Decision Support System for Adaptive Water
Supply Management

Kirk S. Westphal, M.ASCE?; Richard M. Vogel, M.ASCE?; Paul Kirshen, M.ASCE?;
and Steven C. Chapra, M.ASCE*

Abstract: Recent advances in computer technology and water resource modeling, availability of real-time hydroclimatic data, and
improvements in our ability to develop user-friendly graphical model interfaces have led to significant growth in the development and
application of decision support systerti3SSg for water resource systems. This study provides an example of the development of a
real-time DSS for adaptive management of the reservoir system that provides drinking water to the Boston metropolitan region. The DS
uses a systems framework to link watershed models, reservoir hydraulic models, and a reservoir water quality model with linear anc
nonlinear optimization algorithms. The DSS offers the ability to optimize daily and weekly reservoir operations toward four objectives
based on short-term climate forecasfiy:maximum water quality(2) ideal flood control levels(3) optimum reservoir balancing, arid)

maximum hydropower revenues. Case studies document the value of the DSS as an enhancement of current rule curve operations. T
study shows that simple tools, in this case, familiar spreadsheet software, can be used to improve system efficiencies.
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Introduction yield, however, MWRA managers recognized that the monthly

For many water supply systems, reservoir operations are based ofimescale for operational decisions was not compatible with cli-
heuristic approaches including rule curves, operator judgment, Mate variability within each month in New England. Promoting
and other qualitative information. While often reliable and cost the highest possible water quality and preparing for potential
effective, such techniques often pertain only to individual objec- floods require adaptive management of the system as climatic and
tives, and usually do not offer guidance for adaptively fine tuning hydrologic events occur. With real-time climate forecasts and hy-
a system as real-time conditions change over short time periodsdrologic data readily available, MWRA managers decided that a
This study is an effort to quantify, organize, and process all real-time DSS could help improve operations with respect to nu-
sources of information necessary to adaptively manage the watemerous objectives based on expected hydroclimatological condi-
supply system that services the Boston Metropolitan region sotions.
that long-term plans can be adapted on a weekly basis to changing A real-time DSS is developed for a seven-day planning period,
conditions and time-varying objectives. and its output is based on input of current climate forecasts. It
The Massachusetts Water Resources AuthdftWRA) oper- allows planners to maximize or minimize, as applicable, any of
ates a two-reservoir system in central Massachusetts that suppliefour objectives individually or in hierarchical multiobjective for-
drinking and industrial water to the Boston Metropolitan region. mulations, depending on circumstances. The four objectives are
Historically, operational decisions were made on a monthly basis, the minimization of total organic carbofTOC) in the down-
with the assistance of rule curves, and the system has been &tream reservoir, the minimization of deviations from target el-
reliable source of water for many decades. Despite satisfactoryevations, balancing the two reservoirs, and the maximization of
revenues from three hydropower facilities. It is normally assumed
"Water Resources Engineer, CDM, One Cambridge Place, 50 Hamp-that the water supply system satisfies demand so that water qual-
Shirze St., Cambridge, MA 02139. E-mail: westphalks@cdm.com ity and flood control are normally the primary objectives. The
_ Professor, Tufts Univ., Dept. of Civil and Environmental Engineer- pwWRA has historically operated the hydropower facilities with-
ing, Medford, MA 02155. E-mail: rvogel@tufts.edu out economic intent; hence power revenues are always a second-

SResearch Associate Professor, Tufts Univ., Dept. of Civil and biecti N thel d t that hvd b
Environmental Engineering, Medford, MA 02155. E-mail: 2y ODJECUVe. Nevertheless, we document that hydropower ben-

pkirshen@tufts.edu efits may be increased while still achieving the primary water
“professor and Berger Chair, Tufts Univ., Dept. of Civil and Environ- quality and/or flood control objectives.

mental Engineering, Medford, MA 02155. The DSS combines hydrologic, hydraulic, and water quality

E-mail: schapr01@tufts.edu models into a system optimization model that uses both linear

Note. Discussion open until October 1, 2003. Separate discussionsprograms(LPs) and nonlinear program@LPs). Since prospec-
must be submitte_d for individual papers._To ex_tend the closing date' bY tive users of the DSS include engineers, managers, and field op-
one month, & written request must be filed with the ASCE Managing erators, practicality and transportability were of paramount impor-
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JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT © ASCE / MAY/JUNE 2003 / 165



Connecticut R. Ware R. can be diverted to the Quabbin Reservoir via the Quabbin Aque-
duct. However, river diversions significantly restrict other opera-
tional activity, and can cause operational conflicts.

- The westernmost system component is the Connecticut River.

The river does not supply the MWRA system with water, but flow

in the river, as measured at the USGS gauging station in Mon-

tague, Mass., governs minimum daily downstream releases from
the Quabbin Reservoir to the Swift Riverhich eventually flows

into the Connecticut River and is lost from the systefihe mini-

A mum daily release rate is 0.076 MCM, but this increases to 0.174

Sr MCM when Connecticut River flow drops below 13%/s) and to

0.269 MCM when flow drops below 132%s. Considering that

the estimated value of safe yield from the entire system is roughly

1.14 MCM/day (Vogel and Hellstrom 1988 these minimum

downstream release rates represent a significant percentage of

available water. The DSS predicts streamflow in the Connecticut

River in order to include this important constraint on weekly res-

ervoir operations.

The system includes three hydropower stations, as shown in
Fig. 2, with a total capacity of 8 MW. Water released to the Swift
River flows through the turbines at Winsor Station. Water trans-
ferred from Quabbin to Wachusett can pass either through the
turbines at Oakdale or through bypass pipes when flow require-
ments exceed turbine ratings. Water released from Wachusett into
the Cosgrove Tunnel passes through the Cosgrove turbines.

