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[1] The base flow recession constant, Kb, is used to characterize the interaction of
groundwater and surface water systems. Estimation of Kb is critical in many studies
including rainfall-runoff modeling, estimation of low flow statistics at ungaged locations,
and base flow separation methods. The performance of several estimators of Kb are
compared, including several new approaches which account for the impact of human
withdrawals. A traditional semilog estimation approach adapted to incorporate the influence
of human withdrawals was preferred over other derivative-based estimators. Human
withdrawals are shown to have a significant impact on the estimation of base flow
recessions, even when withdrawals are relatively small. Regional regression models are
developed to relate seasonal estimates of Kb to physical, climatic, and anthropogenic
characteristics of stream-aquifer systems. Among the factors considered for explaining the
behavior of Kb, both drainage density and human withdrawals have significant and similar
explanatory power. We document the importance of incorporating human withdrawals into
models of the base flow recession response of a watershed and the systemic downward bias
associated with estimates of Kb obtained without consideration of human withdrawals.
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1. Introduction

[2] Numerous studies suggest that human impacts to
ecosystem degradation, climate change, increased popula-
tion, and urbanization must be considered as part of the
hydrologic cycle [Vorosmarty et al., 2000; Wagener et al.,
2010; Vogel, 2011]. Hydrologic investigations that ignore
the influence of humans have been shown to perform satis-
factorily in relatively undisturbed watersheds [Mendoza
et al., 2003]; however, recent research indicates that even
small disturbances in hydrologic systems, such as human
withdrawals [Thomas, 2012; Wang and Cai, 2009] and
land-use/land cover changes [Schilling and Libra, 2003],
can be important, especially in studies which focus on

the low flow response of a watershed which is strongly
influenced by groundwater discharge [Wang and Cai,
2010; Schilling and Zhang, 2006; Brandes et al., 2005a,
among many others]. Theis [1940] argued that any newly
introduced groundwater withdrawal must be balanced by
one or more of the following: (1) an increase in the
recharge to an aquifer, (2) a decrease in the discharge from
a groundwater system to either a surface water system or a
deeper groundwater system, or (3) a loss of storage to the
aquifer. Given the water balance component shifts pre-
dicted by Theis [1940], it follows that increases in projected
water demands require improvements in our ability to char-
acterize low flow behavior of rivers for conjunctive water
use management, maintenance of water quality, and eco-
system services. Despite the overwhelming evidence of
water withdrawals and other human-induced changes
impacting hydrology, most hydrologic textbooks ignore the
impacts of humans on the hydrologic cycle.

[3] Hall [1968], Tallaksen [1995], and Smakhtin [2001]
review the literature on the characterization of low flow
behavior of a river, referred to here as base flow recession
analysis. The theory of base flow recession analysis
emerged from early studies of groundwater flow [Dupuit,
1863; Boussinesq, 1877; Maillet, 1905] and has since led
to multiple approaches to characterize the relationship
between groundwater and surface water during low flow
periods. Studies which have sought to characterize coupled
groundwater and surface water (gw-sw) systems normally
assume a power-law relationship between base flow, Q, and
groundwater storage, S. Such studies can be grouped into
two categories [Dooge, 1983]: (1) linear behavior in which
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Q is a linear function of S, and (2) nonlinear behavior in
which Q is a nonlinear function of S.

