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Disaggregation Procedures for Generating Serially Correlated

Flow Vectors

JERY R. STEDINGERI AND RICHARD M. VOGEl

Department of Environmental Engineering, Cornell University

The slruclure of disaggregation models places severe constraints on the feasible values of the lagged
covanance of generated flow vectors. A new and simple class of disaggregation models is presented which
employ the Valencia-Schaake disaggregation model structure but allow the models' innovations to be
serially correlated These models can reproduce (1) the covariance matrix of the disaggregated flows, (2)
their covariance with the upper level flows, and (3) reasonable approximations to the lag one covariance
of the disaggregated flow vectors given the constraints imposed by a disaggregation approach The
MejIa-Rousselle disaggregation model is shown, in general, to fail to reproduce the anticipated variances
and covariances of the disaggregated flows because the model and its parameter estimators are not
self-consistent. The paper closes with a discussion of practical modeling considerations and of staged
disaggregatIon procedures whIch reduce the size ofmultisite multiseason models.

INTRoDucnoN above, this problem was addressed by Mejia and Rouss le
Since their introduction by Valencia and Schaake [1972, [1976]. However, as demonstrated in the first section of is

1973], disaggregation models have been recognized as a rea- paper and by Lane [1980, 1982]. their model fails to perf
sonable way to divide annual flows into seasonal flows [Mejia as anticipated. Examination of the causes of that failure re
and Rousselle. 1976; Tao and Delleur, 1976; Srikanthan, 1978; the constraints imposed by the disaggregation framework n
Lane, 1979; Todini, 1980; Salas et al., 1980] and to divide the lagged covariances of the disaggregated flows. The sec d
aggregate basin flows (monthly or annual) into flows at indi- section of the paper presents a class of disaggregation mo Is
vidual sites [Loucks et al., 1981; Lane, 1979, 1982; Salas et al., which, within the disaggregation framework, can reprod e
1980]. An important contribution was the suggestion, by thecovaria~ces of the disaggregated flow vectors X,. their
Mejia and Rousselle [1976] that the Valencia and Schaake varIances wIth the upper level flows, and reasonable appr i-
model structure could be extended to allow reproduction of mations to the lagged covariances of the X, series

the correlation among monthly flows in different water years
M. h ...' EJIA AND ROUSSELLE MODEL

I.e., t e correlation between dlsaggregated flow volumes In
different time units. This section discusses, as does Lane [1980. pp. V-14. V 6.

The Mejia-Rousselle model has been employed by Lane 1982]. why the Mejia-Rousselle modification of the Vale .a
[1979,1982] and Salas el al. [1980] in their "staged" disaggre- and Schaake disaggregation model generally fails to gene e
gation procedures. In the staged disaggregation procedure de- synthetic flows which have the desired or anticipated v i-
scribed by Loucks el al. [1981], the Mejia-Rousselle model ances and covariances. This illustrates the difficulties faced y
was employed to reproduce the period-to-period correlation of an algorithm which attempts to generate disaggregated w
flows at individual sites obtained by disaggregation of the vecto~s w.ith a specified lag one covariance matrix. First, s e

aggregate basin flow for each period. Lane [1979, 1980, 1983] notatIon IS necessary.
documents a general purpose computer program which can be The values of generated random variables such as
obtained upon request and which implements most of these higher level annual or aggregate monthly flow vectors Z,
procedures. be represented by upper case letters, while the historical (

Other disaggregation models have been proposed by Svani- served) values will be represented by lowercase letters z,; he
dize [1980], by Harms and Campbell [1967], and by Hoshi and may refer to a year. season, or a month, depending on whe er
Surges [1979], though problems were identified with the third Z, represents an annual, seasonal, or monthly flow vec r,
model [Hoshi and Surges, 1980]. Lane [1979,1982], Salas el respectively. Following the notation of Loucks et al. [1981, p.
al.' [1980], and Pei and Stedinger [1982] consider models 302-306], the generated Z, will be an n x 1 vector re e-
similar to that proposed by Valencia and Schaake but which senting the higher level flows, while X, is the m x 1 vecto of
have fewer parameters. flows generated by the disaggregation procedure; x, are e

The focus of this paper is on disaggregation techniques for historical values. All random variables are taken to have o
the situation where the flow vectors X" generated by the dis- mean; the historical flow series are assumed to have had t ir
aggregation of annual flows to seasonal flows or of aggregate aver.age subtr~cted, perhaps after some normalizing trans r-

basin flows to those at individual sites, have serial correlation matlon. Covarlances such as

not captured by the upper level flow model coupled with the
Valencia-Schaake disaggregation procedure. As mentioned E[X,X, T] I )

'Now on leave at the U.S. Geological Survey, National Center will represent the true variance and covariances of the ge r-

, ated values, whereas
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48 STEDINGER. AND VOOEL: DISAGGREGAnON PROCEDURE FOR STREAM Fww

represents (for k = 0 or I) an estimator of the covariance E
[ z x -T ] = E[ x -z T] T

( 13 ). f h h ..

