic response units.
Overland flow routing was simulated by passing runoff from each
cell to the adjacent cell with the lowest elevation during each time
step. An assumption was made that sewers do not alter drainage
direction and arrival time. Flow routing in the channel network
was modeled similarly to surface routing, but a shorter travel time
was assumed, and water was passed a distance of two stream cells
during each time step. Because of this simplified flow-routing
scheme, arrival time of overland flow at the basin outlet is fully
defined by network connectivity. The lag between flow generation
at any cell in the watershed and arrival at the outlet is

ϕi ¼ ðni − 1Þ þ floor

�
mi

2

�
ð1Þ

where (ni) = number of land surface cells between cell i and a
stream cell; and mi = number of stream cells between the basin
outlet and the point where stormwater from cell i enters the stream

network. A surface flow hydrograph QðtÞ at the watershed outlet
can be created by summing all contributing flows at each time step:

QðtÞ ¼
X
i

qði; t − ϕiÞ ð2Þ

where qði; tÞ = flow generated in cell i at time t; and ϕi = time lag
between flow generation at cell i and arrival at the outlet.

In the GA optimization from Perez-Pedini et al. (2005), the goal
was to find optimal arrangements of infiltration-based BMPs. A
BMP, if implemented, improved the infiltration capacity of a model
cell and was represented as a reduction of the SCS curve number.

The goal of the analysis described here was to explore whether a
linear programming formulation could be used to reproduce the
optimization results found by Perez-Pedini et al. (2005). In the
present analysis, the question is not whether a linear approximation
can be found for the rainfall-runoff simulation model but rather
whether a linear program can be used to reproduce the optimal
decision regarding where BMPs should be placed for maximum
effectiveness in reducing the stormwater-runoff peak. The analysis
begins with the extraction of flow generated within each of the cells
in the nonlinear simulation model developed by Perez-Pedini et al.
(2005) for a storm occurring on October 15, 2003. Surface flow
qði; tÞ is assumed to be the sum of runoff from precipitation and
saturation excess (SEi;t), once the initial abstraction at each cell
has been satisfied:

qði; tÞ ¼ P2
t

Pt þ Smax;i
þ SEi;t−1 ð3Þ

where (Pt) = precipitation; and (Smax;i) = soil moisture storage
capacity.

In the linear programming optimization, the placement of a
BMP in a cell is represented by assuming a 10% reduction of flow
generated within that cell. This stylistic representation of a BMP is
similar to the approach taken by Perez-Pedini et al. (2005). The
linear model is

Minimize Qmax subject to ð4Þ

QðtÞ ¼
X
i

½qði; t − ϕiÞ − 0.1 · BMPi · qði; t − ϕiÞ� ∀ t ð5Þ

Qmax ≥ QðtÞ ∀ t ð6Þ

0 ≤ BMPi ≤ 1 ∀ i ð7Þ

Perez-Pedini et al. (2005) allowed BMP placement in only
1,908 of the 4,533 cells in their study, based on the criteria of high
curve number and close proximity to the stream. The constraint in
Eq. (7) was applied to the same 1,908 cells allowed by Perez-Pedini
et al. (2005), but at other locations, BMPs were not allowed. The
overall budget constraint requires that the total number of BMPs
applied to the watershed does not exceed a selected budget,
expressed as the maximum number of BMPs, (B):X

i

BMPi ≤ B ð8Þ

A continuous formulation was chosen to represent the integer
decision problem to allow for solution with a linear programming
algorithm. Results for the decision variables were integers. This
may suggest the formulation is unimodular; however, it remains
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to be proven. Figs. 1(a–d) compare the solutions generated by
Perez-Pedini et al. (2005) using a GA with their nonlinear optimi-
zation model and those found here using linear programming for
budgets of B ¼ 25, B ¼ 100, B ¼ 150, and B ¼ 400 BMPs. The
bottom image in each of Figs. 1(a–d) was created from the results
reported in Perez-Pedini et al. (2005), and the top image in each
figure presents the solution found using linear programming.
The results generated by Perez-Pedini et al. (2005) required
between approximately 15,000 and 73,000 iterations of the
simulation model. The linear programming solution shown in
the top image in each of Figs. 1(a–d) was found nearly instanta-
neously using GAMS.