[4] Considerable controversy exists in the hydrologic lit-
erature over the issue of whether or not watersheds behave
as linear or nonlinear reservoirs in the context of their low
flow response. Wang and Cai [2009] illustrate the nonlinear
reservoir response caused by changes in water withdrawals
and the dynamics of natural watershed processes. Botter
et al. [2009] derived theoretical streamflow probability
density functions which occur due to the degree of linearity
in storage-discharge behaviors. Watersheds that exhibit lin-
ear reservoir behavior also exhibit a fixed time constant
which is often termed the base flow recession constant,
which we term Kb. Despite the continuing controversy over
whether or not the base flow system response is linear or
nonlinear [see, e.g., Wittenberg and Sivapalan, 1999], the
estimation of Kb continues to be required for many hydro-
logic models, too numerous to list exhaustively (e.g., HEC-
HMS, HSPF). Moreover, the dynamics of rainfall-runoff
models [Ferket et al., 2010; Beven et al., 1995] are depend-
ent on estimation of Kb or its equivalent. Vogel and Kroll
[1992], Kroll et al. [2004], and Eng and Milly [2007] advo-
cate inclusion of Kb in models for estimation of low flow
statistics at ungaged sites. Eckhardt [2008, 2011] illustrates
that partitioning of streamflow into base flow and direct
flow components generally relies on watershed storage
behavior and further illustrates through sensitivity analysis
how base flow separation critically depends on estimation
of Kb. Lo et al. [2010] provide an example of hydrologic
model calibration and validation employing base flow sepa-
ration to obtain runoff and groundwater discharges. Given
the ubiquitous use of Kb in so many hydrologic applica-
tions, it is important to (1) accurately characterize gw-sw
behavior using estimates of Kb and (2) characterize how the
behavior of Kb estimates relate to physical and anthropo-
genic influences known to alter hydrologic systems, the
two central goals of this study.

[5] Previous investigations have explored the behavior
of the base flow response as a function of watershed char-
acteristics and climatic factors. Brandes et al. [2005b]
found that drainage density and geologic indices could
explain 70–80% of observed variability in the recession
constant from 24 watersheds in Pennsylvania. Their results
support conclusions by Zecharias and Brutsaert [1988a]
who found that drainage density along with basin slope and
perennial stream length explained most of the variation in
base flow behavior. Zecharias and Brutsaert [1988b] noted
that watershed characteristics such as basin slope, defined
as the inclination angle of the impermeable layer underly-
ing a hillslope, and drainage density explained greater vari-
ability in Kb as compared to other watershed characteristics
such as aquifer area percentages (�%) and spatially hetero-
geneous properties such as hydraulic conductivity (k) and
aquifer porosity (f). Farvolden [1963] identified a similar
geologic and geomorphologic dependence to Kb which was
found to vary with stream channel depth and drainage den-
sity while being inversely proportional to basin relief ratios,
a nondimensional ratio developed by Schumm [1954]
which provides information concerning the steepness of a
basin. Farvolden [1963] also identified a weak correlation
between Kb and the aridity ratio for arid watersheds. Like-
wise, van Dijk [2010] documented the humidity index as

being an important factor in explaining the behavior of Kb

for dry catchments.
[6] Unlike previous approaches which have evaluated

our ability to estimate and understand the base flow reces-
sion relationship while ignoring human withdrawals, we
introduce new procedures that incorporate the impact of
groundwater withdrawals on the estimation of base flow
recession constants and compare their performance with
traditional approaches. A primary goal of this study is to
better understand the impact of human withdrawals on gw-
sw behavior and estimation of Kb. We first consider tradi-
tional estimation methods [Barnes, 1939; Vogel and Kroll,
1992] which are given in most introductory hydrology text-
books [Dingman, 2002; Fetter, 1994; Domenico and
Schwartz, 1998] and derivative approach introduced by
Brutsaert and Nieber [1977]. We then consider a derivative
approach from Wang and Cai [2009] which includes
groundwater withdrawals. A derivation is presented for a
new estimator based on the traditional approach which
includes groundwater withdrawals. Finally, we employ
multivariate regression procedures and the concept of elas-
ticity to evaluate the nondimensional relative sensitivity
and importance of geologic, geomorphic, climatic, and
anthropogenic factors on the magnitude of Kb estimates.
We demonstrate that improved estimation of Kb can be
achieved by incorporating estimates of human withdrawals
into the analysis. We also quantify the influence of human
withdrawals in comparison with other watershed character-
istics on observed variations in Kb.

