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Abstract.

Precipitation elasticity of streamflow, ep, provides a measure of the sensitivity

of streamflow to changes in rainfall. Watershed model-based estimates of ¢, are shown to
be highly sensitive to model structure and calibration error. A Monte Carlo experiment
compares a nonparametric estimator of ¢, with various watershed model-based
approaches. The nonparametric estimator is found to have low bias and is as robust as or
more robust than alternate model-based approaches. The nonparametric estimator is used
to construct a map of €, for the United States. Comparisons with 10 detailed climate
change studies reveal that the contour map of e, introduced here provides a validation
metric for past and future climate change investigations in the United States. Further
investigations reveal that e, tends to be low for basins with significant snow accumulation
and for basins whose moisture and energy inputs are seasonally in phase with one another.
The Budyko hypothesis can only explain variations in &, for very humid basins.

1. Introduction

Hundreds, possibly thousands, of studies are now available
which document the sensitivity of streamflow to climate for
river basins all over the world. Most hydrologic climate sensi-
tivity studies involve calibrating a conceptual deterministic wa-
tershed model, and then varying the model’s atmospheric in-
puts, to observe the resulting changes in streamflow. Schaake
[1990], Nash and Gleick [1991], and Jeton et al. [1996] have
performed this type of study. Another approach is to analyti-
cally derive the sensitivity of streamflow in terms of model
parameters [Schaake, 1990]. A third approach is to fit multi-
variate regional hydrologic models using climate and stream-
flow data for many basins in a region [Vogel et al., 1999]. A
fourth approach is to empirically estimate changes in stream-
flow which resulted from historical changes in climate [Risbey
and Entekhabi, 1996]. A fifth approach is to use multivariate
statistical methods to estimate the relationship between cli-
mate and streamflow at a single site [Revelle and Waggoner,
1983]. Of all these approaches the use of conceptual determin-
istic watershed models is by far the most common because such
models are able to model the complex spatial and temporal
variations in evapotranspiration, soil moisture, groundwater,
and streamflow. Leavesley [1994] provides a more detailed dis-
cussion of the advantages of conceptual watershed models for
modeling climate change impacts.

In spite of the advantages of using conceptual watershed
models in climate change studies their validation still remains
a fundamental challenge. Climate sensitivity analyses per-
formed on the same basin using different conceptual water-
shed models can lead to significantly different results. Worse
yet, climate sensitivity analyses performed on the same basin
using identical conceptual watershed models can lead to re-
markably different results. For example, Nash and Gleick
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[1991] and Schaake [1990] used the National Weather Service
River Forecasting System (NWSRFS) to perform climate sen-
sitivity analyses on the Animas River at Durango, Colorado.
When precipitation was increased by 10%, holding tempera-
ture and potential evapotranspiration constant, Nash and
Gleick [1991] and Schaake [1990] reported an 11% and 20%
increase, respectively, in annual streamflow. These are rather
remarkable differences, especially considering that the same
model was applied to the same basin in both instances. These
different sensitivities are likely due to differences in model
calibrations leading to differences in model parameter esti-
mates which result in differences in the models’ sensitivity to
climate variations.

Vogel et al. [1999] use a regional multivariate regression
model to document that a 10% increase in precipitation should
lead, on average, to a 19% increase in annual streamflow for
the entire upper Colorado River system, of which the Animas
River is only a small subbasin. The regional models developed
by Vogel et al. [1999] are based on annual climate and stream-
flow data from 44 basins in the upper Colorado River basin.
Treating the entire upper Colorado River as a single basin,
Revelle and Waggoner [1983] report an at-site multivariate re-
gression relation between streamflow, precipitation, and tem-
perature which documents that a 10% increase in annual pre-
cipitation leads to an 11% increase in streamflow. Who does
one believe? The results of these four different estimates of the
sensitivity of streamflow to precipitation for the Animas basin
are summarized in Table 1. The agreement between Vogel et al.
[1999] and Schaake [1990] is excellent, and the agreement
between Nash and Gleick [1991] and Revelle and Waggoner
[1983] is also quite good. However, they cannot all be correct
because the two sets of studies lead to very different conclu-
sions.

We are left with the uncomfortable feeling that definitive
estimates of the sensitivity of streamflow to climate are still
unavailable, or if they do exist, it is difficult to judge which
investigation is plausible and which is not. The primary goal of
this study is to develop a uniform, defensible, and reproducible
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Table 1. Comparison of Estimates for the Animas River
Basin in Colorado