The results of the linear optimization appear to capture many of
the same clusters found using the GA and the nonlinear simulation
model. Major clusters of BMP implementation found by Perez-
Pedini et al. (2005) are circled in Fig. 1(d). One general difference
appears to be a tendency for the linear programming solution to
contain cells farther from the stream than did the GA solution
in the nonlinear optimization. This is likely due to the absence
of a representation of downslope infiltration in the linear optimi-
zation model. In the nonlinear simulation, overland flow may be
infiltrated in downslope cells, but in the linear optimization all flow
is routed directly to the watershed outlet with the appropriate
time lag.

The similarity of the results obtained with the linear program
and GA optimization supports the hypothesis that managing
distributed-flow arrival time is the principal factor in storm-peak
management. The similarity of the results also suggests that a linear
programming model could be used as a screening tool for later GA
optimization. By reducing the search space for a GA solution, more
rapid optimization could be achieved. This two-step approach
would combine the advantages of both linear programming and
GA optimization using a nonlinear simulation model. Rapid
screening-level optimization can be achieved with the linear pro-
gram; then solutions can be refined and more accurately quantified
using a simulation model and a GA.

Linear Programming Optimization of Sediment-
Trapping BMP Placement

Limbrunner et al. (2013) extended the work of Perez-Pedini et al.
(2005) with a similar distributed hydrology model based on
1.44-ha connected hydrologic response units and a sediment-
generation and transport model based on the work of Jain et al.
(2005). The results they obtained using a GA are compared with
sediment-trapping BMP placement optimizations developed here
using linear programming and dynamic programming. The com-
parison between optimization approaches using mathematical
programming and a GA for the sediment-trapping problem is
analogous to the stormwater peak-flow reduction problem
described earlier. As previously, the goal of the analysis is to
explore whether efficient optimization techniques can reproduce
an optimal decision regarding where to place BMPs for maximum
effectiveness.

There is a compound effect on sediment reduction when
multiple BMPs lie in sequence along a slope line. Because of
this, sediment generated in one location may be attenuated multi-
ple times as it travels downslope to a stream. This effect was
approximated in a linear programming formulation using a
Lagrangian reference frame. A generated load was followed
from its cell of origin to its point of discharge into a stream cell.
The routing scheme for sediment load was the same as the
routing scheme for stormwater described previously, with
sediment load traveling from each cell to the adjacent cell with
the lowest elevation. The nonlinear sediment-generation and
transport model described in Limbrunner et al. (2013) was first
used to sum all modeled sediment generated in each cell (li)
during a storm event that occurred on August 18, 1992. Like
the stormwater problem, where a simulation model was used first
to quantify runoff generated in each cell, here a simulation model
was used first to quantify the sediment load generated in each
cell. Total load L reaching the stream during the storm can be
expressed as

Fig. 1. Comparison of linear programming and genetic algorithm peak-flow reduction optimizations: (a) B ¼ 25; (b) B ¼ 100; (c) B ¼ 150;
(d) B ¼ 400
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L ¼
X
i

li

�
1 − r ·

Xni
jðiÞ¼0

BMPi;jðiÞ

�
ð9Þ

The reduction fraction (r) is preselected, and the placement of a
BMP in any downslope cell jðiÞ results in a reduction in sediment
load (li) from cell i. This formulation results in a BMP attenuating a
fixed fraction of sediment load (li) generated in cell i. The index
jðiÞ represents the jth downslope cell in the path that sediment trav-
els from cell i to a stream cell. The index ranges from jðiÞ ¼ 0,
which is cell (i), to jðiÞ ¼ 1, the cell immediately downslope from
i, and so forth, to jðiÞ ¼ ni, which is the last cell in the slope line of
i, and is directly connected to the stream network. Because of
converging slope lines, cells may be common to more than one
slope line, and a BMP may attenuate sediment load from many
upslope cells. The linear program is formulated as