2. Model Development

[7] To characterize the behavior of coupled groundwater
and surface water systems, we follow the work of Barnes
[1939], Hall [1968], and Brutsaert and Nieber [1977], all
of whom have conceptualized a simplified decay model
which assumes that the initial rapid watershed input that
contributed to the increase in streamflow, the rising limb of
the hydrograph, have been fully depleted. It is recognized
that, at sometime during the falling limb, observed stream-
flow is comprised entirely of discharge derived from water-
shed storage at which point the flow is termed base flow
[Hall, 1968] and the hydrograph is termed the base flow
recession curve. A base flow recession curve exhibits
behavior attributed to the relationship between aquifer stor-
age and the associated groundwater outflow to the stream
channel. Hall [1968], Dooge [1983], and many others have
suggested the use of a power law model to relate ground-
water storage in an unconfined aquifer in direct hydraulic
connection to a stream, S (mm), and the observed ground-
water discharge to the stream, Q (mm d�1), using

Q ¼ �Sn ð1Þ

where � and n are constants. For a linear storage-discharge
relationship, n¼ 1 in (1). Assuming a linear system, we
note that � in (1) has units of inverse time (t�1); the inverse
of � is often termed the time constant or recession constant
[Brutsaert and Lopez, 1998; Brutsaert, 2008]. Hall [1968],
Vogel and Kroll [1992], and others relate � in (1) to Kb

where Kb¼ e�� thus creating a nondimensional variable to
describe base flow recession behaviors. Our attention
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focuses on Kb instead of � due to its ubiquitous use in
hydrologic models. While the assumption that n¼ 1 is not
applicable for all applications, Vogel and Kroll [1992]
found this to be a valid assumption in selected Northeastern
United States watersheds.

[8] For an aquifer with no external transfers, continuity
can be written as

dS

dt
¼ I tð Þ � Q tð Þ �W tð Þ � ET tð Þ ð2Þ

where I(t) represents recharge to groundwater, W(t) repre-
sents groundwater withdrawals, and ET(t) represents evap-
otranspiration from the groundwater table and stream. To
simplify (2), we make assumptions commonly employed in
previous studies. First, we assume that the analysis is con-
ducted during stream recession periods (i.e., no precipita-
tion events) with rapid initial percolation which ceases
after precipitation; thus, I(t)¼ 0. Second, we assume that
ET(t) has a negligible impact on (1) and (2) during base
flow events. Kroll [1989] and McMillan et al. [2011] docu-
mented seasonal effects in estimation of the base flow
recession constant while Szilagyi et al. [2007], Wang and
Cai [2009], Aksoy et al. [2001], and others have docu-
mented seasonal effects on the base flow response due to
changes in ET. To address the potential issues of seasonal-
ity and ET, we evaluate seasonal streamflow recessions to
control for variations which we attribute to seasonal hydro-
logic characteristics including ET similar to Shaw and Riha
[2012] and Szilagyi et al. [2007].

[9] Combining (1) and (2), while ignoring groundwater
withdrawals, leads to

dQ

dt
¼ �aQb ð3Þ

where b¼ (2n� 1)/n and a¼ n�(1/n). Brutsaert and Nieber
[1977] suggest using a log-log plot of dQ/dt versus Q to
estimate the recession parameters a and b in (3). We term
this approach the derivative method because Brutsaert and
Nieber [1977] recommended using the time derivative of
streamflow, dQ/dt, to eliminate time as the reference for
estimation of base flow parameters. More recently, Wang
and Cai [2009] extended (3) to include the effect of the
groundwater withdrawal term in (2) resulting in

dQ

dt
¼ �aQb�1 QþWð Þ ð4Þ

[10] Combining (1), (3), and (4) leads to various estima-
tors of Kb which include the effect of groundwater with-
drawals described in the next section. Though Wang and Cai
[2009, 2010] were the first to introduce withdrawals into
base flow analyses, this is the first study to offer several esti-
mation methods for Kb, which account for withdrawals.

