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ABSTRACT: The harmonic mean has numerous engineering applications including characterization of the large-
scale effective permeability in layered porous media, characterization of petrochemical properties of heteroge-
neous media, and the design of declining rate filter beds. The U.S. EPA also recommends the use of the harmonic
mean daily streamflow as a design streamflow for the protection of human health against lifetime exposure to
suspected carcinogens. The sampling properties of various estimators of the harmonic mean are derived and
compared for observations arising from a lognormal distribution. Previous applications have recommended the
use of a moment estimator of the harmonic mean. We document that the moment estimator of the harmonic
mean exhibits significant upward bias and large root-mean-square error, particularly for large skews. A maximum
likelihood estimator of the harmonic mean is generally preferred because it is nearly unbiased and can provide
dramatic reductions in the root-mean-square error, compared with the moment estimator. In addition, a maximum
likelihood estimator of the generalized mean (or p-norm) of a lognormal distribution is introduced.
INTRODUCTION

There are numerous measures of central tendency for a ran-
dom variable including the median, mode, and the harmonic,
geometric, and arithmetic means. Each of these measures is
appropriate for different situations. For example, when esti-
mating the long-term expectation of a random variable, the
arithmetic mean is a natural choice. This study concentrates
on problems in which the harmonic mean is a natural choice
as a measure of central tendency. We begin by describing the
general properties of various measures of the mean, followed
by an analysis of the sampling properties of the harmonic
mean for a lognormal variable. We end by discussing the im-
plications of our results in the context of the two general ap-
plication areas: (1) design streamflow estimation for wasteload
allocation; and (2) estimation of effective petrochemical and
geophysical properties of a heterogeneous system of porous
media.

Harmonic, Arithmetic, and Geometric Means

The harmonic mean is a measure of central tendency of a
random variable X and is defined as the reciprocal of the ex-
pected value of the reciprocal of the random variable X

` 21
1 1

H = = f (x) dx (1)FE Gx1 2`
E F GX

In some cases a distribution’s quantile function is easier
to integrate than its probability density function, and Kendall
et al. (1977, section 3.1) provide a useful alternate definition
of H

1 21

21H = (x ) dp (2)pFE G
0

where xp = quantile function of the random variable X. The
harmonic mean does not exist if a random variable can take
on zero values. Interestingly, Burk (1985) has shown the har-
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monic mean of a random variable is always less than its ge-
ometric mean G, which is always less than its arithmetic mean
m, regardless of the probability distribution from which the
variable arises

H # G # m (3)

Similarly, H is always greater than the smallest observation.
The arithmetic mean is defined as the expected value of the
random variable

`

m = E[X] = x ? f (x) dx (4)E
2`

and the geometric mean is given by
` n

1/nG = x f (x) dx (5)FE G
0

Landwehr (1978) describes the properties of the geometric
mean. More generally, one can define the power mean, p-
norm, or generalized mean

p 1/pm = [E[x ]] (6)p

which reduces to the harmonic, geometric, and arithmetic
means for p = 21, p → 0, and p = 1, respectively. Jensen
(1998), and others cited therein, discuss the general properties
of moment estimators of the generalized mean in (6) and pro-
vide citations to other literature dealing with applications in
which p takes on values other than p = 21, p → 0, and
p = 1.

Properties of Harmonic Mean of Lognormal
Distribution

This study concentrates on the properties of the harmonic
mean H for a two-parameter lognormal (LN2) random varia-
ble. We concentrate on the LN2 distribution because this is
the assumed distribution in the applications discussed later. A
comprehensive treatment of the lognormal distribution is given
by Aitchison and Brown (1969) and Crow and Shimizu
(1988). A comprehensive comparison of quantile estimators
for the two- and three-parameter lognormal distribution is
given by Stedinger (1980). The probability density function
(PDF) for the LN2 distribution is

2
1 1 ln(x) 2 my

f(x) = exp 2 (7a)F S D G2x 2 s2ps yÏ y

for x > 0 with Y = ln(X) and my and equal to the mean and2sy

variance of Y, respectively. The relations between the mean
and variance in real and log space are
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2sY
m = exp m 1 (7b)yS D2