The Quabbin Aqueduct connects the two reservoirs, and relies
on gravity to accommodate the three separate operational needs
depicted in Fig. 3. First, it can be used to divert water from the

The water supply system supplies 46 communitiesighly 2.5 Ware River into the Quabbin Reservoir. It can also be used to
million pe0p|e in eastern Massachusetts with an average of 0.96 transfer water from the Quabbin Reservoir to the Wachusett Res-
million m® (MCM) of water per day. It consists of two reservoirs €rvoir, through either a hydropower station or a bypass pipe. The
in series as depicted in Figs. 1 and 2. The Quabbin Reservoir,bypass valves are nonregulating valves, and when they are
located 130 km west of Boston, has a 49CPkmatershed, and can ~ opened, the flow is governed only by the head in the Quabbin
store up to 1,560 MCM of watei966 MCM active storage The Reservoir and the physical characteristics of the aqueduct. Be-
Wachusett Reservoir, 40 km closer to Boston, has a 277 km cause the turbines are flow limited, the bypass mechanism permits
watershed, and can store up to 246 MCM of wd@6.7 MCM transfer rates nearly twice as high as are possible through the
active storage The Wachusett Reservoir also receives water from turbines. Operationally, the single aqueduct fulfills three pur-
the Quabbin Reservoir via the Quabbin Aqueduct, and serves agposes, but only one operational mode is possible at a given time.
the final retention basin for the water before it is chemically Figs. 2 and 3 illustrate the management alternatives for the
treated. In between the two basins flows the Ware River. From system. For every 7-day planning period, the following daily de-
October 15 through June 14, water in excess of 0.32 MCM/day cisions are needed: how much water, if afly,to divert from the

Shaded towns
receive water from
the reservoirs.

] 50

80.5 km

Fig. 1. Massachusetts Water Resources Authority water supply
system

velopment of a functional graphical user interface as well as a
mechanism for model integration, data transfer, and numerical
solutions. Optimization algorithms include those available within
an enhanced version of the standBsdcel SOLVERThe resulting
DSS is a singleExcel workbook that can be easily understood,
applied, and modified by engineers and system operators.

System Description and Management Options

Connecticut River

Aqueduct

Stillwater R. &
Quinepoxet R.
Diversion
¢ Release to
H Wach

Nashua R.

Release to
Swift River

Chicopee R.

——Aqueduct or Channel
== Management Decision
~ River

Hydropower Station

WachusettAqueduct
to suburban towns

Cosgrove Tunnel
to Boston

v

Fig. 2. Schematic of Massachusetts Water Resources Authority water supply system
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Fig. 3. Schematic of aqueduct transfers and diversions

Ware River, (2) to transfer from Quabbin to Wachusett via
Oakdale Station(3) to transfer via the bypass pip€4) to release the running of the DSS. First, as soon as the hydrology of the four
from Quabbin downstream, an®) to release from Wachusett basins is simulated, the predicted flows for the planning period
downstream. It is the purpose of this DSS to enable such deci-are presented along with 12-month historic hydrographs of each
sions to be made in an objective, adaptive, and optimal fashion. basin. This output allows the users to evaluate runoff predictions
in the context of recent trends, and to evaluate the performance of
the rainfall-runoff models. The second set of output data is dis-
played once the optimization module has determined an optimum
operating schedule for the chosen objedsyeThe 7-day sched-
Although the entire DSS is contained within a single PC file, its ule of daily releases, transfers, and diversions is displayed along
components were designed in a modular framework. The moduleswith predictions of surface levels, 7-day basin yield, total spill-
are interconnected as illustrated in Fig. 4. The hydrologic models age, and hydropower revenues. Finally, water quality graphs
are run as soon as the user inputs climate forecasts, initial condi-based on the optimized schedule are provided after the optimiza-
tions, and the constraints that may vary from week to week. The tion is complete.

output of the watershed models is then transferred to the hydrau- Users interact with the DSS through a control screen that is
lic and optimization modules. The hydraulic models adjust auto- structured as a flowchart for easy navigation through the program.
matically during optimization, and continually update the LP or Each “button” on the control screen, when clicked, calls a VBA
NLP with values of system variables and constraints. subroutine that either displays a dialogue box for data entry or
triggers the various modules within the DSS, including LPs and
NLPs. From this control screen, optimization can be repeated
with different objectives or combinations of objectives. Also, the
control screen offers options to evaluate water quality and fore-
cast sensitivity. In this way, all decision-support information is

i accessible from a single control screen. See West{#@dl1) for

the graphics of all interface screens.

Output is transferred to the user interface three times during

Program Structure and Interface
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Fig. 4. Block diagram of decision support system

MODELS
A A A
Hydrologic Hydraulic imization Pr
-Rainfall/Runoff | | -Water Balance [+7 -MIN TOC (LP) ; Modeling Techniques
—» -Surface Precip [ -Volume:Elev [P -Flood Control (LP) i
-Evaporation -Aqueduct Flow -Balance Reservoirs (LP) 1
-Seepage -Hydropower -MAX Hydropower Revenue (NLP) . i i
I x | Hydrologic Modeling
S — nssourpur E— The hydrologic models predict watershed runoff into both reser-
¥ A | voirs and streamflow in the Ware and Connecticut Riyeystem
o 7-day Yield Estimat Optimum 7-day Schedule: o Final Surface H it _ti -
el | B i constraints Streamflow predictions are based on real-time 7-day
hydrographs . gq:y TD“’es’?“‘s . Lok:l Spillage forecasts of precipitation and temperature ranges. Weekly averag-
. . roj r - . . . . .
SIS Rovoms. ing is used since the operating objectives focus only on end-of-
« Final TOC week conditiongnot on the day-to-day variability of system con-
ol ditions), and since this technique avoids unnecessary uncertainty
e — I — in daily hydrologic responses of the large watershd@pera-
RESU'—‘B x’f‘gf;SMENT tional flows are accounted for ondaily basis to allow aqueduct
A flow in two directions during any given week, yet only the total
F t 2-D Mass Tradeoff Studies, H H : H H H
L L Sansiimity e Whitioblective weekly flows are important in computing the objective functipns.
Analysis (TOC) Problems i The flow predictions are used in the reservoir optimization model
to constrain the natural inflows to the system and to establish
mandated constraints on diversions and releases.

Critical to the success of any real-time DSS is its ability to
accurately predict watershed runoff using a minimum of input
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Fig. 5. Weekly yield model performance

data(Loucks 1995%. Four independent watershed models are de- ration (E;). Groundwater storage®;) and soil moisture $,) are
veloped to predict the watershed yield for the Quabbin and simulated as separate storage reservoirs. Streamfgwig sim-
Wachusett Reservoirs and flow in the Ware and Connecticut Riv- ply the sum of baseflow and runoff, where baseflow is estimated
ers. Reservoir yielt is defined as as a linear function of groundwater storage. Modifications were
Yy =Qqi+ Py —Ey+ Gy (1) added to account for snow accumulation and melting, and the
S ) reduction in evapotranspiration caused by subfreezing air tem-
where Q= streamflow; P=precipitation onto the reservoir sur-  haratres. Thabed model is an attractive watershed model for
face; E=free-surface evaporation; ai@l= groundwater seepage .« pss becausél) its parameters are physically baséxke
for planning periodt at site i. Str_eamflovx_/, evaporation, and .Fernandez et al. 2000(2) it is a parsimonious model having only
groundwater seepage are determined using independently Call'five parameters with the addition of the snowmelt modifications,
brated models based on expected precipitation and temperature. . .
Streamflow is predicted using a modified version of #ed thereby conforming to recommendations by Hornberger et al.
(1985, Hooper et al.(1988, Beven (1989, and Jakeman and