Minimize L subject to ð10Þ

0 ≤ BMPi;0 ≤ 1 ∀ i ð11Þ

Xni
jðiÞ¼0

BMPi;jðiÞ ≤ 1

r
∀ i ð12Þ

The constraint in Eq. (12) limits the number of BMPs along each
(i) slope line and ensures the bracketed term on the right-hand side
of Eq. (9) will remain positive. A value of r ¼ 0.5 was chosen. The
overall watershed BMP budget constraint is expressed as the
maximum number of BMPs, (B):X

i

BMPi;0 ≤ B ð13Þ

Figs. 2(a–d) show a comparison of the results. The bottom
image in each of Figs. 2(a–d) is the result from the GA solution
to the sediment-trapping BMP placement optimization. The top

image in each figure represents the solution found using linear
programming. While the GA optimization required approximately
12 days of computing time on a desktop computer, the linear
programming solution shown in the top image in each of
Figs. 2(a–d) was found nearly instantaneously using GAMS. The
linear programming solution captures some of the solution struc-
ture found with the GA.

Dynamic Programming Optimization of Sediment-
Trapping BMP Placement

The results of sediment-trapping optimizations indicate that priority
is given to placing BMPs close to the stream channel. This is likely
because a sediment-trapping BMP can capture load that arrives
from upslope, as well as load generated in the cell where it is
placed. For reduction of sediment along a slope line, it is therefore
never worse to place a fixed fraction removal-type BMP closer to
the stream rather than farther away.

A dynamic programming approach to the sediment-trapping
BMP placement problem is formulated based on the assumption
that along a slope line of connected land parcels modeled as cells,
the best location to place a BMP is the most-downslope cell. Sim-
ilarly, the best location for the placement of the nth BMP along the
same slope line would be in the nth most-downslope cell. Under
these assumptions optimal BMP placement begins at the stream
bank, a directly connected land cell in the distributed sediment
model, and BMPs are added sequentially to cells in the upslope
direction. The reduction in sediment load in a contributing area
(k) is approximated with the following expression:

Lk ¼ lkð1 − rÞpk ð14Þ

where Lk = load entering the stream from a directly connected
watershed cell; lk = sum of modeled load exported by the contrib-
uting area (k) to the directly connected cell in the absence of BMPs;
r = fraction reduction achieved by the installation of a single BMP;
and (pk) = number of BMPs installed in contributing area k. The

Fig. 2. Comparison of linear programming and genetic algorithm sediment load reduction optimizations: (a) B ¼ 25; (b) B ¼ 50; (c) B ¼ 100;
(d) B ¼ 200
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use of the index k is intended to distinguish the contributing area
from the set of watershed cells (i). Each directly connected water-
shed cell defines a unique contributing area to the stream. The
optimization is written as the minimization of total load (LT),
which is the sum of loads exported from all contributing areas
(k), expressed as

LT ¼
X
k

lkð1 − rÞpk ð15Þ

subject to the budgetary constraint that
X
k

pk ≤ B ð16Þ

where B = budget, expressed as the total number of BMPs allowed
in the watershed.

Each contributing area exports sediment to the stream in parallel
to all other contributing areas, pk is an integer, and r is an assumed
constant reduction fraction. Implementation of a BMP in Eq. (15) is
represented by a fixed-fraction reduction in remaining sediment
load from contributing area k. This is contrasted with the formu-
lation in Eq. (9), where a BMP implementation results in a
fixed-quantity reduction of each of the upslope loads. In each case,
the goal is to find good locations for BMP implementation. More
accurate quantification of load reduction could be achieved by sub-
sequently running the optimized decision in a simulation model.