2 2 2s = m [exp(s ) 2 1] (7c)Y

where m and s2 denote the mean and variance of X. Aitchison
and Brown (1969) show that the harmonic mean of a lognor-
mal random variable is

1 2H = exp m 2 s (8)y yS D2

The harmonic mean of an LN2 population can differ dramat-
ically from its arithmetic mean. A plot of the ratio of the har-
monic mean H to the arithmetic mean m, as a function of Cv,
is illustrated in Fig. 1, which is based on the relation

H 1
= (9)2m 1 1 Cv

Note that the harmonic mean H is only a small fraction of the
arithmetic mean m for highly skewed samples. The harmonic
mean of an LN2 population can also differ substantially from
its median; this is also illustrated in Fig. 1. For an LN2 pop-
ulation, the mean and median are exp(my 1 and exp(my),

2s /2)y

respectively. Gomez-Hernandez and Gorelick (1989) docu-
ment that the ratio of the geometric mean to the harmonic
mean of an LN2 variable is

G 2= 1 1 C (10)Ï v
H

Rossman (1990) combines (9) and (10) to show that the har-
monic, geometric, and arithmetic mean of an LN2 variable are
related by

2G
H = (11)

m

ESTIMATION OF HARMONIC MEAN

The most common and natural approach to estimation of
the harmonic mean is to use the moment estimator

nˆ (12)H = n1
1O xii=1
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The estimator is a nonparametric estimator because its der-Ĥ1

ivation does not depend on the form of the PDF for x. Anal-
ogous to product moment estimators that are sensitive to very
large observations, far away from the mean, the estimator Ĥ1

is highly sensitive to small observations. Rossman (1990), EPA
(1991), and Martin and Ruhl (1993), have recommended the
estimator to compute the harmonic mean daily streamflow.Ĥ1

Muskat (1937), Gomez-Hernandez and Gorelick (1989), Aba-
bou and Wood (1990), Jensen et al. (1997), and Jensen (1998)
suggested to characterize the large-scale effective permea-Ĥ1

bility in layered porous media. Because we are unaware of
any literature that compares the sampling properties of alter-
nate estimators of the harmonic mean, and previous experience
suggests that estimators sensitive to only a few observations
may perform poorly (Vogel and Fennessey 1993), we inves-
tigate alternate estimators.

Rossman (1990) introduced another estimator based on the
relationship between H, G, and m in (11). The sample esti-
mator introduced by Rossman (1990) is obtained by substi-
tution of sample moment estimates of G and m into (11), lead-
ing to

1/n 2n

xiFSP D G
i=1

Ĥ = (13)n2
1

xiOn i=1

The estimate of G in the numerator of (13) is often numerically
unstable, hence, a preferred and mathematically identical ver-
sion for the LN2 distribution is

2n
1

exp ln(x )iF S HO JDGn i=1

Ĥ = (14)n2
1

xiOn i=1

Using actual daily streamflow records for 60 gauging stations
in the United States, Rossman (1990) found results inĤ2

estimates nearly identical to Ĥ .1

Maximum likelihood estimates (MLE) are often preferred
to alternate estimators, particularly in large-sample problems
arising from known distributions, because asymptotically, they
have minimum-mean-square error (MMSE) among all com-
FIG. 1. Ratio of Harmonic Mean to Arithmetic Mean and Median as Function of Cv for LN2 Distribution



peting estimators. An MLE for H is obtained by substitution
of the maximum likelihood estimates for mY and sY into (8),
yielding