1 fl ... h [ I , I. I.matrIx o t e Istorlca ows or some translormatlon t ereo .

(Stedinger [ 1981] discusses the advantage of reproducing the Thus the derivation of estimators of A and E[V I V, T], which

covariance of the transformed flows.) In general, we assume assumed that E[Y,Y,T] will equal E[y,y,T], incorporated an

that the generated higher-level flows Z, satisfy assumption which cannot be enforced and need not be true.

T Actually, a very general principle can be derived from this
E[Z,Z, ] = E[z.z. T] (3) example. There would be absolutely nothing wrong with

Hence, in expectation, they have a covariance matrix equal to Mejia and Rousselle's model with the specified least squares

the sample estimate. estimate of A were it used for prediction. Then one would

The basic Mejia-Rousselle model generally want to assume that the covariance between given

values of Z, and XI-I would equal the historical value
X, = AIZ, + AlX,-1 + VI (4) E[z,x.-1 T]. The problem comes when one attempts to use the

employs the n-dimensional Z, vectors along with m x n and Mejia-Rousselle model. to disaggregate.up~r level flows Z, .for

m x m matrices AI and Al and a sequence of independent the purpose of generat~ng random realIZatIons of ~he X~ serIes.

m-dimensional innovation vectors V, to generate an X, series. Then the on.ly pro~ertles that the Z, and XI-I serIes wIll have

The A and A matrices along with the covariance matrix of are those wIth whIch they are endowed by the modeler. Re-
V con:ain 1 gression and time series techniques which yield good models

I for prediction, forecasting, and control need not provide

m x n + m x m + m(m + I)/2 (5) models which are self-consistent and thus satisfactory for the

parameters. One could attempt to choose these values to re- purposes of stochastic simulatio? produce the three covariance matrices The consequences of the mconslstency In the MeJIa-

Rousselle model and constraints imposed by the disaggrega-

E[x.z. T] E[x.x.-1 T] E[X,X,T] (6) tion framework can be illustrated with an example. Assume

At fi t gl th be f t t .. be od d that the upper level flows are generated by an autoregressive
rs ance e num r o s a IStlCS to repr uce

d I f h ...mo e o t e lormmatches the number of avaIlable parameters so that the task

seems feasible. However, the disaggregation model's structure Z,+ I = DZ, + U. (14)

places severe constraints upon the sets of variances and co- ..
variances which can be reproduced, as we now show. wIth the method of moments estImate of D

Mejia and Rousselle's relationships for estimating A I' Al, D = E[z.z.-1 T] E[Z.Z,T] -I (15)

and E[V I V I T] are easily obtained by writing their model as

and .independent innovations U. which insure reproduction of
XI = AY. + VI (7) E[Z,Z,T], as assumed in (3). Multiplying" (14) on the right by

where y.T = (Z,T, X.-IT) and A = (Al, Al). Equations (3) and X.T and taking expectations yields the important relationship

(4) of Mejia and Rousselle [1976] are obtained by multiplying [Lane, 1980, p. V-15; 1982]

(7) on the right by Y, T and taking expectations: E[Z.X.- I T] = D E[Z.X. T] (16)

E[X, Y, T] = AE[Y, Y. T] (8) The troublesome covariance between the generated upper

Assuming that E[X, Y. T] and E[Y, Y, T] equal their historical level flows Z, will, as a result of th~ model's structure, depen.d

values yields Mejia and Rousselle's estimator of A : only upon D and the lag zero covarIance of Z. and XI" There IS

no reason why
A -E [ x y T ] E [y y T ] -1 (9

)-, I I I DE[Z.X,T] = E[Z.Z.-IT]E[zIZ.T]-IE[Z,XIT] (17)

By multiplying both sides of (7) by their own transpose and

taking expectations, one obtains a second r~lationship: should happen to equal exactly the historical lagged cross-

E[XX T] = AE[YY T]AT + E [VV T] ( 10 ) co~ariance m~trix E[Z,X,-IT] when E[Z,X,T] assumes its his-
.I I I , I torlcal value listed In (6).

This yields Mejia and Rousselle's estimator of V.'s covariance The magnitude of the errors which can arise from use of (12)

matrix: to represent E[Y, Y. T] when computing A and the covariance

of VI is illustrated in Figure I for Z. computed using ( 14) with
E[V,V,T] = E[X,X,T] -AE[y.y,T]AT (11) n = m = I. Closed form expressions for the actual modeled

..variance and correlation of the X, along with their correlation
ThIs assumes that the moments of Y, can and wIll equal the with the Z, are derived for that case in the first section of the

sample moments of the .Y I" appendix. The third section of the appendix also provides a

The Inconsistency simple model whose population values fail to satisfy (16). Lane

[ 1982] reports several multivariate examples of the failure of
In the derIvatIon of (9) and (11) glvlmg the values of A and the Mejia-Rousselle model to reproduce the specified statistics.

the covariance of V I, it is assumed that the covariance matrix

of the generated Y, will be that of the historical y, series Lane's M odification