water balance model introduced by Thon{a981). This model Homb 1993 (3) | . I S d
uses four physically based paramet@sb, ¢ andd) to compute omn er'gel( 3 (3) 't_ requires only pregpnanon and tempera-
| ture as input(4) it provides estimates of internal watershed state

inflows and outflows from two storage variables; near-surface soi - ’ k ) !
variables including groundwater storage, soil moisture storage,

moisture and groundwatéaquifep storage, according to the fol- - ’ -
lowing equations: and actual evapotranspiration, afi it compares favorably with
] other commonly used water balance mod&ise Alley 1984;
Available water: W,=P;+S,_; 2 vanderwiele et al. 1992
Ideally, free-surface evaporation would be estimated from ei-

Evapotranspiration opportunity: | :
ther pan evaporation data or the Penman-Montieth approach for

Y= o (Wi b)2al?—bW,/a 3) e§t|mat|ng potential evaporatlon. Since data are unavailable for
2a either approach, the following temperature-based approach to es-
_PE timating reservoir evaporation was employed:
. . t
Soil moisture storage: S;=Y exr{ ) 4)
t b SE;=ayPEsA 8)
(W= Yy +Gi — ) ;
Groundwater storage: G,= (W= Y)+Giy ) whereS_E[I free surfaqe evaporation fo_r weeland reservoi;
1+d a,; = calibrated coefficient; PE;;= potential evapotranspiration
Actual evapotranspiration: E;=Y,— S, ) computed using the Hargreaves method; &gd-reservoir sur-

face area. The calibration parameters in &8j.were obtained by
Streamflow: Q;=[(1-c¢)(W;—Y;)+dG;] (7 comparing regional regression equations developed by Fennessey
and Vogel(1996 for estimating monthly mean potential evapora-
the sum of previous soil moistur&(_,) and current precipitation  tion (PE) from very limited data. Fennessey and Vogel show that

(P,). Evapotranspiration opportunityY,) is defined as the water their regression equations reproduce long-term monthly average

that will eventually leave the basin through evapotranspiration, Values of PE based on the widely used but data-intensive
and is used to help define how much of the available water re- Pénman-Monteith approach. Finally, a seepage model was devel-

mains in the basin during each timestep. Potential evapotranspi-oped for each reservoir based on modeled groundwater storage
ration (PE,) is estimated using the Hargreaves metHéthr- levels and time of yeafWestphal 200L The models of each
greaves and Samani 1982mong all temperature-based methods hydrologic contributor are combined for each reservoir to esti-
of potential evapotranspiration, the Hargreaves method is the onlymate reservoir yield using Eq1). The results shown in Fig. 5
one recommended by Shuttleworth and Maidmeiri93. The indicate that the reservoir yield models reproduce average daily
equations distribute available water between runoff, percolation to yield for 7-day periods with reasonable accuracy, explaining
groundwater, change in soil moisture storage, and evapotranspitoughly 75—-80% of the weekly variations in overall yield. Addi-

For each timestep, the model compugasilable water(W,) as
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Table 1. Controlled Reservoir Releases

Release from Release to Medium Method of determining flow
Quabbin Swift River(min) Winsor Power Station Connecticut River model
Swift River (extra Winsor Power Station Optimization program
Springfield suburbs Chicopee Valley Aqueduct User input
Wachusett Nashua Rivémin) Fountain at Dam User input
Nashua Rivefextra “Waste Gates” Optimization program
Lancaster Mills Fountain at Dam User input
Town of Clinton Pipeline User input
Town of Leominster Pipeline User input
Metro West Towns Wachusett Aqueduct User input
Boston Metro Cosgrove Power Station, Cosgrove Tunnel User input

tionally, the Connecticut River model predicts the correct flow Because only one aqueduct fulfills three purposes, only one
regime 92% of the time, and the Ware River model exhibits simi- operational mode is possible at a given time, and the simulated
lar accuracy. aqueduct is limited to only one function per day. E€kla) and

(11b) combine continuous and binary variables to define daily
flow in the aqueduct with linear equations, based on physical and

operational limitations
Reservoir operations for each reservoir are modeled using the

Hydraulic Reservoir Models

continuity equation Transfer= Qpin(CheckTrag) + Tran + Limity, ... CheckByp
(119)
S=S-at ; Inflow; = ; Outflow ©) Div;= f(CheckDiy,Constraints (11b)

whereS;= storage volume at the end of weekThe inflows and where Q,,=minimum rated turbine flow; Tran=transfer
outflows to each reservoir can be disaggregated for any weeklythrough turbines in excess @, on dayi (continuously variable

period using from zero to an upper boudand Limityy,,se hydraulic limit
computed for the bypass circuit as a function of differential head.
E Inflows = Drainage+ Precipy CheckTran, CheckByp, and CheckDiy are all binary variables
that are set equal to 1 if their corresponding function is deter-
7 7 mined to be optimum, or 0 if not, and the sum of the three for any
+2 Transfer in+2 Div; (10a) daily value ofi is constrained to ITran is also constrained to O
=1 =1

if CheckTranis 0. The upper bound ofran is estimated each
week as a constant from historical records based on relative initial