2.1. Case 1: Traditional Approach (W 5 0)

[11] Following Barnes [1939] and ignoring withdrawals
while adhering to previous simplifying assumptions, (2)
can be simplified to

dS

dt
¼ �Q tð Þ ð5Þ

[12] Combining (1) and (5) while assuming Dt¼ 1 day
yields the difference equation Qtþ1¼QtKb

t ; where Kb is
defined by Barnes [1939] as the base flow recession con-
stant and Qt is the streamflow on day t. Defining Q0 as the
initial streamflow on day t¼ 0, the difference equation can
be linearized as

ln Qtð Þ ¼ ln Q0ð Þ þ tln Kb1ð Þ ð6Þ

where Kb1 is the estimate of the base flow recession con-
stant for Case 1. Equation (6) can be solved graphically or
mathematically by linear regression approaches where
ln(Qt) is the dependent variable and t is the independent
variable with intercept ln(Q0) and slope equal to ln(Kb1).
An identical model assuming independent model errors
with zero mean and constant variance was investigated by
Vogel and Kroll [1996] using ordinary least squares regres-
sion to estimate Kb1. They showed that the use of log-space
error in (6) led to improved performance of the resulting
estimators compared to the use of real space errors.

2.2. Case 2: Traditional Approach (W 6¼ 0)

[13] Here we introduce a new estimator of Kb that
includes the impact of human withdrawals. Including
groundwater withdrawals which deplete aquifer storage,
the continuity equation becomes

dS

dt
¼ �Q tð Þ �W tð Þ ð7Þ

[14] Combining (1) and (7) with k¼ 1/� and using sub-
scripts to represent time dependence, then

d kQtð Þ
dt

¼ �Qt �W ð8Þ

[15] Here we assume groundwater withdrawals are con-
stant during each individual recession hydrograph and are
therefore not a function of time during an individual hydro-
graph recession. This assumption is necessary to incorpo-
rate monthly groundwater withdrawals into the analysis.
Multiplication of (8) by the integration factor et/k leads to

ke
t
k

dQt

dt
þ e

t
kQt ¼ �e

t
kW ð9Þ

[16] Using the chain rule and integration leads to

Qt ¼
�Wk e

t
k � 1

� �
þ kQ0

ke
t
k

¼ �W 1� Kt
b2

� �
þ Q0Kt

b2 ð10Þ

where the integration constant is kQ0 and Kb2¼ e�1/k or
e��. Equation (10) can be linearized by noting that

ln Qt þWð Þ ¼ ln Q0 þWð Þ þ tln Kb2ð Þ ð11Þ

[17] Equation (11) is a linear model with dependent vari-
able ln(QtþW), independent variable time t, intercept
ln(Q0þW), and slope ln(Kb2). Thus, ordinary least squares
regression may be used to estimate the base flow recession
constant in (11).
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2.3. Case 3: Derivative Approach (W 5 0)

[18] Given (3) from Brutsaert and Nieber [1977] and
Vogel and Kroll [1996] illustrate that the intercept parame-
ter a is equal to ln(Kb). Taking the limit of (3) as b
approaches 1 and taking logs yields

ln � dQt

dt

� �
¼ ln �ln Kb3½ �ð Þ þ ln Qtð Þ ð12Þ

[19] Equation (12) is a linear model with a slope term
constrained to 1 on a plot of –dQ/dt versus Q. The estimate
of Kb3 is obtained by fitting (12) to individual recession
data; this approach deviates from previous studies who
suggest that individual recessions exhibit a slope of 1.5 or 3
[Brutsaert and Nieber, 1977] or 2 [Biswal and Marani,
2010; Shaw and Riha, 2012]. Consistent with Case 3, we
assume that the system is linear and hence exhibits a slope
of 1. A simple and attractive estimator of the intercept
[ln(�ln(Kb3)] is the mean of the difference [ln(�dQ/
dt)� ln(Qt)].

[20] Brutsaert and Nieber [1977] estimated dQ/dt using
the finite difference scheme given by [Qi�Qi�1]/[ti� ti�1]
with mean discharge Q estimated using [QiþQi�1]/2; thus
errors arise in both estimation of dQ/dt and the mean value
of Q. Rupp and Selker [2006] summarized the effect of the
choice of Dt and precision of flow estimates on recession
plot analysis. Thomas [2012] recommended more robust
generalized cross-validation (GCV) smoothing spline alter-
natives over the arbitrary numerical difference schemes for
the estimation of dQ/dt. Here estimates of dQ/dt in (12)
were obtained using optimal smoothing splines which were
fit to each individual recession hydrograph within the R-
project [R Development Core Team, 2012]. Employing
GCV methods with smoothing splines provide nearly opti-
mal estimates of dQ/dt [Craven and Wahba, 1979] in addi-
tion to preserving the observed flow Q in contrast to
methods used in most previous recession studies.