[ E[Z.Z. T] E[z x -T] ] The next question is how to construct a model which will
E[y,y,T] = E[ T] E[ I I I T] (12) reproduce as many of the statistics in (6) as is possible. When

x.- I z. x, -I x.- I Lane [ 1982] explored this problem, he first assumed that

However, there is no provision in this model to insure that the upper-Ievel flows would be generated using (14). When speci-

covariance ofZ, and X'-l' E[Z,X.-IT], will in fact equal the fying E[Y,Y,T] in (8) and (10), he initially assumed that

historical value of the off-diagonal matrices in (12), which are E[Z,X.-I T] would be given by (17), while E[Z,Z.T] and

the transpose of one another: E[X.- I X, -I T] would equal their corresponding historical
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If E[W1W1T]-1 exists (which will not be the case ifZ, = LXJ, A third way to choose C is to consider its estimation as a

the C that satisfies (26a) is given by problem in model identification as well as parameter esti-

C = E [ T ] E[ T
] -t (26b) mation. Letting (24) describe the basic model, one could select

w,W,-t w1w' h ffi . C .. h . h ' h . Id .. t ose coe tctents ii' lor eac t, w IC yle the mInImum

If the indicated inverse does not exist, it only means there is variance or minimum square error predictor

more than one C which satisfies (26a) because the wI are lin- '"
early dependent (i.e., there exists L such that Lwl = 0 for L # W = ~ C W t (31)i' L.. I) )., -
0). In such cases, values of C can be obtained by omitting i= t

redundant equations, as explained below. of Wil' the ith component of WI. Thus it would be advanta-

Other C Estimators geous to set to zero thos~ Cii which are not statistically differ-
ent from zero when usIng some reasonable criterion. Pro-

In many cases, (24)-(26) will provide an adequate model of cedures for identifying minimum variance and minimum mean
the WI time series. However, sometimes one may want to use square error predictors accounting for parameter estimation
a simpler model. For example, it may be satisfactory in some error as well as residual unexplained variance are available
cases to reproduce exactly only the historical lag one corre- [Allen, 1971; Mallows, 1973; Akaike, 1974; Valdes et al., 1979;
lation of each component (Wlh series individually. Then it Hipel, 1981; Cline, 1981; Cooper and Wood, 1982; Trader,

would suffice to let C be a diagonal matrix with nonzero 1983].
diagonal elements This completes the model's development. ZI is generated by

E[(x -Hz ~x -Hz )T]., some unspecified model which ne~d only reproduce E[zlZ. T].
C = I I ,-1 I-t II XI can then be generated b y usIn g (20) where the Ware

II E [ T] I
wlw' ii generated independently of the ZI by using (24). However C is

Similar restricted multivariate models have been suggested by determined, the appropriate covariance matrix for V I should
,\,fatalas and Wallis [1976], Lane [1979], Salas et al. [1980], be calcula~ed by employing (2~). !h~s insures that WI's covari-
and Loucks et al. [1981]. Such a restricted W model is reason- ance ma~nx and hence the statIstIcs In (21) are reproduced.
able if Z, corresponds to the aggregate stre~mflow in one or EquatIons (20) and (24) could be combined to yield

more basins and each (Xlh is the flow in subbasin i. XI = BZI + C(X1- t -BZ1-1) + VI (32)
If Z, corresponds to an annual flow and each (Xlh to the

flow in season i, then it might be reasonable to reproduce the illustrating the dependence of XI on the difference between
correlation between W, and (WI-l); for some seasons i oc- XI- t and BZ1-1. However, the authors recommend that (32)
curring late in year t- 1. In particular, one could reproduce not be used as a basis for deriving'equations to estimate H, C,
the historical value of the col"mn vectors and E[V , V, T] based upon the observed moments of the

various flows. Simple attempts to do so may inadvertantly
E[(x, -Bz.~xl- t -Bz.-1h] assume that some sample lag one covariances would be repro-

= E[(xl -Bz.~x1-1 -Bz.- t)T]ej (27) duced, when in fact they would not.
Equation (32) could be employed as the basis of generalized

where ei is the ith unit vector. To develop a model which least squares or maximum likelihood estimates of B and C;
reproduces (27) for m + I -k ~ i ~ m, we employ the k x m the method of moments estimates of those matrices need not
matrix Hk which consists of the last k rows of an m x m be the most statistically efficient estimators. Two features of
identity matrix. Our new WI model will be (32) suggest that better parameter estimates might be avail-

W = C' H W + V = CW + V (28) able. First, the residuals in the regression problem that deter-
I k ,- t , 1- t I mines B (see (20)) are autocorrelated, violating the assump-

where C' is a m x k coefficient matrix. To reproduce the mo- tions that would make each row of B in (22) the "best linear
ments specified by (27) requires that unbiased estimates" of those parameters (Draper and Smith

E[W W -T]H T = C'H E[W W T]H T (29) [1981, pp. 153-157]; see also the discussion by Box and Jenk-
I' I k t 1- t 1-1 t ins [1976] concerning the efficient estimation of ARMA model