E Outflowg= EvaporatiomSeepag&?E REL, head levels, and the value bimit,,.ssis determined each week
4 as a constant using the energy equation and the Darcy-Weisbach
7 equation with calibrated friction factors. The valuesif/; are
+ > Transfef e+ Spill (10b) optimized, and vary from O to an upper limit computed from
i=1 hydrologic simulation and numerous hydraulic, operational, and

where each value dREL, represents one af possible controlled !egislated _constraintﬁoresented _IaterThgy are constrained t_o 0
daily releases from the reservoir, anis a daily index. if CheckDiy is equal to 0. This technique converts nonlinear
The hydrologic terms are discussed in the previous section. functions and dlscqntlnumes |ntq a s!mple, m_lxed-lnteger I_|near
Transfers occur in the Quabbin Aqueduct, and since the system isormat, by segmenting the equations into continuous and discrete
entirely gravity fed water can only be transferred from Quabbin to Plocks: Transfer is either the sum of a discrete minimum value
WachusettFigs. 2 and B Regulated transfer flow can be passed and the contlnuo_us variablEran,, or it is equal to the discrete
through turbines at the Oakdale hydropower station. Alternatively, value of the maximum bypass flow.
flow in excess of the maximum turbine rating can be transferred ~ Other important hydraulic relationships are those between res-
into Wachusett by bypassing the turbines via nonregulafinity ervoir volume, surface elevation, and surface area. Surface eleva-
flow) valves. In such cases, flow is determined not by valve set- tion is a measurable quantity, and is used by MWRA as a primary
tings but by the physical features of the aqueduct and relative guide in operational decision making. Unfortunately, surface el-
head levels in the reservoirs. Diversions represent flow that is evation is a nonlinear function of reservoir volume, and the DSS,
diverted from the Ware River into the Quabbin Reservoir, and are as designed, uses LPs for greatest efficiency. Storage, however, is
expressed by the daily decision variabl#/;. Controlled re- @ linear function of inflows and outflowlEgs. (9)—(100)], and
leases represent reservoir withdrawals for downstream flow or this linearity permits fully linear simulation of the reservoir hy-
MWRA water users. Release values are determined via user inputdraulics. User input and DSS output are expressed in terms of
results of hydrologic modeling, or system optimization, as out- surface elevation, since this is the familiar standard. The program
lined in Table 1. Spills from Quabbin are estimated from initial Simply converts elevation to volume prior to, and following, the
elevation, and spills from Wachusett are estimated from mass bal-optimization algorithm. The MWRA has developed the following
ance estimateg@ssuming that all excess water in Wachusett can regression relationships between volume and elevatiBA (
spill within one week >0.99):
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Stillwater much easier to obtain. The MWRA uses the absorbance of ultra-
River violet light at a wavelength of 254 nrfUV-254 absorbangeto
QuinepRc?xet indicate required chlorination levels and expected levels of disin-

iver

fection byproduct$DBPS. From a modeling perspective, predict-
ing rates of light absorbance is difficult, but TOC can be modeled
by considering the advection, diffusion, settling, and production
of organic material throughout the reservoir. Our model simulates
TOC and the results are correlated to levels of UV-254 absor-
bance using

Cosgrove
Intake

Quabbin
Transfer )

UV-254=0.4456 TOC) — 0.5918 (14)

where UV-254 is in units of absorbance in a 10 cm cell, and TOC
is expressed in mg/L. This correlation is based on 29 available
data points, and the model exhibits & value of 0.73. It is
heavily influenced by four outlieréwithout which theR? value
increases to 0.85 MacCraith et al.(1993 and Matscheand
Stumwdirer (1996 confirm that UV-254 and TOC are well cor-

Fig. 6. Segmentation of Wachusett Reservoir in water quality model

Soua= 7,958,351 36,56 1.5 Eqap + 42.122TE gyan 2

(122) related, although the relationships are known to be site specific.
Swach= 829,121.402- 5,237.9906E yacr) + 8.36311946E yac) As more data become available, the correlation model can easily
(12b) be refined. As it is, the numerical water quality model provides

MWRA with an estimate of the effects of any optimized schedule

where S and E represent reservoir volume in millions of gallons . : . - ;
and elevation in feet above Boston City Ba®@WRAS units) onthe TOC in the_ reservoir, and the _correlatlon relationship offers
) a reasonable estimate of the resulting level of UV-254 near the

The surface area is assumed to be relatively constant for eacqreatment plant intake. The authors are developing a separate

week, and is computed using similar relationships. . . . .
The hydropower stations were simulated with nonlinear equa- manusc_npt that will describe the watgr quality modgl and the
correlation between UV-254 and TOC in greater detail.

tions (head and head loss are nonlinearly related to )floiwn . . ) .
. 2. . While data pertaining to TOC concentrations, reservoir levels,
alternate linear approach would be to optimize a set of decision . : .
and inflows were readily available, other data that would have

variables representing time periods of operation at discrete oper- : N
. . - . been useful in the development and calibration of a fully mecha-
ating points with predetermined head loss, head, and flow. How- ~." . . .
; . - nistic model were not. Algal biomass, phosphorus, nitrogen, and
ever, the lack of reliable turbine efficiency curves rendered such : .
. . . : . . temperature data were either sparse or unavailable, and hence
incremental analysis unreliable. Turbine efficiency was simply es- e .
. L X . stratification and the occurrence of spring algae blooms were
timated at 80%, although actual efficiency will vary with flow and o ; !
. X . . . based on historical trends. In a real-time model, however, this
head. This value is consistent with MWRA long-term planning - . . i
0ses no problem, since users can use available real-time moni-

models, and has proven to be a reasonable estimator. The tota] - .
. S oring data to answer yes/no questions about the state of the res-
revenue generated in a 1-week period is modeled as ; . ; " Y
ervoir each weeksuch as, “Is the reservoir fully stratified?
s 7 _ Their answers are converted to binary variables that simulate the
REVENUE?Z 2 Qit(Hi—hy)pgmP; state of the reservoir mathematically.
Lt Stratification is particularly important in this model, since the
thermal structure of the stored water affects the flow paths of two
major source rivers and the water transferred from Quabbin, all of

(13)

where Q;;=flow at stationi on dayt; H;=average head over a
weekly period;h ;=head loss in penstodk p = density of water;
g=gravitational acceleration;n=overall efficiency; and P; which enter at the western end of the reserysee Fig. 6. The

= price per kilowatthour at station with appropriate conversion  reservoir is typically stratified from mid-May through mid-
factors. The head loss terms are estimated with the Darcy-October. Quabbin water is usually much colder than Wachusett
Weisbach equation using calibrated friction factors. water, and we might expect that it would plunge downward to-
ward the hypolimnion. However, when Thomas Ba&action 1

in Fig. 6) receives water from both the aqueduct and rivers, the
mixing effect tends to equalize the temperature of all the incom-
A two-dimensional mass balance model for total organic carbon ing water. The result is that the well-mixed inflow temperature
was developed as a way to assess the impacts of any optimizedalls somewhere between the warm epilimnion temperature and
operations schedule on water quality in the Wachusett Reservoir.the colder hypolimnion temperature. The incoming water there-
This downstream reservoir was analyzed because it is the finalfore flows along the very narrow metalimnion of the stratified
point of storage before the water is chemically treated and dis- reservoir downstream of Thomas Basin. This “interflow” pro-
charged to the distribution system. Hydrologic inflow and outflow vides a direct conduit for the water from one end of the reservoir
predictions and optimized transfer and discharge flow are auto-to the other, and its effect is a reduction of the residence time for

Water Quality Modeling

matically input to the model to simulate the water balance. The
reservoir is divided into five longitudinal elements as shown in
Fig. 6. Differential equations for TOC concentration are then
solved for each segment of the discretized reservoir.