2.4. Case 4: Derivative Approach (W 6¼ 0)

[21] Taking logarithms to linearize (4) and applying the
limit as b approaches 1 yields

ln � dQt

dt

� �
¼ ln �ln Kb4½ �ð Þ þ ln Qt þWð Þ ð13Þ

[22] As done for Case 3, the time derivative dQ/dt was
estimated using smoothing splines fit to individual hydro-
graph recessions. An estimate of Kb4 can be obtained from
equation (13) by noting that the mean of the difference
[ln(�dQ/dt)� ln(QtþW)] is equal to the mean value of
ln(�ln[Kb4]), similar to the estimation scheme for Case 3.

3. Database Description

[23] We apply our base flow estimation schemes to
watersheds in New Jersey, USA, because it is currently one
of the only states in which time series of monthly ground-
water withdrawals are available. A total of 15 watersheds
were selected for this study because (1) these watersheds
are within high density population areas of northern New
Jersey which meets the challenge of Sivapalan et al. [2011]
and Vogel [2011] to study anthropogenic impacts on hydro-

logic processes where humans live and (2) a long-term
(�19 year) monthly database of groundwater withdrawals
is publicly available [New Jersey Geological and Water
Survey (NJGWS), 2011]. Daily streamflow records at U.S.
Geological Survey (USGS) stream gages were used to iso-
late suitable recession hydrographs for analysis (Figure 1)
using the hydrograph selection algorithm described by
Vogel and Kroll [1996]. That algorithm identifies the be-
ginning of a streamflow recession when a 3 day moving av-
erage begins to decrease and ends when a 3 day moving
average begins to increase. Recessions with lengths greater
than or equal to 10 days were used for this study. Addition-
ally, the first three points of the recession were removed for
estimation of the base flow recession constant to remove
the influence of other runoff processes. Vogel and Kroll
[1992], Brutsaert and Lopez [1998], and others have identi-
fied different recession hydrograph isolation algorithms;
Stoelzle et al. [2013] identified the approach of Vogel and
Kroll [1992] as accurately characterizing average recession
behaviors compared to algorithms used by Brutsaert and
Nieber [1977] and Kirchner [2009], though their study
raises questions regarding the uniqueness of any base flow
recession characterization. USGS stream gage sites were
selected based on the continuous daily records for the cal-
endar years 1990–2009 to coincide with available with-
drawal data. Available geographical information databases
obtained from the New Jersey Department of Environmen-
tal Protection Bureau of Geographic Information Systems
(GIS) were used to select watersheds; for the purpose of
this study, we selected watersheds with georeferenced surfi-
cial aquifers which did not intersect multiple watershed
boundaries and which exhibited possible hydraulic connec-
tion to streams based on the visual intersection of aquifer
and hydrography layers (Figure 1).

[24] Brutsaert [2005] and Vogel and Kroll [1992] derive
a relationship between the base flow recession constant and
aquifer properties; thus, the geologic and hydrogeologic
characterization of the region theoretically dictates values
of Kb. Watersheds selected for this study are located in
northern New Jersey within the Valley and Ridge, High-
lands, and Piedmont geologic provinces characterized as
having valley fill aquifers [Kummel, 1940]. The Valley and
Ridge Province is underlain by faulted and folded sedimen-
tary bedrock; such structural characteristics have under-
gone erosion resulting in removal of sandstone creating
valleys and resistant shale/limestone ridges. The Highlands
region is underlain by igneous and metamorphic bedrock;
these bedrock types are resistant to weathering resulting in
deeply incised and steep stream valleys. The Piedmont
Province is underlain by both igneous and sedimentary bed-
rock creating a broad lowland area. The unconsolidated for-
mations that comprise aquifers in northern New Jersey are
characterized as glacial Pleistocene stratified drift from the
Wisconsin ice sheet or from more recent valley fill deposits
[Kummel, 1940]. A summary of physical watershed charac-
teristics for the selected watersheds illustrated in Figure 1
is included in Table 1; a full description of data sources for
this study is included in section 5.1.