Percentage Increase in
Annual Streamflow
Resulting From a 10%
Increase in Annual

Study Model Precipitation
Nash and Gleick [1991]  NWSRFS 10.9
Revelle and Waggoner at-site multivariate 10.5
[1983] regression
Schaake [1990] NWSREFS 19.7
Vogel et al. [1999] regional 19.0
multivariate
regression

approach for evaluating the sensitivity of streamflow to cli-
mate. The approach must be robust, meaning it should yield
similar results for a wide range of assumed hydrologic model
structures. The approach must also be unbiased so that on
average, over many applications, one may discern the true
underlying sensitivity of streamflow to climate. This is chal-
lenging for a number of reasons. The sensitivity of streamflow
to climate is itself a dynamic quantity which may change as
climate changes. Furthermore, it is challenging to develop an
estimator which can produce unbiased estimates of the sensi-
tivity of streamflow to climate under different model assump-
tions because the development of an unbiased estimator itself
has to be based on a model assumption. Our goal is to develop
a robust and approximately unbiased estimator of the sensitiv-
ity of streamflow to climate which can perform well under
different model assumptions. This estimator is then used for
(1) constructing regional maps of the sensitivity of streamflow
to climate for the continental United States, (2) evaluating and
comparing our results with other climate sensitivity studies,
and (3) understanding the physical processes which dominate
the sensitivity of streamflow to climate. We also explore the
use of climate elasticity of streamflow as an external validation
statistic which may prove useful in future climate change in-
vestigations.

2. Description of Databases

Contour maps of the climate elasticity of streamflow are
developed in this study using a nationwide hydroclimatologic
database consisting of annual time series of streamflow Q,
precipitation P, and potential evapotranspiration PE for 1291
basins in the United States. Our analyses employ the following
databases.

2.1.

Streamflow data are obtained from the Hydro-Climatic Data
Network (HCDN), available from the U.S. Geological Survey
and compiled by Slack et al. [1993]. This data set consists of
records of average daily, monthly, and annual streamflow at
1553 sites located in the United States. Since the details of this
data set are discussed by Slack et al. [1993] and others, we do
not repeat those discussions here. This study used the annual
flow records over the period 1951-1988 with at least 20 years of
record and with basin areas in excess of 129 km? (50 mi?). This
resulted in a total of 1291 gaged watersheds across the conti-
nental United States. Their locations are shown in Figure 1

Streamflow Database
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along with each of the 18 major water resource regions defined
by the U.S. Water Resources Council in 1970.

2.2. Precipitation and Potential Evaporation Data

Monthly time series of precipitation and average maximum
and minimum daily temperatures were obtained for the 1291
sites from 0.5° time series grids based on the Precipitation-
Elevation Regressions on Independent Slopes Model
(PRISM) climate interpolation modeling system [Daly et al.,
1994]. PRISM uses a precipitation-elevation regression rela-
tionship to distribute point measurements to evenly spaced
grid cells. PRISM is considered an improvement over other
spatial interpolation methods such as inverse distance weight-
ing or kriging because it attempts to account for orographic
effects by using precipitation-elevation regression functions.
Daly et al. [1994] found PRISM estimates of precipitation re-
produced expected patterns over areas with complex topogra-
phy, such as mountainous regions.

The monthly climate time series grids were spatially aver-
aged over each HCDN basin using a geographic information
system. To accomplish this task, the watershed boundaries of
the 1291 river basins were outlined using a digital elevation
map of the United States. The end result is a unique national
time series data set of monthly precipitation and temperature
measurements for the HCDN basins over the period 1951-
1988. Estimates of monthly potential evaporation were ob-
tained using a method introduced by Hargreaves and Samani
[1982] which is based on monthly time series of average min-
imum and maximum temperature data along with extraterres-
trial solar radiation. Extraterrestrial solar radiation was esti-
mated for each HCDN basin by computing the solar radiation
over 0.1° grids using the method introduced by Duffie and
Beckman [1980] and then summing those estimates for each
river basin. The Hargreaves method was the highest-ranked
temperature-based method for computing PE reported by
Jensen et al. [1990]. The Hargreaves method is the only tem-
perature-based method recommended by Shuttleworth [1993].

3. Introduction to Climate Elasticity
of Streamflow

Schaake [1990] introduced the concept of elasticity for eval-
uating the sensitivity of streamflow to changes in climate. Cli-
mate elasticity of streamflow can be defined by the propor-
tional change in streamflow Q divided by the proportional

Figure 1.

Location of streamgauges within each of the 18
major U.S. water resource regions [from Slack et al., 1993].
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Table 2. Climate and Streamflow Statistics for Sacramento, Animas, and Saline River

Basins
River Basin

Statistic Symbol Sacramento Animas Saline
Mean annual Q, mm Ko 991 397 414
Coefficient of variation of Q Co 0.46 0.34 0.52
Mean annual P, mm wp 1380 713 1312
Coefficient of variation of P Cp 0.31 0.17 0.20
Mean annual PE, mm MpE 1160 972 1381
Coefficient of variation of PE Cpg 0.032 0.033 0.036
Correlation of Q and P pPo.r 0.98 0.88 0.93
Correlation of Q and PE Po.PE —0.50 —0.62 —0.52
Correlation of P and PE PprPE —0.51 —0.64 —0.64

change in a climatic variable such as precipitation P. Thus
precipitation elasticity of streamflow is defined as

o/ dQ P
ep(P, Q):%:digé (€]

Similar definitions exist for other climate variables such as
potential evapotranspiration. Subsequent to its introduction to
the water resources literature by Schaake [1990], Dooge [1992]
and Dooge et al. [1999] termed e,(P, Q) a sensitivity factor,
and Kuhnel et al. [1991] termed it a magnification factor.