Measuring organic content in water can be difficult. However,
organic material absorbs light, while inorganic material tends to

scatter light. Measurements of light absorbance tend to offer rea-

most of the incoming water from 6—7 months to roughly 2—4
weeks(Camp Dresser & McKee 1996The depth of the intake
gates at the Cosgrove Intake coincides with the depth of the met-
alimnion during periods of stratification, so the water flows
straight through and out of the reservoir very quickly. Based on
measured historic temperature profiles, the model simulates the
reservoir in either the stratifie@hree-layey or nonstratifiedone-

sonable estimates of organic content in the water, while beinglayen configuration(see Fig. 7. During periods of complete
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Unstratified Model:

where V=volume; A=cross-sectional area between segments;
As=settling area; Q=flow; M=mass; c=concentration; E
=diffusion coefficient; Ax=horizontal mixing length; vs
=settling rate; andkg=areal growth rate.

For the stratified reservoir

dMm Ei—1Ami_,
dt =Qinjci_, Q|”|+1C+T t,—ch
- ”./epilimnion EAm : EUiAme t t
. ._> + A (Cl+l Ci)+w(cei_ci)
hypolimnion Ev i Am h

Cmh (chi—ch)—vsAscl+kgAs (18)
Fig. 7. Structure of total organic carbon model

{

Mm! = Mmi+ aMm (timestep 19

stratification, all flow is routed through the thin metalimnion, and
the resultant decrease in segment volume greatly increases the Mmt+l
advective transport rate. ci't= v (20)
The five longitudinal segments were chosen using natural di-
visions in reservoir bathymetry, and so that each segment couldwhere Am Vm, and Mm are, respectively, the vertical cross-
be associated with historical temperature profile measurementssectional diffusion area, volume, and organic mass associated
Segment volumes for the five segments shown in Figs. 6 and 7with the metalimnionEv; are the vertical diffusion coefficients.
were computed from bathymetric maps and historic records of Amg are the areas of the horizontal planes separating the epilim-
temperature variation with depth. The TOC model reproduces thenion and metalimnion in each section, aithh are the areas of
6—7 month transport time when each segment is well mixed, andthe horizontal planes separating the hypolimnion and metalimnion
the 2—4 week stratified transport time, both with very reasonable in each section. Likewisd,mg andLmh represent the vertical
accuracy. mixing lengths characterizing mixing across each section. Finally,
The transport times make it difficult to use the TOC model c; represents concentrations in the metalimnion, whédeandch,
directly with the optimization program, since operational activity represent the concentrations in the other two layers, both of which
during any week will not impact water quality near the treatment are calculated similarly, but without an advective transport com-
plant for at least 2 weeks, and usually much longer. Hence, theponent.
TOC model is used to predict TOC concentrations in each of the  Fig. 8 illustrates the results of model calibration. The model
five segments shown in Fig. 7, although the effects of operationsoutput in the weekly DSS illustrates the response of each seg-
are usually observed immediately only in the receiving basin ment, including the receiving bas{€1), which responds imme-
(segment 1 Operators can make decisions based on this responseliately to operational activity and can provide meaningful esti-
with the understanding that the remaining segments will follow mates of the effects of operational plans on eventual water quality
this signal, with a response analogous to that of a low-pass filter. downstream. The calibration parameters were settling, diffusion,
Fig. 7 illustrates the structure and mechanisms of the TOC and production rates, all of which were bounded by physically
model. The model simulates advection, diffusitorizontal and  plausible limits for northeastern U.S. lak@&/estphal 2001
vertical), settling, and production during certain springtime peri-
ods. The four input flows represent the two source rivers, the
transfer aqueduct, and local hydrology at the receiving basin.
Flow in each segment is computed using a nested loop algorithm,Operators can select from among four operating objectives for
in which the spatial segmentsither 5 or 13, depending on strati- any given week, as conditions warrant: minimize TOC, optimize
fication are simulated for each step within a temporal loop, dis- flood control operations, balance overall system vulnerability to
cretized with a timestep of 0.1 day. The general equations for thefloods, or maximize hydropower revenuédways a secondary
TOC concentrations are solved numerically using the Euler objectiv. These objectives may be optimized individually for
method(first order, explicit, where the superscrifitis the tem- tradeoff studies, or sequentially in certain multiobjective combi-
poral index, and the subscripis the spatial index. nations. The constraint method is employed for multiobjective
For the unstratified reservoir formulations, as recommended by Cohon and Mdd&75 for
reservoir optimization problems with fewer than four objectives.
dM; ott O o T Lo e X' t Reservoir target elevations can b timized i bjec-
——=Qinc!_,—Qint, ¢!+ (ct_,—ch) _ \ (s tion be optimized as a primary objec
dt i Ax; o tive with any other objective optimized as a secondary objective
simply by constraining upper and lower reservoir bounds. Water

Optimization Objectives

EA (cl, ,—ch—vsAscl+kgAs (15) quglity can also be opti_mized vv_ith h_ydropowe_r as a secondary
Xi objective. The program is run twice, first to optimize water qual-
dm! ity, and then to optimize hydropower production based on con-
MIFt=Mt+ —(tlmestep (16) strained flow rates and surface elevations for optimum water qual-
ity.
ML The first three objectives are formulated as mixed-integer LPs,
CiHl:thH (17) and solutions can be obtained with the simplex algorithm and
i

branch and bound programming in 10-15 s with a 600 MHz
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Fig. 8. Total organic carbon model calibration results

Pentium 11l processor. The fourth objective, hydropower optimi- Flood Control Objective

zation, is nonlinear, and optimum operating schedules are ob-For flood control, the objective is simply to minimize the differ-
tained with the generalized reduced gradient algorithm in roughly ence between the ending volume and a target volume based on
1-5 min with the same processing hardware. To avoid the prob-desired flood storage capacity input by the user. Only the Wachu-
lem of local maxima, users are encouraged to iterate several timessett Reservoir is considered in the objective function formulation,
with different initial conditions to check for apparent convergence since its smaller size makes its volume more sensitive to opera-
toward a true optimum. Typically, though, the decision space is tional flow levels. Desired storage levels in the Quabbin are gov-
tightly constrained, especially since hydropower production will erned by upper and lower constraints input by the user. The flood
be maximized only as a secondary hierarchical objective, andcontrol objective is expressed as

local maxima have not proven to be particularly troublesome dur-
ing initial tests. M|N|Scomputed— Starge{Wach (22)