The problem in Eq. (15) is conceptualized as a dynamic
program to implement the next BMP in a location that will yield
maximum sediment reduction. At each stage, the next decision is
based on results obtained by previously placed BMPs. A greedy
algorithm can be used to quickly find the solution. The solution
is generated by placing the first BMP in the contributing area with
the largest load, lk. The load of that contributing area is then
updated by a factor of 1 − r. Loads are then reranked to determine
the contributing area with the new largest load, and the next BMP is
placed in that location. This process is continued until the total
number of BMPs reaches the budget, B.

A comparison of the optimization results obtained with the GA
and those found using dynamic programming [Figs. 3(a–d)] shows
close agreement between the two. The bottom image in each of
Figs. 3(a–d) is the result from the GA solution to the sediment-
trapping BMP placement optimization. The top image in each
figure presents the solution found using dynamic programming
and a removal fraction of r ¼ 0.5. Shaded cells are locations of
directly connected watershed cells where the greedy algorithm
suggests placing one or more BMPs to remove sediment load
entering the stream from the attached contributing area. The shad-
ing represents the number of BMPs applied, pk from Eq. (15), with
darker shades of gray indicating more BMPs.

As shown in Fig. 3(d), there is very close agreement throughout
the riparian areas in the structure of the BMP solution generated by
the dynamic program and the GA. The difference in the results
between the dynamic programming and the linear programming
solutions suggests the absence of an important mechanism in
the formulation of the linear program. It is likely that the missing
mechanism is natural sediment trapping.

The input to the linear programming model was the sum of mod-
eled sediment generated in each cell of the watershed. It appears the
linear program is responding to areas where there is a large
generation of sediment load, and while this represents part of
the solution, it neglects natural sediment trapping. In the nonlinear
model described in Limbrunner et al. (2013), generated sediment
was subject to potential natural deposition in downslope cells. The
input to the dynamic program described earlier accounted for
natural sediment trapping since the quantity of interest was the
sum of modeled sediment exiting each directly connected water-
shed cell that drained contributing area k. Included in this sum
are the effects of natural sediment trapping in the upslope contrib-
uting area. Natural deposition is independent of BMP placement
but affects locations for optimal BMP strategies. The dynamic
programming approach, which accounts for natural sediment
trapping in the input load, performs better and more closely
approximates the result of the GA optimization.

Fig. 3. Comparison of dynamic programming and genetic algorithm sediment load reduction optimizations: (a) B ¼ 25; (b) B ¼ 50; (c) B ¼ 100;
(d) B ¼ 200
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Dynamic programming could be used as a screening tool to
quickly reduce the search space that would be used with a GA,
thereby reducing the time needed to converge on an optimal
solution.

Conclusion

This study evaluated the use of classic optimization methods of
linear and dynamic programming for their application to the
optimization of stormwater and nonpoint source pollution manage-
ment strategies. These methods generated solutions that compared
well with solutions generated by the contemporary approach of
using a GA with a complex distributed watershed model. The
infiltration-based BMP optimization linear program introduced
here appears effective at approximating the solution structure found
using a GA and a nonlinear distributed model in Perez-Pedini et al.
(2005). Similarly, the dynamic programming formulation intro-
duced here can be efficiently solved to approximate the solution
structure of the nonlinear sediment-trapping BMP optimization
found with a GA in Limbrunner et al. (2013).

Complex simulation models have proven to be valuable tools for
exploring stormwater and nonpoint source pollution management
design. The combined use of simulation models and contemporary
optimization algorithms has been extremely useful in dealing with
these problems; however, the often lengthy computation times
needed for optimization place a limit on the practicality of using
these techniques in collaborative decision-making forums, such
as stakeholder workshops. Classic optimization techniques provide
both comprehensive and fast optimization capabilities that could
help to overcome this limitation. Because of this, classic optimiza-
tion techniques should be considered important tools to be used in
conjunction with other techniques for developing collaborative
decisions regarding stormwater and nonpoint source pollution
management. Furthermore, both this study and that of Zoltay et al.
(2010) emphasize that careful attention to the structural formulation
of complex watershed management modeling can provide a
useful alternative to the more computationally complex application
of evolutionary algorithms and distributed nonlinear watershed
models.
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