The economics literature contains discussions on the inter-
pretation and estimation of elasticity which date back to the
early twentieth century. Lerner [1933] discussed difficulties as-
sociated with arc elasticity defined as elasticity in (1) over a
discrete range of the variables of interest. One difficulty with
the estimation of elasticity is that it is often estimated from a
model, and, of course, the form of the hydrologic model is
always unknown.

The elasticity of power law models such as Q = aP” is
unique because for such models one can easily show that the
precipitation elasticity € ,(P, Q) = B is constant, avoiding the
need to define the range of P over which elasticity is meaning-
ful. One is tempted to conclude from this result that all linear
models (B = 1) exhibit an elasticity of unity ¢ ,(P, Q) = 1. To
disprove this, consider the model Q = P — 7, where 7is a
constant with 7 < P. The precipitation elasticity for this model
would be ¢ (P, Q) = P/(P — 7) so that the nonhomogeneous
term T causes the elasticity to depend on precipitation. Simi-
larly, there is a problem in comparing temperature elasticity
computed in different studies in which temperature is ex-
pressed in different units such as kelvins or degrees Fahren-
heit. This is because transformations among units of temper-
ature measurements involve nonhomogeneous terms.
Comparisons of precipitation P and potential evapotranspira-
tion PE elasticities are not hindered in this way, since conver-
sions between SI units and U.S. customary units involve mul-
tiplicative transformations.

The precipitation elasticity of streamflow &,(P, Q) defined
in (1) is a random variable which depends on P and Q. In this
study we focus on another definition of elasticity defined at the
mean value of the climatic variable

o Mp
ep(pp, MQ) = Tp — (2)
dpP P
where up and u, denote mean values of precipitation and
streamflow, respectively. The definition £,(wp, wy) in (2) is

the metric employed here for comparing the climate response
of river basins.

4. Robust Estimators of Climate Elasticity:
An Experiment

One goal of this study is to develop a contour map of € ,(wp,
o) for the United States. A defensible map can only be made
if the method of estimation of &,(wp, ) is reliable and
proven. In this section we describe a Monte Carlo experiment
which evaluates the performance of alternative estimators of
ep(Mp, o). To evaluate robustness of alternative estimators,
it is necessary to generate climate and streamflow data from a
variety of different model structures. In the following experi-
ments we assume that the first- and second-order sample mo-
ments of observed streamflow and climate for three basins
represent the true climate/streamflow regime. We chose the
Sacramento River in California and the Animas River near
Durango, Colorado, because previous hydroclimatologic stud-
ies exist for each of these basins. A third basin, the Saline River
in Arkansas, was chosen because it has a particularly high value
of ep(p, mp). These three basins are the basis of truth for
the following Monte Carlo experiments.

4.1. Description of Theoretical Hydroclimatologic Regimes

Previous hydroclimatologic investigations have been per-
formed for the Sacramento River basin (e.g., Jeton et al. [1996],
Risbey and Entekhabi [1996], and others) and the Animas River
basin (e.g., Nash and Gleick [1991], Revelle and Waggoner
[1983], Schaake [1990], and others). All hydroclimatologic
records for these three basins were obtained for the period
1951-1988 from the databases described in section 2. Table 2
summarizes the assumed values of the moments of annual
streamflow and climate for the Sacramento, Animas, and Sa-
line basins. We found that PE can be well approximated by the
bivariate linear model

PE = wpg + pppe(ope/op) (P — wp) + v, 3)

where vy is normally distributed with zero mean and variance
0> = opg — pp prope. Note that the correlation of P and PE
is —0.51, —0.64, and —0.64 for the Sacramento, Animas, and

Saline basins, respectively.
4.2. Theoretical Hydroclimatologic Models
of Annual Streamflow

In sections 4.2.1 through 4.2.2.2 we introduce a series of
theoretical model structures for representing the relationship
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Figure 2. Comparisons of streamflow observations for Ani-
mas, Sacramento, and Saline River basins with streamflow
estimated using the trivariate model.

between annual streamflow Q, annual precipitation P, and
annual potential evapotranspiration PE. We introduce a linear
statistical model and two nonlinear hydrologic models.