[25] Daily precipitation data were obtained from the
National Climatic Data Center (NCDC) and the Utah Cli-
mate Center database for sites with nearly continuous daily
precipitation records for the period 1990–2009 while
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monthly data were obtained from PRISM [Daly et al.,
1994]. Selected daily precipitation sites are illustrated in
Figure 1. For the purpose of this study, precipitation totals
reported as trace (T) are considered to be zero. Precipitation
data were used to eliminate any recession hydrograph dur-
ing which streamflow was observed to decrease despite a

concurrent precipitation event totaling greater than 0.10
mm measured at the two precipitation gage sites nearest to
the streamflow gage.

[26] Deterministic approaches for the determination of the
impact of well withdrawals on surface water flows [e.g.,
Hunt, 2012] illustrate spatially dependent relationships

Figure 1. Locations of 15 watersheds, National Climatic Data Sites (NCDC) and Utah Climate Center
sites in New Jersey.

Table 1. Summary of 15 U.S. Geological Survey Gages in Northern New Jersey

USGS Gage
Number Site Name Area (km2) Length (km) f T (km2/d) �%

Withdrawal
Wells

01379000 Passaic River 140.4 289.6 0.3 4040 0.35 30
01379773 Green Pond Brook 19.9 24.9 0.3 540a 0.06 2
01379780 Green Pond Brook 23.8 26.9 0.3 540a 0.05 11
01380500 Rockaway River 303.0 472.5 0.3 600 0.09 98
01381000 Rockaway River 313.4 482.7 0.3 600 0.09 102
01381900 Passaic River 906.5 1578.9 0.3 760 0.20 276
01394500 Rahway River 67.1 57.2 0.1 200 0.12 23
01396500 S. Branch Raritan River 171.7 279.3 0.2 420 0.02 67
01399500 Lamington River 83.4 165.2 0.3 520 0.16 40
01403400 Green Brook 16.2 20.3 0.3 600a 0.02 8
01440000 Flat Brook 168.4 279.9 0.3 540 0.07 18
01443500 Paulins Kill 326.3 431.4 0.1 30 0.06 76
01443900 Yards Creek 13.8 23.83 0.2 410 0.22 2
01445500 Pequest River 274.5 359.9 0.1 20 0.11 72
01457000 Musconetcong River 360.0 519.6 0.2 600 0.01 96

aWatershed physical attributes were estimated based on the geologic characterization of other watersheds using relational comparisons. Variables : f,
porosity; T, transmissivity; �%, percentage of watershed underlain by aquifer.
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where large withdrawals in close proximity to a stream result
in a larger impact on streamflow as compared to a small
withdrawals located a great distance from a stream. Further,
withdrawals from unconfined aquifers with a potential hy-
draulic connection to the stream will produce larger impacts
than withdrawals from confined aquifers where the confining
unit is located between the screened material and the stream.
Given these concerns, only groundwater withdrawals from
unconfined aquifers were used from available time series of
monthly groundwater withdrawals over the period 1990–
2009 obtained from the New Jersey Geological Survey
[NJGWS, 2011]. Total watershed withdrawals were calcu-
lated by aggregating HUC14 withdrawals within delineated
watersheds. Total watershed withdrawals were assumed to
be uniformly distributed across each month to obtain daily
withdrawal rates.

4. Experimental Design

[27] The four Kb estimators summarized in Table 2 are
applied at each site i resulting in mi estimates of Kb where
mi is the number of hydrograph recessions at site i. Sea-
sonal variability in gw-sw behaviors has been noted in pre-
vious studies [Szilagyi et al., 2007; Kroll, 1989]. To
characterize seasonal effects on the estimation of Kb, reces-
sion data from each site was separated into four seasons,
winter (December–February), spring (March–May),
summer (July–August), and fall (September–November),
where each season was assigned based on the last day of
the hydrograph recession.