As a result, C' is given by parameters). However, as noted in the third section of the
C' = E[ T]H T { H E[ T]H T} -t (30) appendix, efficient parameter estimators for the prediction of

w,w1- t t k w,wI t future flows need not provide a satisfactory self-consistent

provided the indicated matrix inverse exists. The k x k matrix model for stochastic streamflow generation. Second, because
HkE[wIWIT]HtT may not have an inverse if some of the ele- the covariance matrix of V, and W, are not diagonal (i.e., the
ments of x, always sum to a corresponding element of Zl; for residuals of the component "regression" models are cross-
example, 12 monthly flows sum to the annual flow and separ- correlated), more efficient estimators of B and C may be ob-
ate at-site flows sum to the aggregate basin flow. If the covari- tainable in some cases by using generalized least squares pro-
ance matrix of wI has rank r less than m, then an H matrix cedures [Johnston, 1972; Diaz-Granados and Bras, 1982]. This
consisting of k different unit vectors with k ~ r can be selected issue is also discussed in the third section of the appendix.
to eliminate redundant wI components. This insures the invert- Finally, we also observe that, regardless of the selected ZI
ibility of HtE[w,WIT]HkT. Note that estimation of VI's covari- model, by expanding E[WIW1-tT] and employing

ance using (25) for any C will always insure that T TE[WIWIT] equals E[WIWIT]; this insures that use of (30) to 0 = E[WIZ,-t ] 0 = E[ZIWI-t ]

estimate C' will result in generated flows with the antici- one can demonstrate that the lag k covariance of the X gener-pated lagged covariances because the covariance of the ated with (20) is given by I

generated flows E[W I-I W I-I T] which appears in (29) will
equal E[WIW,T] substituted into (30). E[X,X,-tT] = BE[ZIZI-tT]BT + E[WIW1-tT] (33)
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As with the procedure that Lane [1982] first attempted, one of what would be the modeled value of E[ZIZ,-I T]. This
may be tempted to use (33) with k = 0 and k = I to derive the introduces nm addition parameters in the m x n matrix F.

value of E[WIW,T] and E[W,W,-I T] necessary to reproduce Likewise, constraint (34) can be relaxed allowing elimina-
both the covariance E[XIX, T] and lag one covariance tion of relationship (36). To reproduce the historical covari-
E[XIX,- I T] of the X, series. However, as before, there is no ances E[Z,X,- I T], a term GX,- I could be introduced into the
guarantee that a W, series could have such moments, and use generating equation for Z,. This introduces an additional nm
of (33) with k = I will, in general, not preserve linear relation- parameters in the n x m matrix G. With such an addition,
ships of the form Z, = LX,; this point is discussed in the ap- future upper level flows could reflect the actual value of pre-

pendix's second section. vious lower level flows. Such a change would greatly compli-
cate most upper level models; with such a change, flow se-

Comparison with Alternatives and Extensions quences at the two levels would need to be generated jointly.

This new model may be viewed as a reformulation of Mejia .., ..
and Rousselle's disaggregation model which performs as re- Equlv~~ence with Lane s Modification
quired and works within the limitations imposed by the disag- of MeJIa-Rousselle Model

gregation structure on the covariance of X, with Z'-I and Finally, we note that were upper level flows generated using
with X,-I. Assume for the moment that linear dependencies (14) so that Lane's modification of the Mejia-Rousselle model
among the components of Z, and X, were eliminated by drop- could be employed, our model would be statistically indis-
ping redundant components of the X, vector. (If the flows at k tinguishable from his if C in (24) were chosen so that (18) and
sites sum to (Z,)I' then one of these X, components can be (19) are satisfied; this requires reproduction of
dropped from the model and subsequently calculated as (Z,)I E[ T] (39)
minus the remaining (k -I) site flows.) Then the lag one co- W,X'-I

variance matrix of (X, T, Z, T), rather than

E[w,w,-1 T] = E[w,x,-1 Tl -E[w,z,- I T]BT (40)

I:I=E{(X,T,Z,T)T,(X,-IT,Z,-IT)} ...
or some more restrIcted set of statIstIcs. To reproduce (39), one

- [E[X,X,- I T] E[XIZ,- I T] ] need only let
-T T

E[Z,X,- I] E[Z,Z,- I ] C - E[ T ]E[ T] -I
-W,X'-I WIX,

will be of full rank and contains (n+m)2 statistics, none of =E[WIX,-IT]{E[xIX,T]-BE[z,X,T]}-1 (41)
which are linearly dependent. One can say that I:I has T T ..
(n + m)2 degrees of freedom. However, the Z, model deter- where E[x1x, ] and E~zlx, .] w~1l also ~ repr~du.ced. Th,s
mines the n2 lag one covariances E[Z,Z,-I T]. Our disaggrega- demonstrates that Lane s es.tlmatmg.eq~atlons wlll.yl~ld a ~ea-
. d I ' t t I . I . th t sible set of parameters provided the Indicated matrIx Inversion

tlon mo e s s ruc ure a so Imp les a .

in (41) can be performed and the resultIng value for E[V,V,T],
E[Z,W,-1 T] = E[Z,(X,-I -BZ,-I)T] = 0 (34) (25), is positive semidefinite. Neither reproduction of (38) or of

E[W Z T] = E[(X -BZ )Z T] = 0 (35) (39) seems to have greater merit, though. we find the s~mmetry
1 1- I II I-I of (38) appealing. Both approaches wIll preserve hnear re-

These relationships are equivalent to lationships of the form Z, = LX" as shown in the appendix's

E[ZIX,-IT] = E[Z,Z,-IT]BT (36) second section.