4.2.1. Statistical model. A simple linear statistical model
is considered because it is able to approximate observed cli-
mate and streamflow data and because theoretical expressions
are easily obtained for ep(up, ). A trivariate linear model
relating Q to P and PE is

Q=a+ BP + 6PE + 1, “4)

where a, B8, and 6 are model parameters and 1 are independent
and identically distributed model errors with mean zero and
constant variance o%, For the trivariate model,

SANKARASUBRAMANIAN ET AL.: CLIMATE ELASTICITY OF STREAMFLOW

ep(pup, IJ«Q) = pQ,P(CQ/CP)r (5)

where p, p is the cross correlation of Q and P and C, and Cp,
are the coefficient of variation of Q and P, respectively. Note
that (5) also holds for a bivariate model defined by (4) with § =
0. Tsai [1998] shows that C,, > Cp, and is often significantly
so, for all regions of the United States and that p, 5 is usually
near unity. Hence we expect values of & p(up, o) > 1 for this
linear model. We use a nearly unbiased estimator introduced
by Vogel et al. [1998] to estimate coefficient of variations. Fig-
ure 2 documents that the trivariate model can reproduce the
historical behavior of annual streamflow for the Animas, Sac-
ramento, and Saline River basins.

4.2.2. Hydrologic models. We consider two different
nonlinear hydrologic models. It is tempting to employ a linear
hydrologic model such as the “abc” model introduced by
Fiering [1967] because it is very easy to derive its theoretical
elasticity properties. For the abc model, e p(p, np) = 1, yet
it is well known that observed values of & ,(wp, 1) are usually
in excess of unity [Schaake, 1990; Vogel et al., 1999], and are
often significantly so; hence we dispense with the abc model.
We drop all linear water balance models from consideration
because Schaake [1990] showed that the P and PE elasticity of
linear watershed models cannot mimic the sensitivity of ob-
served streamflow to climate change.

4.2.2.1. Nonlinear abc model: The abc model is a linear
rainfall-runoff model introduced by Fiering [1967] which re-
lates precipitation to evapotranspiration, groundwater storage,
groundwater outflow, and streamflow using only precipitation
as a model input and employing three model parameters a, b,
and c. The abc model assumes that actual evapotranspiration
E, = bP, is a linear function of available moisture, where b is
a model parameter and P, is precipitation in time interval ¢. In
reality, £, depends on both available moisture and potential
evapotranspiration. A number of empirical relationships have
been introduced which express observed relationships between
long-term actual evaporation E,, potential evaporation PE,,
and precipitation P,. Dooge [1992] and Kuhnel et al. [1991]
summarize various relationships of this type. We employ one
of those relationships termed the Turc-Pike equation:

P,

B v ey ©)
Studies by Budyko [1974] for >1000 catchments in the USSR
provide empirical support for the Turc-Pike relationship. The
nonlinear annual abc model is created by replacing the term
E, = bP, in the abc model with the expression E, = bP,/
V1 + (P,/PE,)*. Precipitation elasticity for this model is eas-

ily derived analytically.
4.2.2.2. The “abcd” model: The abcd model is a nonlinear
hydrologic model which accepts both P and PE as input, pro-
ducing Q as output. Internally, the model also represents soil
moisture storage, groundwater storage, groundwater outflow,
and actual evapotranspiration. The abcd model was originally
introduced by Thomas [1981] using an annual time step. The
abcd model was later compared with numerous other water
balance models leading to its recommendation by Alley [1984].
Vandewiele et al. [1992] also found that the abcd model com-
pares favorably with several other water balance models. The
primary difference between the nonlinear abc model described
above and the abcd model is that the abcd model includes a soil
moisture storage term; hence actual evapotranspiration de-
pends on the available soil moisture as well as on PE. A series
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Table 3. Summary of Properties of Statistical and Hydrologic Models Fit to Three River Basins
Models
Sacramento River, California Animas River, Colorado Saline River, Arkansas

Statistic Trivariate abc abcd Trivariate abc abcd Trivariate abc abcd
aora —454 0.0084 0.999 106 0.001 0.971 —1496 0.017 0.999
Borb 1.06 0.496 413 0.933 0.555 348 0.852 0.962 1550
c PNIM* 0.988 0.0181 PNIM 0.984 0.0741 PNIM 0.650 0.353
dord —0.012 PNIM 0.68 —0.384 PNIM 0.695 0.5741 PNIM 0.999
O'.Q/IJ«Q 0.095 0.115 0.097 0.159 0.174 0.159 0.184 0.199 0.149
R*, % 95.5 96.3 95.6 78.1 78.6 78.6 87.5 86.5 91.8
ep(p, o) 1.47 1.23 1.40 1.79 1.30 1.78 2.48 2.18 3.30

“PNIM, parameter not in model.

of chain rule computations were used to derive ep(p, o)
(see Sankarasubramanian [2001] for details).

4.3. Summary of Goodness-of-Fit of Linear
and Nonlinear Models

Each model was fit to the observations of Q, P, and PE for
the three basins. The trivariate linear model was fit using the
method of moments. The nonlinear abc model and the abcd
model were fit using ordinary least squares, with constraints
added to preserve all moments reported in Table 2. Table 3
summarizes the model parameters, standard error of the
model errors, R, and £,(up, o). The standard errors re-
ported in Table 3, o, /., are standardized by the mean of the
dependent variable u, to enable comparisons between basins.
Table 3 reveals that the standard error of the residuals is
always less than 12%, 18%, and 20% of the mean for the
Sacramento, Animas, and Saline basins, respectively. The
three models led to roughly equivalent fits for all three basins.