1 2Ĥ = exp m̂ 2 ŝ (15a)3 y yS D2

where
n

1
m̂ = ln(x ) (15b)y iOn i=1

n
12 2ŝ = (ln x 2 m̂ ) (15c)y i yOn i=1

Aitchison and Brown (1969) and Crow and Shimizu (1988)
summarize numerous other estimators of mean and variance
of an LN2 distribution including the method of moments, a
graphical method based on a probability plot, and Finney’s
(1941) uniformly minimum variance unbiased (UMVU) esti-
mator. Stedinger (1980) also documents the sampling proper-
ties of numerous estimators of quantiles of both the two- and
three-parameter lognormal distribution. He showed that the
maximum likelihood method is generally best among other
methods compared, for fitting the LN2 distribution to samples
of 25 or more. Crow and Shimizu (1988, Chapter 2) compare
various estimators of the general satistic u = exp(amy 1 2bs )y

for LN2 sampling. Note that u = H when a = 1 and b =
21/2. Crow and Shimizu document the sampling properties of
the UMVU estimator, the MLE, and an MMSE estimator.
These three estimators have mean square errors that are equal
to O(1/n), so that for large n, there is very little difference
between the estimators. Crow and Shimizu recommended the
MLE because it performs similarly to the other estimators for
large n, because it cannot generate negative values for u and
because it is much simpler to compute than either the UMVU
or the MMSE. For these reasons, we do not consider either
the UMVU or the MMSE here.

SAMPLING PROPERTIES OF HARMONIC MEAN
ESTIMATORS

In this section, analytical and Monte Carlo comparisons are
provided of the sampling properties of the various estimators
of the harmonic mean introduced in the previous section. We
concentrate on a comparison of the estimators and be-ˆ ˆH H1 3

cause it was found that the sampling properties of andˆ ˆH H1 2

are almost identical. Following this section, we discuss the
implications of these results in the context of two application
areas.

Vali (1943) derived the sampling distribution of whenĤ1

samples are drawn from the normal and Pearson-type III dis-
tributions. More recently, Jensen et al. (1997) and Jensen
(1998) approximated the bias and variance of and an esti-Ĥ1

mator of the generalized mean (p-norm), respectively, when
samples are drawn from an LN2 distribution. Their derivations
assume that the quantity for 21 # p # 1 is lognormal.n p( xi=1 i

In this section, we derive first-order estimates of the bias
and root-mean-square error (RMSE) of estimates of andĤ1

using first-order methods described elsewhere (BenjaminĤ3

and Cornell 1970). The first-order approximations are derived
by first approximating each estimator using a Taylor series and
then deriving the expectation and variance of each estimator
based on the initial terms in the Taylor series expansion. Ex-
perience has shown that such first-order approximations often
provide good approximations to the sampling properties of
complex estimators.

Bias and RMSE are defined as follows:

ˆE[H] 2 Hˆ% bias[ (16a)H] = ?100
H

2 1/2ˆ ˆ[bias[H] 1 var[H]]ˆ% RMSE[ (16b)H] = ?100
H

Because first-order methods are quite standard, we do not pro-
vide our derivations here; however, all analytical approxima-
tions are compared later with Monte Carlo experimental re-
sults.

First-Order Approximation to Sampling Properties
of Ĥ1

A first-order approximation to the bias and variance of Ĥ1

are
2H ?Cvˆbias[H ] = (17a)1

n

2 2H ?Cvˆvar[H ] = (17b)1
n

Jensen et al. (1997) obtain identical results to (17a); however,
they obtain

2 2 2ˆvar[H ] = H (1 1 C /n)C /n (17c)1 v v

which is always greater than (17b).

First-Order Approximation to Sampling Properties
of Ĥ3

A first-order approximation to the bias and variance of Ĥ3

are
2 2H ? ln(1 1 C ) ln(1 1 C )v vˆbias[H ] = 1 1 (18a)3 F G2n 2

2 2 2H ? ln(1 1 C ) ln(1 1 C )v vˆvar[H ] = 1 1 (18b)3 F Gn 4

Monte Carlo Experiments

To evaluate the first-order approximations in (17) and (18),
and to investigate the sampling distributions of the three har-
monic mean estimators and 20,000 replicate LN2ˆ ˆ ˆH , H , H ,1 2 3

samples each of size n = 100 and 1,000 were generated for
various values of Cv. The three harmonic mean estimators were
applied to each sample and compared with the true value of
the harmonic mean.