T PRAcncAl CONsIDERAnoNsE[X,Z,-I T] = BE[Z,Z,-I ] (37) h .. ti . d f h .
flIn t e Identl cation an use o stoc astlC stream ow

where B depends only upon lag zero covariances of X, and Z,. models, one should consider the appropriate mathematical
Each of (36) and (37) provide n x m additional constraints formulation of the model, criteria and procedures for efficient
upon I:I. Finally, if the matrix I:I is of full rank, one can allow and self-consistent estimation of the specified model's parame-
C to be a full m x m matrix which insures that the sample lag ters, and computational limitations and constraints upon pa-
one covariances rameter estimation and flow generation routines. Most of this

E x -Bz x -Bz -T = E w w -T 38 paper ~xamined .alternative mathematical structures. for ~he
[( 1 IX I-II 1) ] [ , , I] ( ) generatIon of serIally correlated flow vectors and relationshIps

are reproduced. These additional m2 relationships show that which can be employed to develop parameter estimators con-
all of the degrees of freedom in the lag one covariance matrix sistent with those structures. This section reflects briefly upon
I:I are accounted for by the model in (20), (24), and (26). computational limitations and practical considerations which

Clearly, one can view (34) and (35) as a problem in that they need to be addressed in the actual use of multivariate disag-
are somewhat arbitrary constraints imposed by the disaggre- gregation models.
gation framework. Whether they really are a problem depends
on whether the lag one covariances in (36) and (37), which Use of Real or Transformed Flo".s

result from those conditions, are both practically and statis- An important decision in the development of disaggregation
tically different from the corresponding population values, and other streamflow models is whether the modeled vari-
given historical evidence. In such cases those constraints can abIes, Z, and X, in this case, should correspond to the real
be relaxed by extending the model. observed flows or some transformations of the flows which are

One can construct a model which eliminates constraint (35) well described by the normal distribution. In the latter case.
and consequently could force E[XIZ,-I T] to assume its his- the innovation vectors V, can be generated from a multi-
torical value. This could be done by adding a term FZ,-I to variate normal distribution yielding multivariate X, series,
the right-hand side of (20), which defines W I' and making use provided the specified Z, are also multivariate normal.
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For cases in which Zl and X, correspond to the real or QII = Ti + exp [XII] (42)

untransformed streamflows, T odini [ 1980] describes how the, , ,
B matrix in the Valencia-Schaake model and the skewness where the restnctlon that XI have zero mean IS relaxed.

coefficient of the innovations ~I can be estimated, in theory, to Suppose that the su~ over i Of.Qil s~oul~ equal the annual

re roduce the skewness coefficient of the X II series. Such pro- flow or aggregat~ basIn flow QI , whIch Itself sh.o~ld equalPd fii f t a '
r obI ms some transformatIon of a component of ZI' Then It IS appro-

ce ures su er rom wo m Jo pr e ., , .

First, with such a procedure, the required skewness coef- p~la~e to make. some small adjustme~ts In the XII values to
fi ' t f the . no t l.

O e ies V is often lar g e causin g nu- elImInate the dIscrepancy between QI and the sum of the QII
clen or In va nsr II , h 'l ., .. h I .kl d ' . h d ' Idmerical and computational difficulties (S. Burges, personal w I e mlnlmlz,lng t e I e y Istortlon SUC. ~ Justments, COU

communication, 1983). Second, and more important, with cause. By lettIng f1i be ~he standard devIatIon of Xil' Ideally
such an approach, only the first three moments of the flow's one could choose the adjustment parameter 15 so that

distribution are actually specified; there is no guarantee that M
the resultant marginal distributions for flows at each site or in QI. = .L [Ti + exp (XII + 15f1J] (43)
each period will be satisfactory. This problem was illustrated Iz I

by Lettenmaier and Burges [1977], who examined the result- To avoid the need to solve this nonlinear equation, it is attrac-
ant marginal distributions of annual flows generated using a tive to replace exp (I5f1J by (I + 15uJ, where the two will be
model with skewed innovations. Moreover, given the frequent nearly equal for small 15Ui. Equation (43) becomes
concern with low flows in reservoir and water supply studies, M M
it is important that streamflow models describe the left-hand QI. -L Ti = L (I + 15uJ exp (XII) (44)
tailor lower quantiles of the marginal distribution of the flows i= I i= I
as well as possible, Use of the skewness coefficient is a particu- ..
larly poor statistic to use to achieve that objective; its use in The required value of 15 wIll be
estimation procedures generally results in relatively unreliable [ M M ][ M J- I
estimators of the lower quantiles of streamflow distributions 15 = QI. -~ Ti -~ exp (XII) ~ ut exp (Xi'~ (45)
[Stedinger,1980;Hoshietal.,1983]. I-I I-I 1-1