To enable a linear formulation of the absolute value in this objec-

Water Quality Objective tive function, dummy variables are introduced as suggested by
Linking the water quality objective directly to the water quality Revelle et al(1997.

model was problematic because the TOC concentration of pri-
mary interest(at the downstream end of Wachusett Resejvoir Reservoir Balancing Objective

does not depend on reservoir operations within the 7-day simula-Reservoir balancing can be selected as the objective if both res-
tion period. Alternatively, the TOC model for the upstream receiv- eryoirs are above their normal elevations. Normal elevations were
ing basin could have been linked to the LP, since receiving basin getermined by the MWRA and Vogel and Hellstr¢988 based
concentration responds very quickly to operational inputs. How- on historical reservoir operations. The reservoir balancing objec-
ever, no data existed with which to calibrate the TOC concentra- tjye attempts to ensure that both reservoirs end the planning pe-
tion anywhere but at the downstream intake to the treatment plant.;joq with the same percentage of excess storage availabteve
In this initial study we employ the TOC model as an assessmentporma). For example, if Quabbin begins a week with 20% of its
tool and an alternative objective function is developed for quan- excess storage utilized and Wachusett begins the week with 90%
tifying reservoir water quality. of its excess storage utilized, the LP will “balance” the system so
The water quality objective is based on the total weekly rans- that they might both end the week with 30% of excess storage
fer of water to Wachusett and the water surface elevation in yjjized. This objective balances the vulnerability of the overall
Wachusett. Each of these variables is linked to improvements i”system to downstream flood damage by ensuring that both reser-

water quality. Quabbin water is generally much cleaner than ygirs have approximately equal absorption capacity with respect
Wachusett water, due to much lower levels of watershed develop-tg their basin areas. The objective is expressed using

ment and a much higher residence time that allows for settling
and natural purification. Transferring water from Quabbin to MIN |%EXCesg s~ YEXCESHacH (239)
Wachusett promotes dilution of impurities in Wachusett water
year round. High water surface elevations in Wachusett impede
light penetration and subsequent plant growth, and also discour-
age gull roosting in the shallow areas. Thus, to optimize water
quality, the transfers and surface elevation of Wachusett are maxi-
mized. To maintain linearity, the LP maximizes reservoir volume
in lieu of elevation. Thus, the objective function for optimizing
water quality can be expressed as follows:

where

Scomputed— Snormal

Smax_ Snormal

%ExXcess= %100 2d)

Hydropower Objective

The objective for hydropower revenue maximization is simply the

maximization of hydropower revenues given in Et@). Because

the MWRA does not operate the system with economic intent,

(21) hydropower revenues are considered a residual benefit, and are
maximized only as a secondary objective to water quality or flood

where Sy,.= ending storage in the Wachusett reservoir defined control. Flow for Winsor Station is the sum of minimum down-

by Egs.(9)—(10b); and Transfer=total daily transfer from the stream releases and the extra release, which is a fraction of the

Quabbin to the Wachusett Reservoir, defined by Bda). decision variable REL") proportional to the Quabbin drainage

;
MA><{ Swacht 2 Transfer
i=1
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Table 2. Decision Variables

DIV; Continuous Daily diversion from Ware River to Quabbin Reservoir i=1-7
TRAN Continuous Daily transfer from Quabbin to Wachusett via hydroplant i=1-7
in excess of minimum turbine rating
REL" Continuous Combined daily extra downstream release above reqg. min.
CheckDu; Binary =1 if Ware River is diverted on daly else=0 i=1-7
CheckTran Binary =1 if Quabbin-Wachusett transfer through hydroplant occurs i=1-7
on dayi, else=0
CheckByp Binary =1 if transfer through bypass pipe occurs on daglse=0 i=1-7
z* Continuous Dummy variable used when objective function contains
absolute value
z" Continuous Dummy variable used when objective function contains

absolute value

(MWRA strives to keep extra releases in check by distributing within-month climate and system variabilities in the analysist
excess water evenly throughout the system, based on basin areaa replacement based on new rules. Overcoming misperceptions of
Flow for Oakdale Station is expressed using Bda), and flow the tool as a replacement rather than an enhancement, and under-
for Cosgrove Station is governed by the demand constraint for thestanding the risks associated with basing operations on predicted
Cosgrove Tunne(servicing Bostoh Average head is computed climatology and hydrology, were perceived as the key obstacles
as the difference between the elevation of the turbines and theto the eventual acceptance and utility of the DSS. These case
midpoint between the starting and ending reservoir elevations. studies were designed to help planners and operators understand
the potential value of DSS recommendations by addressing the
uncertainty inherent in the predictive model elements, and by
demonstrating whether or not the DSS could actually add value to
The overall weekly optimization problem consists of 36 to 38 the traditional operating methods while operating in full accor-
decision variablegsee Table 2 The nature of the water supply dance with long-standing regulations and operating rules.

Constraints and Decision Variables

system necessitates numerdis/OFF control values within the Planning periods were chosen which were not coincident with
model formulation, and hence the optimization is formulated as a calibration periods for the individual model components of the
mixed-integer linear program. DSS. In each case, actual climate records were used in lieu of

Roughly 250 constraints bound the variables for any 7-day forecasts in order to isolate model error from forecast error. The
planning period. Some constraints vary with circumstance, and assumption of perfect forecast information does not necessarily
are either updated automatically by logical programming prior to create an unfair comparison here, since traditional methods of
optimization, or are input by users based on preference or circum-planning have relied on initial conditions and time of year, and
stance. For example, users may choose to allow diversions fromnot on climate forecasts. Still, in an attempt to minimize any
the Ware River in order to assist with flood relief even if legis- unfair benefits obtained from such an assumption, weeks during
lated constraints would normally prohibit such action in the inter- which no rain occurred were selected for each test, since the
est of water conservation. The interface gives users access tmccurrence of no rain can usually be forecast with reasonable
some of the constraints that may, from time to time, be relaxed. accuracy. To account for forecast uncertainty during real-time
Users can also constrain upper and lower reservoir elevations.planning, the DSS is equipped with a forecast sensitivity module
Users also enter expected demand for each planning period. Oththat compares optimized operating schedules derived from mini-
erwise, the constraints are generally fixed, and represent physicamum, maximum, and average expected precipitation in each
limitations, legislated mandates, known best practices, and operabasin. The relative impact of forecast error with respect to model
tional limitations. Unlike many long-term planning models, in errors will be carefully evaluated over time as the DSS is phased
which a small set of general constraints is replicated for each timeinto use.
step, this real-time model requires extremely detailed constraints
to ensure that the behavior of the _entire water supp_ly system iSCase Study 1: Optimizing Water Quality
reproduced as accurately as possible. The constraints are tabu-