Results

Our first results in Fig. 2 compare the analytic formulas for
the standard deviation of developed here [(17b)], and byĤ1

Jensen et al. (1998) [(17c)], with the results of our Monte
Carlo experiments. Fig. 2 reports % Stdev( defined asĤ )1

Fig. 2 documents that the analytical approx-ˆ100 .var(H )/HÏ 1

imations break down for values of Cv in excess of about 5.
Unfortunately, when values of Cv are that large, sample esti-
mates of Cv are remarkably downward biased, even for very
large samples; so in practice, one never knows if actual sam-
ples exhibit values of Cv > 5, unless one employs the theory
of L-moments (Vogel and Fennessey 1993). It is clear from
Fig. 2 that (17b) provides a better approximation than (17c)
to the variance of particularly for small samples; however,Ĥ ,1

both expressions are nearly equivalent for Cv < 5.
Figs. 3 and 4 compare the bias and variance of the esti-

mators and using solid lines to depict the analytic for-ˆ ˆH H ,1 3

mulas [17(a,b) and 18(a,b)] and data points to illustrate the
results of the Monte Carlo experiments for the cases Cv = 0.1,
1, 5, 10, and 20. Figs. 3 and 4 document that (18a) and (18b)
provide an excellent representation of the bias and RMSE of

for all values of n and Cv considered. Figs. 3 and 4 alsoĤ3
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FIG. 2. Comparison of Standard Deviations of Using Ana-Ĥ1

lytic Eqs. (17b) and (17c) and Monte Carlo Experiments

show that the analytic first-order approximations for the sam-
pling properties of are much more accurate than the analyticĤ3

first-order approximation to the sampling properties of ˆ .H1

Most importantly, Figs. 3 and 4 document the clear ad-
vantage of over in terms of both bias and RMSE.ˆ ˆH H3 1

Compared with is nearly unbiased, even for smallˆ ˆH , H1 3

samples and large values of Cv. Fig. 5 illustrates the efficiency
gains associated with over computed as RMSEˆ ˆ ˆH H (H )/3 1 1

on the basis of the Monte Carlo experiments. Here,ˆRMSE(H )3

values of efficiency above unity are a measure of the improve-
ment in the overall precision of relative to The relativeˆ ˆH H .3 1

improvement increases as n and Cv increase. It can be seen that
for populations with large coefficients of variation, the MLE
leads to dramatic improvements in terms of both bias and
RMSE when compared with either or Because it wasˆ ˆH H .1 2

found that the sampling properties of are nearly identicalĤ2

to those of we elected to omit the results for fromˆ ˆH , H1 2

our comparisons in Figs. 2–5.

APPLICATIONS OF HARMONIC MEAN TO
DETERMINATION OF WASTELOAD ALLOCATIONS

The United States Federal Clean Water Act requires estab-
lishment of total maximum daily loading (TMDL) of contam-
inants for ‘‘water quality limited stream segments,’’ such that
loading in excess of this limit will risk violation of water qual-
ity standards (EPA 1991). The TMDL for suspected human
carcinogens is established by first calculating the human health
reference ambient concentration for a particular contaminant.
Once this allowable concentration is established, it is com-
bined with an estimate of streamflow available for contaminant
dilution to determine the allowable TMDL for that stream seg-
ment. Because the risk of contracting cancer is estimated from
exposure concentrations over an entire lifespan, the average
62 / JOURNAL OF HYDROLOGIC ENGINEERING / JANUARY 2000
FIG. 3. Comparison of % Bias and % RMSE of Estimators Ĥ1

and Using Monte Carlo and Analytical Approximation forĤ3

Case n = 100

FIG. 4. Comparison of % Bias and % RMSE of Estimators Ĥ1

and Using Monte Carlo and Analytical Approximation forĤ3

Case n = 1,000



FIG. 5. Efficiency of overˆ ˆH H3 1

daily exposure concentration is used as an index to determine
whether exposures are below acceptable risk thresholds.