Schaake [1990] estimated &p(wp, pp) for the Animas basin
as 1.97 using the NWSRFS. Results from Table 3 show that the
precipitation elasticity estimated by the trivariate model (1.79)
and the abecd model (1.78) are fairly close to Schaake’s [1990]
estimate of 1.97. However, the nonlinear abc model yields
quite different results (1.30). The results in Table 3 demon-
strate how sensitive climate elasticity is to the assumed model
structure. The precipitation elasticity given in Table 3 for the
Sacramento basin is in agreement with the results documented
by Risbey and Entekhabi [1996].

4.4. Monte Carlo Experiments

One goal of this study is to develop a robust estimator of
climate elasticity to be used with annual climate and stream-
flow data. The developed estimator should perform well, re-
gardless of the structure of the model describing the relation-
ship between Q, P, and PE. In this section we summarize an
experiment which evaluates the performance of alternative
elasticity estimators when streamflows are generated by each
of the three models posed in section 4.2. All experiments
assume that the statistics reported in Tables 2 and 3 represent
the true hydrologic structure for these three basins.

4.4.1. Experimental design. Using the linear trivariate,
nonlinear abc, and abcd models, we generate 10,000 traces of
P, PE, and Q, each of length n = 50 for the Animas, Sacra-
mento, and Saline basins. Generation of 10,000 traces enables
us to evaluate the bias and root-mean-square error associated
with each estimator of climate elasticity. Generation of annual
climate and streamflow traces from three different theoretical

models enables us to evaluate the robustness of various elas-
ticity estimators introduced in section 4.4.3.

4.4.2. Generation of climate and streamflow traces. Se-
quences of P are generated from a gamma distribution since
Guttman et al. [1993] found the gamma distribution to provide
an acceptable fit to sequences of annual precipitation across
the entire United States. Tsai [1998] and others have found
that sequences of annual precipitation in the United States are
approximately serially independent; hence that assumption is
used here. Estimates of PE are obtained from (3) using the
generated P values along with the assumed theoretical mo-
ments in Table 2. This insures that the P and PE sequences
reproduce the observed correlation structure summarized in
Table 2. Using the generated sequences of P and PE, synthetic
sequences of Q are then generated from each of the three
theoretical models. In order to reproduce all the moments
listed in Table 2, it was necessary to add normally distributed
model error with zero mean and variance o7, (from Table 2). If
we did not add model error, the synthetic streamflows would
not reproduce the theoretical properties of the assumed the-
oretical river basins listed in Table 2.

4.4.3. Estimators of climate elasticity. In this section we
describe the estimators of &,(wp, ) to be evaluated in the
Monte Carlo experiments. In each case an analogous PE elas-
ticity estimator exists. However, we do not report those results
here. A natural nonparametric approach to estimation of

ep(Mp, Ko) in (2) is to use

2-20) o

ep = median ( P_P P
where O and P are the long-term sample means. Limbrunner
[1998] used this nonparametric estimator to summarize the
regional behavior of P and PE elasticity across the United
States. There is a numerical problem with this estimator when
P, approaches P, causing e} to approach infinity.

The second estimator is obtained from the trivariate model
in (4), based on the result in (5):

612° = ﬁQ,P(CQ/CP)~ (8)

We term (8) the bivariate estimator because the trivariate
model reduces to the bivariate model for the case of P elas-
ticity. Circumflexes over variables imply a sample estimate of
the indicated parameter.

The power law model Q = aPP exhibits a fixed value of
ep(P, Q) = B. Since none of the assumed models exhibit a
power law structure, it is instructive to consider a power law
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Figure 3. The percent bias of four estimators of precipitation
elasticity of streamflow for the Sacramento, Animas, and Sa-
line basins.

estimator; because if it performed well in this experiment, it
would certainly be a robust estimator. We consider the esti-

mator of ep(up, Kp):
ep = aB(pl o), %)

which we term the power law mean estimator. Here 3 and &
are the least squares estimators of a power law model.

Finally, we consider estimates of climate elasticity based on
the abcd water balance model. Estimation of climate elasticity
using the abcd model requires calibration of the model using
the generated traces of Q, P, and PE. The abcd model is
calibrated using the shuffled complex evolution (SCE-UA)
algorithm [Duan et al., 1992]. The SCE-UA algorithm is a
global optimization algorithm developed at the University of
Arizona and is widely used for automatic calibration of water-
shed models.

In addition to the above estimation methods, Sankarasubra-
manian [2001] reports the performance of many other estima-
tors including several localized nonparametric regression
methods designed particularly for estimation of derivatives
[Loader, 1999]. However, none of those methods, including the
more advanced estimators, offered improvements over the es-
timators reported here.