For these reasons, we recommend that one develop first a Our work has shown that the adjustments (1 + 15uJ to

satisfactory model of the marginal distribution of the individ- exp (X i.) yield reasonable results. Appropriately, the largest
ual series, That selection then defines the appropriate transfor- changes 15Ut exp (X II) are made to the largest flows and to
mation or functional relationship between the modeled nor- those flows which are the most unstable (as reflected by f1J.

mally distributed vectors X, and Z, and the corresponding These are both reasonable and desirable properties for such
historical and generated flows. In addition, the observed his- a~ adjustment algorithm, Others have employed adjustment
torical flows can be transformed to obtain the corresponding procedures where the change in each QII is proportional to
values of x, and I, which can be used to estimate the stream- QII'S standard deviation, to QII -E[Qi,], or to Qi' itself [Lane,
flow model's parameters [Salas et al., 1980, pp, 73-74; Loucks 1980, p. V-25].
et al., 1981, pp. 283-285],

One reservation often expressed concerning such parameter Model Size
estimation procedures is that the moments of the generated While the mathematical formulation of disaggregation
transformed flows will have means, variances, and correlations models is independent of the dimension of Z, and X" those
corresponding to the x, and Zl series; as a result, the moments values have a tremendous effect on the computer storage
of the generated flows will seldom exactly equal sample esti- space and processing capacity necessary to use such models.
mates of those quantities calculated using the observed his- To disaggregate simultaneous annual flows at 10 gages to
torical flow series (Salas et al, [1980, p. 73] and Lettenmaier monthly flows would result in a 120 x 10 A matrix containing
and Burges [1977, p, 290] express a similar concern). However, 1200 elements and a covariance matrix for VI with
recent work shows that reproduction of the means, variances, (120)(120 + I)/2 = 7260 distinct elements [see Salas et al.,
and covariances of the transformed values often yield substan- 1980, pp, 448-449]. Clearly, such large models are to be
tially better estimates of the moments of the real flows [Sted- avoided because of the sheer computational effort required as
inger, 1980, 1981]; for the lognormal distribution, the parame- well as the numerical stability problems associated with the
ter estimators obtained using the transformed values are or decomposition of the covariance matrix of the V, so as to be
are more nearly the maximum likelihood estimators which are able to generate those random variables [Salas et al., 1980, pp.
often highly efficient, Stedinger and Taylor [1982] provide a 86-87; Loucks et al., 1981, pp, 311-312].
discussion of these issues and of problems associated with One can reduce the size of an all at once disaggregation
streamflow model implementation. model if one chooses not to reproduce the observed sample

The other problem that arises when one first generates the covariance among every monthly flow observed at every site.
nonlinear transformations of the real flows occurring within a Lane [1979, 1982] and Salas et al. [1980], as well as Stedinger
year or within a basin is that the resultant (untransformed) and Pei [1982] and Pei and Stedinger [1982] have developed
flows in the individual periods or subbasins generally fail to reasonable condensed annual to monthly disaggregation
add up to the value of the annual flow or overall basin flow models which do not attempt to reproduce the covariances

specified through Z,. This difference can be ignored or, as is among all monthly flows within a water year; the number of
more often the case [Lane, 1979, 1982; Salas et al., 1980, p. parameters required is reduced by 50- 70% for a single-site
427], a correction can be made to eliminate the discrep- annual to monthly disaggregation model. Several multivariate
ancy. For example, if the real space flows Qi' are modeled by extensions of these condensed disaggregation models are POs-
a three-parameter lognormal distribution, then Q;, and X;, sible.

satisfy Even more appealing from both a modeling and compu-
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tational point of view is to use a staged disaggregation pro- new models can do as well as is possible within the constraints
cedure, such as those discussed by Lane [1979, 1982] and imposed by the disaggregation framework.
Salas et al. [1980] or by Loucks et al. [1981, pp. 303-306]. Ongoing work has found that these new disaggregation
For our 100site example, with the staged procedure suggested models are competitive with more general multivariate
by Loucks et al. [1981], one would first generate the aggregate streamflow models for the purpose of generating cross-
annual flow for all 10 sites and then disaggregate that value to correlated and persistent multisite flow series. However, in
the aggregate flow in each month. Then one could divide the particular situations, these disaggregation models might pro-
aggregate flow in all but the first month among the 10 sites, duce lower level flow vectors whose lag one covariance matrix
using a model such as that in (20) and (24); C would be chosen is both practically and statistically different from the true
to capture the persistence of the flows at each site by repro- population values, given historical information. In such cases,
ducing the lag one correlation of the corresponding ~r series. one may need to employ a more general multivarite time
Doing the 10-site annual to monthly disaggregation in one series model or one of the extensions of the basic disaggrega-
step resulted in a model with 8460 distinct parameters in the A ti on model suggested in the text.
and symmetric BBT matrices. With the two-stage model, the A final note of caution is appropriate. Because the disaggre-
first disaggregation (aggregate annual to aggregate monthly) gation models can reproduce some lagged covariances while
requires a model with 12 x 1 + 12 x 13/2 = 90 parameters; they either do not or cannot reproduce others, care must be