X . ; . and Hydropower Revenues
lated in Table 3, using the notation at the end of this paper.
A dry week, ending October 24, 1998, was selected for the first
study. Since both reservoirs were well below full capacity,
Case Studies MWRA operators would likely have been most concerned with
water quality, as opposed to flood control or reservoir balancing.
To test the effectiveness of the DSS, two cases were simulatedThus maximizing water quality was selected as the primary ob-
and the resulting optimal operations schedules were comparedective, and maximization of hydropower revenues as a secondary
with records of actual water management. The objective was to objective.
see if the DSS could generate operating schedules that would The hydrologic models predicted a net hydrologic loss of
have improved operations toward a specific set of objectives. —0.072 MCM/day for Quabbin, and this compared favorably
Since the constraints are based on the principles used to developvith a measured value 6f0.064 MCM/day. To provide a sense
the original monthly rule curves, and on all of the legal restric- of scale, the long-term mean yield is 0.78 MCM/day. Wachusett
tions imposed on system operations, any such improvements caryield was predicted as 0.064 MCM/day, and actual measurements
be considered to beefinement®f the traditional rule curvety revealed a true gain of 0.10 MCM/day. In comparison to the
the addition of optimization algorithms and the inclusion of long-term mean of 0.54 MCM/day, the model error was very
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Table 3. Model Constraints

Type Constraint Notes
Capacity S> Sk-min
Hydraulic Q< Quemax
Flooding -S. Term in brackets represents daily spill
[m +Rps_+REL! <FC,
Water quality CheckTrap+ CheckByp=[1,—] Force transfer from 5/1 to 10/30
CheckTrap+ CheckByp=[1,—] Force transfer if water in Quabbin Aqueduct is stagnant for 30
days
Legislated DIVi=[0,—] Diversions are not allowed from 6/15 to 10/14
DIVj < Qware— 0.32 MCM/day Can only divert Ware flow in excess of 85 mgchinimum
instream flowy
Rps-quas=[0.076,0.17,0.2F MCM/day Minimum release to Swift River is governed by predicted flow in
Connecticut River
Operational DIVj=[0,—] Cannot divert Ware River if Quabbin is aboORM
RELT =[0,—] Can only release extra water if both res. abdl@RM
DIVj, TRAN, RELT, z*, 27 =0 Continuous decision variables cannot be negative
Binary CheckDiy, CheckTran, CheckByp-[0,1] Definition of binary decision variables
CheckDiy+ CheckTran+ CheckByp= 1 Quabbin Aqueduct can only be used for one purpose at a time
DIVj — CheckDiy= —0.999 If DIV,;=0, this forcesCheckDv;=0
1000° CheckDiy—DIV=0 If DIV;>0, this forcesCheckDv;=1
TRAN—CheckTrap= —0.999 If TRAN=0, this forcesCheckTran=0
1000° CheckTran—TRAN=0 If TRAN>O0, this forcesCheckTrap=1
Hydrology Qi=Q/ Hydrology constrained by model predictions
Ex=Ex
SP=SPR; [see Eqs(2)—(7)]
Demand R,=R

Water balance

Hydropower

Unusual operations

Absolute values

Se=Sa-1t, >, Inflow;,— >, >, Outflow,,
R Xy

Pz:Q/z,(Hz_ h,)pg
CheckByp=[0,—]

DIV;=[MIN(MAX constraint§),—]

DIV;=[MIN(MAX constrainty,— ]

Swach— Target— Z"+727=0

[(Squas— Snorm-0)/ Snormal

—[(Swach— Snormw)/ Snormw] —Z7+Z7=0

Reference Eqq9)—(10b)

Reference Eq(7)

Can force any transfers through the hydrostation at Oakdale by
disallowing bypass flow

Can force Ware diversions if necessary to reduce Ware River
flooding

*Not all max constraints apply, as this option overrides
minimum instream flow and Quabbin volume constraints

If Ware River diversions are allowable, divert the maximum
allowable amount

DefineszZ* andZ~ when optimizing Wachusett volume toward
a target
DefinesZ* andZ~ when balancing reservoirs

small. These yield prediction errors are orders of magnitude by roughly 8%, while optimized operations could have reduced
smaller than typical operational flows, and were therefore as- TOC concentration by 14%. At the same time, by optimally dis-
sumed to have very little influence on the results. The models tributing the total transfergoptimized for water quality over 7

predicted the correct hydrologic regime for the Connecticut River, days, the DSS schedule increased simulated hydropower revenues
and hence minimum downstream releases from Quabbin wereby roughly 20%, or $10,000 for the wed&ctual revenues were

accurately constrained.

corrected based on the assumed efficiency of 80% in order to

Fig. 9 illustrates the effectiveness of the DSS in optimizing compare identical systemsHydropower could have been in-
both objectives with hierarchical prioritization. Actual operations creased further, but the optimized flows for water quality were
reduced TOC concentration in the receiving basin of Wachusett binding constraints in this secondary optimization.
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DSS vs. Actual Records: releases prevented the DSS from generating a schedule that of-
TOC and Hydropower fered much progress toward the objective of reducing the water
elevation and associated flood risk. Based on this information,

& 2?’888 + 26 operators could rerun the optimization without the binding self-
2 $6.000 40 [ K ! l T25 imposed constraint to quantitatively assess the value of a tempo-
3::, $5'000 + ~ 124 5 rary suspension of best practices. In this example, the DSS sug-
 $4.000 | ST 1,3 E gested that the Wachusett water level could have been safely
% $3.000 1 = NP 8 reduced by up to 0.3 m had the water simply been released from
1; $2,000 + T E Wachusett, a significant improvement over the 0.06 m reduction
I $1,000 + T 21 obtainable with fully enforced constraints on balanced releases.
$0 - + 2.0

Summary and Conclusions

10/18/98
10/19/98
10/20/98
10/21/98
10/22/98
10/23/98
10/24/98

As graphical software tools have become more prevalent and in-
tuitive, many water resource managers have recognized the value
TOC:Actual Pan - - - = TOC: DSS of integrated modeling and decision support systgses Watkins
and McKinney(1995 for a reviewl. Integrated decision support
Fig. 9. Results of case study 1: Water quality and hydropower opti- models aggregate and process all pertinent hydrologic, hydraulic,
mization water quality, legal, economic, and other important system factors
to enable decision makers to evaluate the impacts of various de-
cisions and tradeoffs between competing objectives in a system-
atic and comprehensive fashion.