4.4.4. Performance evaluation measures. A primary goal
is the development of a contour map illustrating the sensitivity
of streamflow to climate; hence an approximately unbiased

SANKARASUBRAMANIAN ET AL.: CLIMATE ELASTICITY OF STREAMFLOW

estimator of € 5(p, Ky ) is needed. The optimal performance
of the alternative estimators of p(wp, pe) is evaluated using
the performance measure percent bias defined by

ep — E(ep)

percent bias® (eh) = o
P

100, (10)
where k = 1 to 3 denotes each one of the three assumed
watershed models, i = 1 to 4 denotes the four elasticity esti-
mators introduced in section 4.4.3, £ denotes the true value of
ep(p, Mo) given in Table 3 for the kth model, and e}, de-
notes the vector of 10,000 estimates of &,(up, 1) using the
ith estimator.

4.4.5. Results. Figure 3 summarizes our Monte Carlo ex-
periments by illustrating the percent bias of four estimators of
ep(Mp, o) for the basins of the Sacramento, Animas, and
Saline Rivers. None of the estimators are uniformly superior in
terms of percent bias for all three model structures. The abed
model estimator performs poorly when flows arise from either
a nonlinear abc or trivariate model. The three remaining esti-
mators perform roughly equivalently. However, since we favor
a nonparametric estimator over a parametric estimator, we
recommend the nonparametric estimator e for general usage.
Comparisons of the root-mean-square error of these four es-
timators did not lead to any additional useful information;
hence they are not reported here.

5. Climate Elasticity of Streamflow
in the United States
5.1.

In this section the robust nonparametric estimator of climate
elasticity identified in section 4.4.5 is employed to estimate
contour maps of ep(up, wp) for the United States. Schaake
[1990] summarized the sensitivity of streamflow to changes in
P and PE in the form of contour maps for the southeastern
United States. His maps were obtained by perturbing a non-
linear monthly water balance model. Risbey and Entekhabi
[1996] created contour maps of the percent change in stream-
flow versus the percent change in precipitation and tempera-
ture for the Sacramento basin.

Precipitation elasticity estimates for the 1291 HCDN river
basins are obtained using the nonparametric estimator e}
given in (7). Note that e}, represents the median of annual
estimates of climate elasticity over the period 1951-1988 at
each site. We used Kendall’s tau test to document that esti-
mates of ej, are independent of P at each site. This suggests
that P elasticities are fixed for each basin, so we summarized
ep(Mp, Ip) using the median values as defined in (7).

Figure 4 illustrates a contour map of &p(up, pp) for the
continental United States. A value >1 indicates that a 1%
change in precipitation can cause a >1% change in streamflow.
Occasionally, such as in portions of Montana and North Da-
kota, values of P elasticity are <1. Other than these two re-
gions, the P elasticity for the entire United States ranges from
1.0 to 2.5. The contours in Figure 4 are very similar to the
water balance model-based contour plots developed by
Schaake [1990] for the southeastern United States with values
in the range of 2.0-2.5. Section 5.4 of this paper provides a
physical interpretation for the variations in £ »(wp, L) across
the United States.

Elasticity Map Using Nonparametric Estimation
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Figure 4. Contour map of precipitation elasticity of streamflow for the continental United States.

5.2. Model-Based Estimates of Climate Elasticity
in the United States

It is instructive to compare the performance of nonparamet-
ric estimates of p(up, pp) with estimates based on a water-

shed model. Such comparisons can provide insights into the
impact of model calibration and model choice on estimated
climate sensitivity of streamflow. The abcd model is calibrated
to 30-year annual time series of P, PE, and Q at each of the
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Figure 5. Comparison of boxplots of nonparametric and “abcd” model-based estimates of P elasticity of

streamflow for the 18 major U.S. water resource regions.
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Figure 6. Comparisons of precipitation elasticity of stream-
flow from this study with 10 previous studies.

1291 basins shown in Figure 1, using the SCE-UA algorithm
[Duan et al., 1992]. Estimates of & »(up, o) Were obtained by
substituting the calibrated model parameters and hydrologic
state variables into analytic expressions for &,(wp, o) de-
rived by Sankarasubramanian [2001]. The bottom graph of
Figure 5 illustrates box plots of the goodness-of-fit statistic R>
corresponding to the fit of the abcd model to the observed
streamflow and climate data for the 18 water resource regions
shown in Figure 1. Overall, the goodness of fit is quite good
with the exception of the midwestern regions of the United
States. The top graph of Figure 5 compares box plots of & (.,
o) obtained using a nonparametric estimator and the abcd
model. In general, the agreement between these two methods
is quite good, with the exception of the midwestern regions
where the goodness of fit of the abcd model is poor. In these
midwestern regions the abcd model often led to estimates of
ep(Mp, o) in excess of 3. Figure 5 illustrates clearly that
these very high values of climate elasticity are probably suspect
because they correspond to situations when the goodness-of-fit
statistic R* was very low. Thus Figure 5 demonstrates that poor
model calibrations can lead to suspect estimates of &p(up,