the second stage requires 11 models each of which has exercised to insure that a model's parameters are estimated
10 x 2 + 10 x 11/2 = 75 parameters and a model for the first using appropriate equations. If care is not exercised, then one
month in the water year (for which we take W, = V, for may implicitly assume that some historical statistics will be
C = 0) with 10 + 55 = 65 parameters. Thus the staged disag- reproduced when that is not the case. This illustrates a differ-

gregation model has only 980 parameters altogether or ence in the requirements which should be imposed on models
roughly an eighth; in this case, the number of parameters to be used for prediction, forecasting, and control and those to
required by the 100site all at once approach. In general, the all be used for stochastic streamflow generation. When devel-
at once monthly disaggregation procedure requires 84n2 + 6n oping equations for prediction, one generally assumes that
parameters for n sites, while the two-stage procedure requires historical relationships among the explanatory variables will
only 6n2 + 29n + 90. persist. However, when generating streamflows or other sto-

The staged procedure is attractive and appropriate for chastic sequences, the only characteristics of the real system
highly interconnected water supply systems where the total which will be reproduced in the generated series are those
volume of water available to the system in each month and reproduced by the selected generating model and its parame-
where it arrives is crucial, while the persistence of either high ter.s. Thus, special care should be exercised to insure that
or low flows at each particular site is less important. (See models used for stochastic streamflow generation and statis-
Hirsch et al. [1977] for an illustration of the operating issues tics used to estimate the model's parameters are self-
associated with such systems). This staged disaggregation pro- consistent.
cedure specifically addresses: (I) the distribution of the total A NDIX
basinwide annual and monthly flows, (2) the covariance PPE

among concurrent monthly flows at individual sites, and (3) Derivation of Modeled Statistics of the Univariate
the month to month correlation of flows at each site. That Mejia-Rousselle Model
should be adequate for a great many situations. Here we derive closed form expressions for the modeled

Co statistics E[X,2], E[X,X,-.], and E[X,Z,] of the Mejia-
NCLUSIONS R II d I " . I ..

( I) Lousse e mo e lor a sImp e umvanate case n = m = .et
Disaggregation models provide a straightforward procedure the upper level flows be generated using an AR(I) model of the

for dividing annual or seasonal flows among subperiods and form

dividin~ aggregate fl~ws among subba~ins. ~he sim~le Z = DZ + U AI

ValencIa-Schaake algonthm can perform thIs functIon provld- r 1- I 1 ( )

ed that the resultant lag one covariance matrix of the gener- The basic Mejia-Rousselle model can be written
ated vectors is satisfactory. This paper considered disaggrega- X = A Z A X + ~ (A2)
tion models which explicitly model the persistence of the dis- , 1 , + 2 r- 1 1

aggregated flows. We have shown that reproduction of the In this instance, the estimates of the model's parameters are
exact historical serial correlations of the lower level flow vec- easily derived by using (9), ( II ), and ( 15). When E[ x, 2] =
tors can be an impossible task within a disaggregation frame- E[Z,2] = 1, one obtains
work because of the constraints imposed by that framework. E[ ~ ] -E[ ~ ]E[ ]

These constraints have been discussed and a new and flex- A1 = X'..I .,.\",-1 ~,.\"'-1 (A3)
ible class of disaggregation models described. These models I -{E[Z,.\",-I]}

employ the basic Valencia-Schaake model structure but allow E[X,X,-I] -E[z,.\",- I]E[x,z,]
the residual vectors themselves to arise from a serially corre- A2 = 1 -{E[z,.\" -]}2 (A4)
lated stochastic process. Like the Valencia-Schaake model, ' 1

these models can reproduce the covariance between con- E[~2] = I -A1E[x,z,] -A2E[x,.\",-I] (A5)
current upper level and lower I~vel flows as well as th.e.covari- The modeled variance may be computed by substitution of
ance of the lower level flows wIth them~elves. In addItIon, the (A3), (A4), and (A5) into (10). For this univariate example that
new models can reproduce reasonable approximations to the substitution yields
lag one covariance matrix of the lower level flow vectors.
While no disaggregation model can in general reproduce the E[X,2] = -!.-, [A 1 {2E[X,Z,] -A1} + E[~2]] (A6)

exact historical lagged covariances of the lower level flows, the I -A2
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where E[XIZI] is round by substitution or (A3) and (A4) into then ZI = XI.l + XI.2 with UI and ~ independent series. For a

(8), which gives long historical record, sample moments will approach the

A1 population values, which are
E[X,ZI] =

1 - A E[ ] (A7) E [ Z 2] = 0' 2
2 z,z, -1 , .

as well as E[X,.12] = p20'.2 + 0'.2

E
[ XX ] = (A2 + D)A.E[X'Z,] + A2E[~2] (A 8 E[Z,X,.I] = pO'.2

'1-1 l-(Ar )
2 E[Z,Z,- 1] = E[(~IZ,- .+ ~2X,-I,1 + u ,)Z,-I]