Water quality standards are usually stated in terms of a max-
imum allowable x-day average concentration (EPA 1991). If a
constant toxicant loading of L is introduced into a river, then
the resulting in-stream concentration, accounting for dilution
with streamflow, is

L
C = (19)t

Xt

where Ct denotes concentration on day t; and Xt denotes
streamflow on day t. For a fixed load L (fixed TMDL), the
expectation of lifetime exposure concentration is

1 L
E[C] = L ?E = (20)F GQ H

The harmonic mean streamflow H thus becomes the design
streamflow on which the health risk assessment is based. This
is the logic employed by Rossman (1990) and the EPA (1991)
in recommending the harmonic mean flow for setting carcin-
ogen TMDLs. The EPA (1991) currently recommends esti-
mation of H from daily streamflow observations using Ĥ .1

However, this research documents that performs ratherĤ1

poorly when compared with the maximum likelihood estimator
particularly for the large sample sizes and large values ofĤ ,3

Cv exhibited by daily flow observations.
The U.S. Geological Survey (Martin and Ruhl 1993) have

developed a regional model for estimating the harmonic mean
of daily streamflow in Kentucky, based on Given the re-Ĥ .1

sults of Monte Carlo experiments reported here, future region-
alization studies would be improved by using a maximum like-
lihood estimator which has a higher precision than Toˆ ˆH , H .3 1

prove this point, one need only document that observed se-
quences of daily streamflow are well approximated by an LN2
distribution with values of Cv > 5.

Probability Distribution of Daily Streamflow

Previous literature on the statistical properties of daily
streamflow is sparse. Rossman (1990) and the EPA (1991) rec-
ommend the estimators or The estimator was derivedˆ ˆ ˆH H . H1 2 2

assuming an LN2 distribution. To our knowledge there are no
comprehensive studies that have evaluated the PDF of daily
streamflow. Vogel and Fennessey (1994) discuss methods for
fitting empirical nonparametric PDFs to samples of daily
streamflow. Vogel and Fennessey (1993) use L-moment dia-
grams to document that samples of daily streamflow at 23 sites
in Massachusetts are well approximated by a three-parameter
lognormal (LN3) and a generalized Pareto (GP) distribution,
with the GP distribution providing a slightly better fit overall.
Interestingly, their evaluations also show that ordinary product
moment ratios, such as the coefficient of variation and skew-
ness, reveal almost no information about the distributional
properties of daily streamflow. This remarkable phenomenon
is due to the large skew associated with samples of daily
streamflow, despite the fact that sequences of daily stream-
flows often contain tens of thousands of observations.

In this section we evaluate the PDF of daily streamflow in
the United States by exploiting a national database of stream-
flow. The streamflow data set consists of records of average
daily streamflow at 1,571 sites located throughout the United
States. This data set termed the hydro-climatic data network
(HCDN), is available on CD-ROM and the worldwide web
(Slack et al. 1993). Because this database is described else-
where, we do not provide details here.

To test the goodness-of-fit for various distributions to se-
quences of daily streamflow at these sites, we constructed L-
moment diagrams. Hosking (1990) introduced L-moments and
L-moment diagrams as an aid for obtaining an unbiased rep-
resentation of the distributional properties of any random var-
iable. L-moments are related to ordinary product moments, and
the interpretation of L-skew and L-kurtosis is similar to that
FIG. 6. L-Moment Diagram Illustrating Relationship between L-Cv and L-Skewness for Daily Streamflow at 1,571 Sites across United
States
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FIG. 7. L-Moment Diagram Illustrating Relationship between L-Kurtosis and L-Skewness for Daily Streamflow at 1,571 Sites across
United States
of ordinary skew and kurtosis (Hosking 1990). Vogel and Fen-
nessey (1993) found that L-moment diagrams are always pre-
ferred over ordinary product moment diagrams for assessing
the goodness-of-fit of PDFs to observations, and are particu-
larly useful for evaluating highly skewed observations.