Bo)-
5.3. Comparisons With Other Studies

In this section we compare the results of our nonparametric
estimator with results from 10 detailed modeling studies. Fig-
ure 6 summarizes comparisons of the nonparametric elasticity
estimator e with estimates derived from 10 river basin studies
performed by Nemec and Schaake [1982], Nash and Gleick
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[1991], Schaake [1990], Flaschka et al. [1987], Jeton et al. [1996],
and Risbey and Entekhabi [1996]. Each of these studies re-
ported simulated values of annual streamflow Q corresponding
to various values of annual precipitation. Most studies re-
ported increases in annual streamflow which result from arbi-
trary increases (e.g., +10% or +25%) and decreases in pre-
cipitation. To compute &,(p, pp), We fit a power law model
to the reported values of Q and P. In all cases a power law
model gave a nearly perfect fit, with R values always >99.5%.
We only considered modeled results where PE was held con-
stant at its historical average value. The agreement is generally
quite good with the exception of the three studies by Nash and
Gleick [1991].

A comparison of precipitation elasticity estimates for the
Animas basin obtained from this study with estimates given by
others (see Table 1 and Figure 6) reveals that the nonpara-
metric estimator ep = 1.83 is in good agreement with the
estimates 1.97 and 1.90 by Schaake [1990] and Vogel et al.
[1999], respectively. However, ¢, = 1.83 is in poor agreement
with the estimates 1.09 and 1.05 from Nash and Gleick [1991]
and Revelle and Waggoner [1983], respectively. Since we now
know (from the Monte Carlo study) that the nonparametric
estimator in (7) is robust and roughly unbiased, this leads us to
suspect the results of the studies by Nash and Gleick [1991] and
Revelle and Waggoner [1983]. Apparently, this nonparametric
elasticity estimator may be quite useful for validating hydro-
climatologic investigations. One is tempted to conclude that
the more detailed monthly and daily simulation studies cited
here lead to climate elasticities which are closer to the truth
than this study which uses only annual data. However, even
those studies can disagree significantly, as is the case for the
Animas River. Schaake’s [1990] results are grossly different
from those of Nash and Gleick [1991] for the Animas basin, yet
Schaake’s [1990] results are very close to our own. Apparently,
model calibration plays a significant role in determining the
sensitivity of streamflow to climate because calibration is the
primary difference between the studies by Nash and Gleick
[1991] and Schaake [1990].

5.4. Physical Interpretation of Variations
in Climate Elasticity of Streamflow

Dooge et al. [1999] use a soil moisture accounting model,
similar to the abcd model used in this study, along with three
different climate forcing functions to derive analytical relation-
ships between &,(mp, po) and physical characteristics of
catchments. Ideally, analytic physical relationships for &, of
the type described by Dooge et al. [1999] would be used to
provide a physical basis for the variations in ep(pp, o)
illustrated in Figure 4. Instead, in this initial study we report
some of the more intuitively obvious physical mechanisms
which appear to control the climate sensitivity of streamflow.

5.4.1. Impact of snowpack storage. Figure 7 illustrates
that p(wp, o) is quite low (1.0-1.5) in regions where snow
storage is significant such as in the Rocky Mountains, Great
Lakes, and New England region. These regions have significant
snow storage which acts to buffer the impacts of climate
change. This effect is illustrated in Figure 7 which plots re-
gional average values of P elasticity versus regional average
snowpack depth for the 18 water resource regions shown in
Figure 1. Figure 7 demonstrates that &,(pp, po) is lower in
regions with higher average annual snowpack depths. Risbey
and Entekhabi [1996] hypothesize that snow storage buffers
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annual streamflow quantities by changing streamflow timing in
response to changes in climate.

5.4.2. An equilibrium interpretation of the climate elastic-
ity of streamflow. A common equilibrium assumption in wa-
tershed hydrology is that the continuity equation can be ex-
pressed as

0=P-E, (11)
where overbars denote long-term mean values. Assumptions
implicit in (11) include that groundwater seepage into and out
of the basin cancel each other and long-term changes in basin
storage are negligible. Kuhnel et al. [1991], Dooge [1992], and
others combine (11) with equations of the form

E/PE = ®[P/PE] = O[], (12)

where @ represents a functional transformation between the
variables E/PE and P/PE, to obtain general relationships for
the equilibrium sensitivity of streamflow to climate. Here the
ratio ¢ = P/PE is termed the humidity ratio. Dooge [1992]
refers to (12) as the Budyko hypothesis. Kuhnel et al. [1991]
show that (11) and (12) imply that

ep(P, Q) + epe(PE, Q) = 1, (13)

so that the sum of P elasticity of streamflow and PE elasticity
of streamflow is unity. Dooge [1992] found that &, is particu-
larly sensitive to the way in which subsurface drainage is mod-
eled, so that one cannot expect (11)—(13) to be representative
of most catchments. Nevertheless, it provides an elegant and
simple conceptual framework from which to begin our inter-
pretations of climate elasticity.

Kuhnel et al. [1991] and Dooge [1992] summarize three com-
monly used functions which represent the Budyko hypothesis.
They include the Ol'dekop function E/PE = tanh(¢), the
Schreiber function E/PE = ¢[1 — exp (—1/¢)], and the Turc-
Pike function given in (6).