This study demonstrates that adaptive management of a water
A second case study was conducted for the week ending Marchsupply system by developing optimum flow schedules for short-
20, 1996. While no precipitation fell during the week, a large term planning periods can refine traditional policies, as evidenced
amount of snowmelt was observed, and the hydrologic model wasby improved water quality, better flood control, and increased
tested for its ability to accurately simulate streamflow due to revenues. The study emphasizes that use of simple and familiar
snowmelt. The objective for this week was to reduce the risk of software within the framework of a DSS offers opportunities for
downstream channel flooding by lowering the elevation of (1) aggregating, managing, and exploiting climatic, hydrologic,
Wachusett. Wachusett began the week at full spillway capacity, and hydraulic information(2) producing accurate predictions of
and with expected snowmelt the MWRA strives to maintain ex- hydrologic and reservoir system state variabk@3, developing
cess storage capacity to store runoff while keeping uncontrolled optimum real-time operating schedules, afd) performing
spills to a minimum. The Quabbin model overpredicted yield by tradeoff studies to examine the values associated with various
15%, while the Wachusett model underpredicted yield by 11.6% system objectives. The study also shows that optimization algo-
(actual yield at both sites exceeded the respective long-term av-rithms can be effectively formulated and executed, and tradeoff
erages The errors were on the order of 0.095-0.114 MDM/day, studies can be conducted, in a matter of minutes using the pro-
which is still smaller than mean yield and typical operational grammable interface capabilities of desktop spreadsheets. The fa-
flows by nearly an order of magnitude. Ware River flow was miliar format of the DSS should encourage its use and enable
predicted within 10%, and the correct flow regime of the Con- MWRA engineers to modify or adapt it, either as more data be-
necticut River was predicted, thereby establishing accurate con-come available or as the water system changes. The case studies
straints. demonstrate that this DSS is an effective tool for planning real-

Records indicate that actual reservoir operations for the weektime operations of the MWRA water supply system based on
resulted in a lowering of the Wachusett water level by 0.07 m. single and multiple objectives. The first case study suggested that
The optimum DSS schedule predicted a decrease of 0.06 m. How-the DSS could be effectively used to improve water quality by
ever, the model satisfied all best-practice constraints, while actualscheduling optimum reservoir operations known to promote low
operations did not. The MWRA strives to distribute excess water levels of TOC. This case study also revealed that hydropower
releases equally around the system. This self-imposed control ofproduction could be simultaneously improved by distributing pre-
downstream releases was binding in the DSS schedule, and seviously optimized total flows for optimum turbine output.
verely limited operational flows. While high downstream releases  The second case studflood contro) also revealed that the
from Wachusett were desired, the total system reldabeve DSS can produce reasonable flood control operating schedules,
mandated minimum levelsvas distributed evenly between the but also identified an important limitation. When the operating
two reservoirs, and binding constraints at Quabbin limited the plan specifies very low operational flows relative to long-term
amount that could actually be released from either. mean inflow, the confidence in the results decreases. This can

In this case, the optimized operational flows were so low that occur under low-flow conditions, when model errors associated
they approached the values of error in the hydrologic predictions. with the hydrologic predictions may approach or exceed the order
However, if the DSS recommends very low operational flows, it of magnitude of natural and operational flows. This is not ex-
is indicating that the system is very nearly optimal at the begin- pected to have significant consequences, since operators could
ning of the planning period, and very little improvement can be adjust the optimized plan throughout the week based on observed
made if all constraints are satisfied. Seeing this, operators mayhydrologic phenomena, and since the need for flood control will
wish to evaluate the effects of suspending self-imposed operatingnot often coincide with low-flow periods. Furthermore, low levels
rules, especially when faced with impending flood conditions. In of operational flow will have very little overall effect on the sys-
this case study, binding MWRA-imposed constraints of balanced tem, adverse or otherwise, and if low operational flows are pre-

) Actual Revenue ——] DSS Revenue

Case Study 2: Optimizing Flood Control
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scribed, the system can be considered to be nearly optimal at the j = basin index(Quabbin, Wachusett, Ware, Connecti-

start of the period. cub);

Still, a DSS solves only part of the decision problem. Results k = reservoir indexQuabbin, Wachusett
from a DSS are intended to guide and support decisions, not to t = weekly index;
make them, and in such a role, the true utility of a DSS is mea- x = operational flow indextransfers, diversions, extra
sured in part by the comfort level of those who use it. Once releasep
accepted by the users, its reliability can then only be fully mea- y = demand indeXCosgrove Aqueduct, Wachusett
sured with actual use over time. At the time of this writing, Aqueduct, Chicopee Valley Aqueduct, etand
MWRA personnel have been testing the predictive strength of the z = hydropower station index.

hydrologic model elements against very recent records, which
were unavailable during the development of the tool. These testsAbbreviations
have been designed to build confidence in the model’s predictive =~ DS = downstream;

accuracy, so that its ultimate output, in the form of recommended E = dalily surface evaporation;
operating schedules, can be considered to be reliable. FC = flood capacity;

The DSS has been used occasionally to support general plan- H = head;
ning decisions, but its full implementation is not planned until the h™ = head loss;

hydrologic models have demonstrated enough predictive accu-NORM= normal volume;
racy, based on recent records, to satisfy both operators and plan- P = power;
ners. Recent world events, unfortunately, set the testing schedule  Q = natural streamflowdaily);

back, as the MWRA refocused its attention on security issues. The Q" = operational flow(daily);
current plan is to complete the hydrologic verification, then use R = daily release;

the model in a hypothetical mode by comparing its recommenda- S = final storage; and
tions against actual operatiofedditional case studies, conducted SP = daily seepage.

in real time for a period of several weeks or months, and ulti-
mately to make the tool available to those who will make the Other
daily and weekly operational decisions. We believe that the [a,b] = different values apply at different times or are condi-

MWRA's approach to the implementation of the model is a good tional on logical comparisons;
example for others considering the development of decision sup- Value = user input;

port tools. — = no constraint; and

1. The MWRA will build confidence in the model by conduct- " = model prediction.

ing additional verification tests on key model elements;

2. The MWRA will compare results from the fully integrated References
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