Figs. 6 and 7 illustrate sample estimates of L-Cv, L-Skew,
and L-Kurtosis at the 1,571 HCDN sites. The streamflow data
set contains records, which range from 9 to 115 years with an
average record length of 44.8 years per site. Each point in
Figs. 6 and 7 represents a single site with an average record
length of (44.8 years) 3 (365 days/year) = 16,400 daily ob-
servations. In total, Figs. 6 and 7 are based on more than
25,000,000 daily streamflow observations. The theoretical re-
lations between L-Cv and L-skewness are shown in Fig. 6 for
LN2, gamma (GAM), two-parameter Weibull (W2), and gen-
eralized Pareto (GP) distributions. Fig. 7 shows the relation
between L-Kurtosis and L-Skewness for LN3, gamma (GAM),
GP, generalized extreme value (GEV), and the lower bound of
the five-parameter Wakeby (WAK) distributions. From Fig. 6,
it can be seen that the distribution of daily streamflows is well
approximated by the LN2 distribution. Fig. 7 illustrates that
daily streamflows are also well approximated by a three-pa-
rameter lognormal distribution, as would be expected from the
results in Fig. 6. In both Figs. 6 and 7, one expects significant
sampling variability about the true LN2 relationship. All one
can hope for is a theoretical relationship that passes through
the center of mass of all the points in those figures.

Implications of Results on Wasteload Allocations

Fig. 6 illustrated that values of L-Cv and L-Skew are often
well above 0.4 for observed sequences of daily streamflow in
the United States. Fig. 8 illustrates the theoretical relationships
between ordinary Cv and both L-Cv and L-Skew for an LN2
variable. Fig. 8 documents that values of L-Cv above 0.4 cor-
respond to values of ordinary Cv > 0.8, and that values of L-
skews larger than 0.4 correspond to ordinary Cv > 1 for an
LN2 distribution. This implies that observations of daily
streamflow usually exhibit values of Cv in excess of 1. Ac-
cording to Figs. 6–8, values of Cv of daily streamflow are
often greater than 5. Because the estimator was shown toĤ3

be clearly superior to both and for large Cv and n, theˆ ˆH H1 2

estimator is expected to provide much better (lower biasĤ3

and variance) estimates of long-term exposure concentration
than either andˆ ˆH H .1 2
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In practice, wasteload allocation seeks to estimate the allow-
able TMDL L, based on a fixed concentration C0, and a design
flow H. The allowable TMDL is estimated from

ˆ ˆL = C ?H (21)0

The load L is also a random variable with properties similar
to H because C0 is a constant. Therefore, upward bias asso-
ciated with the estimator in (21) will lead to upward biasĤ
in estimated allowable pollutant loads. Therefore, existing EPA
(1991) guidelines lead to upward bias in estimated allowable
pollutant loads.

Use of the estimator in (20) will lead to a nearly unbiasedĤ3

estimate of the long-term exposure concentration; however, it
will not lead to an unbiased estimate of the wasteload L when
used in (21). If the interest is in an unbiased estimate of the
wasteload allocation L in (21) for a fixed exposure concentra-
tion C0, then a more sensible design streamflow would be the
arithmetic mean m because the expected load is given by E[L]
= C0E[X] = C0m.

APPLICATION TO ESTIMATION OF EFFECTIVE
GEOPHYSICAL PROPERTIES

Previous studies (Gomez-Hernandez and Gorelick 1989)
have shown that the harmonic mean provides a lower limit to
the effective hydraulic conductivity of an aquifer system. Here,
an effective value is defined as the equivalent value of the
parameter that produces an output variable that replicates the
mean behavior of the system over a range of variability. For
example, effective hydraulic conductivity could be defined as
that value of hydraulic conductivity that reproduces the mean
specific discharge or the average ground-water outflow to a
river channel. Gomez-Hernandez and Gorelick (1989) argue
that effective hydraulic conductivity near a well lies between
the geometric and harmonic means. In geophysical reservoir
engineering studies, the harmonic mean has been widely used
for a long time. For example, Muskat (1937, pp. 402–404)
suggests the use of as an appropriate estimate of the effec-Ĥ1

tive permeability for a layered medium with cross-layer flow.
Jensen (1998) summarizes numerous studies that evaluate dif-
ferent p-norms [(6)] in various physical situations. A review
of the literature reveals that it is unclear which value of p in
(6) is best suited for the estimation of the effective geophysical
properties of a heterogeneous system. Nevertheless, it is clear



FIG. 8. Relationship between Ordinary Cv and Two L-Moment Ratios for LN2 Distribution
from this study, that an MLE of the p-norm in (6) provides an
attractive alternative to the moment estimators currently rec-
ommended.