Figure 8 illustrates nonparametric estimates of &p(p, (o)
for all HCDN basins in regions 1, 3, 10, 12, and 17 versus their
humidity index ¢ = P/PE. These five regions reflect a very
broad range of climate conditions in the United States. Also
shown for comparison are derived theoretical relationships
corresponding to the use of (11) along with the Turc-Pike,
Schreiber, and Ol'dekop equations. None of the theoretical
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Figure 7. Regional average precipitation elasticity versus re-
gional average snow depth.
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relations adequately represent the elasticity behavior of catch-
ments. This is to be expected from Dooge et al. [1999], who
show that €,(wp, uo) depends on many factors in addition to
the humidity ratio such as the stochastic nature of climate, field
capacity of soils, soil moisture levels, length of soil water de-
pletion, and saturated hydraulic conductivity. Figure 8 reveals
that only for very humid regions (¢ > 2), such as those in the
Northwest, does the Budyko hypothesis provide generally good
agreement with empirical observations. Figure 8 also shows
that humid basins tend to have significantly lower values of
£p(Mp, o) and tend to be much more homogeneous in terms
of ep(p, mp) than arid regions.

Figure 9 illustrates estimates of dQ/dP for 1291 basins using
the nonparametric estimator e}, in (7) versus the humidity
index ¢ = P/PE and the ratio oy/0, which represents the
variability of streamflow in comparison to the variability of
precipitation. Also shown for comparison in Figure 9 are the-
oretical relations corresponding to the Budyko hypothesis. Fig-
ure 9 uses dQ/dP as its ordinate instead of ep(up, pp) in
order to avoid the problem of spurious correlation. Also shown
in Figure 9 is an index of seasonality which provides a measure
of the degree to which moisture (precipitation) and energy
(temperature) are in phase or out of phase with each other. To
quantify this issue, we compute the correlation between
monthly temperature and precipitation pp,, as did Wolock and
McCabe [1999]. In Figure 9 we assume that when pp, > 0,
moisture and energy are “in phase,” and when pp, < 0,
moisture and energy are “out of phase.” Interestingly, the
variable o,/0p alone explains 83% of the variability of dQ/
dP. We also observe from Figure 9 that the Budyko hypothesis
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holds best for “inphase” climates. Basins with “out of phase”
climates tend to produce the highest values of dQ/dP and thus
the highest values of &,(wp, wep)-

6. Conclusions

This study has sought to develop a generalized understand-
ing of the sensitivity of streamflow to changes in precipitation
in the United States. The concept of elasticity e introduced to
the hydrological literature by Schaake [1990] is used to quan-
tify the sensitivity of streamflow to changes in climate. This
study and others [e.g., Dooge, 1992] have demonstrated that ¢
is highly model-dependent. This makes it difficult to generalize
our understanding of & because our understanding is also mod-
el-dependent. A Monte Carlo experiment compared various
methods for estimation of the precipitation elasticity of
streamflow e,. The preferred nonparametric estimator was
used to create a map of ¢, for the United States, and some
physical interpretations were provided for observed spatial
variations in e,. The following conclusions were reached:

1. Both model form and model calibration play an impor-
tant role in determining the sensitivity of model streamflow to
climate. Estimates of ¢, were shown to depend on both model
choice and model calibration. Therefore it is difficult, if not
impossible, to estimate the sensitivity of streamflow to climate
using a single watershed model.

2. Experiments reveal that the nonparametric estimator e,
in (7) is useful, has low bias, and is as robust as or more robust
than watershed model-based approaches for evaluating the
sensitivity of streamflow to climate. The nonparametric ap-
proach does not require a model assumption or a calibration
strategy.
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3. The contour map in Figure 4 illustrates the spatial vari-
ability of & p(pp, pp). Values of ep(up, np) generally range
from 1.0 to 2.5. The highest values of &(p, o) = 2 occur
primarily in the arid and semiarid regions of the Midwest and
Southwest.

4. Variations in &,(up, pmo) wWere shown to depend on
snow storage, the timing of the balance between moisture and
energy, and the humidity index ¢ = P/PE. Basins with a very
high humidity index such as in the Northwest were shown to
have relatively constant and low values of &p(wp, o). Simi-
larly, basins with large snow storage had the lowest values of
ep(mp, mp). The greatest spatial variation in &,(wp, Keo)
seemed to occur in regions where moisture and energy are out
of phase with each other.

5. Comparisons of values of &p(wp, pp) across studies
indicated that variations can be quite significant and are due to
differences in model form, model calibration, and input data.
The nonparametric estimator of €,(wp, pp) introduced here
is shown to be a useful validation statistic. Hopefully, future
climate change investigations will compare their results with
our results, illustrated in Figure 4.

6. The Budyko hypothesis given in (12) provides only a
very rough approximation of the sensitivity of streamflow to
climate change. The Budyko hypothesis is most useful for
basins with humidity ratios >1 and for basins in which the
moisture and energy balance are in phase with one another.
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