We assume for the purposes or this simple demonstration that = (~ + ~ P)O' 2
E[Z,Z,-.] = E[z,z,-I]. Expressions (A6), (A7), and (A8) were I 2 .

used in the development or Figure 1. E[ZIXI-I.I] = E[(2IZ,-1 + ~2X,-I.1 + U,)X'-I.I]

Preserration of Linear Relationships = 21(PO'.1 + ~2(P%0'.2 + 0'.%)

Among Z, and x, = (~I + 2%P>PO'.% + ~%O'v% (A18)

The text discusses the desire to insure that when 1, = Lx,. N th I t . r E[Z x ] '
11 I h dh Id I h ow, e as expressIon or, ,-1. WI equa t esecon

one s ou a so ave. ...
term on the nght-hand sIde In (A16):

LE[X,XI-l T] = E[Z,X,- .T] (A9) E[Z,Z,-I]E[Z,2] -1 E[Z,X,] = (~. + 2%P>PO'.% (A19)

To show that this is the case for Lane's second model (see 'r d I .r % .. d t .
II18 fi h I an on y 1 2%0'. IS I en lca y zero.

( )) rst note t at ., WIth respect to (A15), one should also note that when

LB=LE[x,z,T]E[z,z,T]-1 =1 (A10) Lw,=O, it will be impossible to generate a W, series which
, reproducesE[w,w,T]and for which E[LW,W,-IT]is anything

wh~re I IS ~he IdentIty matnx. Now (18) IS equIvalent to (19), other than zero. Thus use or (33) with k = 1 to specify
whIch requIres that E[W, W, -1 T] can easily yield an infeasible value for that

E[(XI-BZ,)X,-.T]=E[(x,-B1,)x,-IT] (All) matrix.

Multiplying by L and noting that Lx, = Z, and LB = I yields Evaluation of Alternative Parameter Estimation
Procedures

LE[X X -T] -E[Z X -T] = 0 (A12) ..., , I, , 1 As dIscussed followIng (32), the method or moments estl-

as required. mates or B, c, and tv = E[V,V,T] need not be as efficient as

Now consider the case where flows are generated using (20) alternative parameter estimation procedures. First, we note
and (24). If c is estimated as in (26), then that if one views estimation or B or C as m separate regression

T problems, such as
E[(X, -BZ,:NX,-I -BZ,-I) ]

"

=E[(x,-Bz,:Kx,-.-B1,-I)T] (AI3) Xil= LbijZJr+ J-;, (A20)
j=1

Again, multiplying on the left by L yields .
then the least squares estImators or each row or coefficients

LE[X,X,-I T] -E[Z,X,-I T] -LE[W,Z,-I T]BT = 0 are essentially the method or moments estimators employed in

(A14) (22) and (26); the only difference would be a plus or minus one
change in the range or the index in (2) defining the sample

As noted in (35), the third term vanishes, yiell ng the desired covariances.
result. If one views estimation or B as a least squares problem, then

Finally, if one uses (33) with k = 1 to specify the lagged the autocorrelation or the residuals in (20), as described by
covariance or W, needed to reproduce E[X,X,-I T], they (24), implies that (22) need not be the best estimator or B
would obtain [Draper and Smith, 1981, pp. 153-157; Zellner, 1971, pp. 86-

97; Johnston, 1972]. To overcome this problem, one can work
E[W , W , -1 T] = E[x,x, -.T] -BE[z,z, -1 T]BT (AI5) with the complete model

Multiplying by L on the left, one finds that X, = BZ, + CW'-I + V, (A21)

LE[W,W,-I T] = E[1,x,-1 T] -E[z,z,-1 T]E[z,z,T]-1 E[1,x,T] where VI has covariance matrix

(A16) E[V,V,T] = tv (A22)

If Z, = LXI' then for wI = (XI -BZ,), LWI = 0, and but is otherwise independent from period to period.

LE[W,W,-.T] should vanish because E[(LW,XLWI)T] will be If one used (A21), in which the residuals are independent
zero. However, as noted earlier with regard to (16) and (17), from period to period, to estimate B and C using ordinary
the right-hand side or(A16) need not vanish. For example, if least squares, he would find that the estimates of B and C

should satisfy
z = ~ I Z - 1 + 22 X -+ u, , , 1.1 I [ E[ T ] J [E[ T ] E[ T

] JX,XI = B c Z,1, 1,W'-1
X'.I = pZ, + ~ (AI7) E [xw T] [ , ] E[ w z T] E[ --T ]"-. ,-1, ..,-1..,-1

x,.% = (1- P)Z, -~ (A23)
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In practice, w, cannot be computed until B has been estimated, thoughtful review which resulted in substantial improvements in the

but that problem can be surmounted. B and C can be esti- paper; we appreciate his penetrating questions. The financial support

t d .t t . I b .
th t ' t . t f B t I provided by NSF grant CME-8010889 is gratefully acknowledged.
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