Ababou and Wood (1990) and Jensen (1998) report that the
generalized mean or p-norm [defined in (6)] of an LN2 random
variable can be written as

2 2m = exp(pm 1 p s /2) (22)p y y

Jensen (1998) recommended the p-norm estimator
1/pn

1 pm̂ = x (23)p iS O Dn i=1

which reduces to when p = 21 and to the arithmetic meanĤ1

when p = 1. A preferred estimator of the p-norm for LN2
observations is the MLE given by

2 2*m̂ = exp(pm̂ 1 p ŝ /2) (24)p y y

where and are given in (15b) and (15c), respectively.m̂ ŝy y

One expects the estimator to have roughly the same ad-*m̂p

vantages over as the estimator had over Note thatˆ ˆm̂ H H .p 3 1

Crow and Shimizu (1988, Section 2.8) derive the sampling
properties of various alternative estimators of the statistic u =
exp(amy 1 Note that u = mp for a = p and b = p2/2, so2bs ).y

that their results are useful for evaluation of the performance
of alternative estimators of the p-norm of an LN2 variate.

Numerous investigators have evaluated the goodness-of-fit
of the LN2 distribution to samples of hydraulic conductivity.
Law (1944) first introduced the LN2 distribution for describing
the distribution of permeability. Bensen (1993) reviews nu-
merous studies that recommend the LN2 distribution for mod-
eling the distribution of permeability and conductivity obser-
vations for naturally deposited soils and aquifers and for
compacted soils and soil liners. Bensen (1993) uses the prob-
ability plot correlation coefficient hypothesis test and L-mo-
ment diagrams to compare the goodness-of-fit of several prob-
ability distributions to the conductivity of compacted soils.
Bensen (1993) found that the LN3 and GEV distributions are
often preferred over the LN2 distribution for characterizing the
probability distribution of the hydraulic conductivity of com-
pacted soils.

CONCLUSIONS

The harmonic mean is a natural measure of central tendency
of random variables in engineering applications relating to: (1)
estimation of the design streamflow for wasteload allocations
(Rossman 1990); (2) estimation of the effective or aggregate
properties of geophysical media (Gomez-Hernandez and
Gorelick 1989); and (3) the design of declining rate filter beds
(Saatci 1989). Unlike other measures of central tendency, such
as the mean and median, no literature exists describing the
statistical properties of alternative estimators of the harmonic
mean. Previous investigations have employed a standard mo-
ment estimator [see in (12)] that has been shown by JensenĤ1

et al. (1997) and Jensen (1998) to exhibit significant bias, par-
ticularly for large values of Cv. To avoid bias, Jensen et al.
(1997) and Jensen (1998) introduce an approximately unbiased
estimator of H, where the unbiasing factor depends on a sam-
ple estimate of Cv. Unfortunately, their estimator will not really
be unbiased in practice, because Jensen et al. (1997) and Jen-
sen (1998) ignore the downward bias associated with sample
estimates of Cv (Vogel and Fennessey 1993) in their deriva-
tions. Furthermore, their unbiasing factors introduce additional
variance (due to the need to estimate Cv), making their result-
ing estimator unstable, particularly for large Cv and small n.

This study introduces an MLE for the harmonic mean
[(15b)] and the p-norm [(23)], which are nearly unbiased es-
timators and are generally more efficient (lower RMSE) than
the alternative estimators introduced previously, for lognormal
observations. We found that the MLEs can lead to improve-
ments in our ability to estimate harmonic mean streamflows
and p-norms of geophysical properties.
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