4.1. Results: Kb Estimation

[28] Vogel and Kroll [1996] observed less variability in
estimates of the base flow recession constant for longer
recessions. To characterize each site and season with a sin-
gle average estimate of Kb, a recession-length weighted av-
erage was employed:

Kbi;s ¼

Xmi;s;j

j¼1

Kbi;s;j

� �
ti;s;j

Xmi;s;j

j¼1

ti;s;j

ð14Þ

where ti,s,j is the total number of days of the recession
hydrograph period used to estimate the base flow recession
constant, j is the number of recession hydrographs and
Kbi,s,j is the estimate of Kb from the jth hydrograph reces-
sion at site i during season s. Figure 2 illustrates recession-
length weighted averages of Kb from (14) by both season
and estimation scheme. The results in Figure 2 illustrate
that the lowest and most variable estimates are obtained

from Case 1 as compared to other estimation schemes
(where number of estimates, n, is 59, 59, 58, and 58,
respectively, for Cases 1, 2, 3, and 4). Seasonal estimates
obtained from Cases 3 and 4, the derivative approaches,
illustrate differences in estimates of Kb in low ET seasons
(spring and winter) as compared to high ET seasons
(summer and fall). Previous studies documented that much
of the variability in base flow recessions between seasons
depended on evapotranspiration [Szilagyi, 1999; Witten-
berg, 2003] or the active drainage network [Biswal and
Marani, 2010]. Figure 2 illustrates that greater variance in
estimators was identified during seasons which exhibit
higher ET. For all estimators tested, estimates of Kb

obtained from summer recessions exhibited the lowest var-
iance compared to other seasons. For all seasons, Kb esti-
mates obtained from Cases 3 and 4 exhibited lower
variance when compared to estimates obtained from Cases
1 and 2. Such results agree with Szilagyi et al. [2007] and
Kirchner [2009] who suggest that reduced ET should
reduce variability in observed base flow recession parame-
ters. Additional variability in base flow recession constant
estimation may be due to varying hydrogeologic properties
of the aquifers within a watershed across different flow
regimes as described by previous studies [Brutsaert and
Nieber, 1977; Brutsaert and Lopez, 1998; Zecharias and
Brutsaert, 1988a, 1988b; Farvolden, 1963]. Further, ground-
water elevations tend to be highest in the spring and lowest
in the fall as evidenced in monthly groundwater elevation
data obtained from USGS across New Jersey. Such changes
in groundwater elevations may alter active stream networks
as described by Biswal and Marani [2010]. As described by
Van de Griend et al. [2002], physical constraints of aquifer
systems such as the decrease in hydraulic conductivity with
depth in stratified drift aquifers due to compaction can
greatly affect the seasonal storage-discharge behaviors.

[29] Here we introduced a dimensionless withdrawal
variable to describe the degree of withdrawal. The variable,
�, characterizes the impact of groundwater withdrawals as
a ratio to overall streamflow during the recession

�i ¼

Xmi

j¼1

wj

Qrj

mi
ð15Þ

where wj is the daily average groundwater withdrawal for
hydrograph recession j, Qrj represents the average stream-
flow during the jth hydrograph recession and again mi is the
total number of observed hydrograph recessions available
at site i.

[30] Figure 3a illustrates a comparison of estimates of Kb

from individual hydrograph recessions obtained from equa-
tion (6) (Case 1) and equation (11) (Case 2) for different
ranges of �. Figure 3a (n¼ 827) illustrates that some vari-
ability in estimates of Kb obtained from individual hydro-
graph recessions can be attributed to the impact of
groundwater withdrawals; this is most clearly illustrated by
estimates during periods in which � is high (points repre-
senting 0.10<�<0.25) which show a range in estimated Kb

values from 0.80 to 0.97 obtained for Case 1 with a more
limited range from 0.85 to 0.97 for Case 2. It must be
stressed, however, that Kb is bounded (Kb� 1) and
thus larger estimates of Kb will naturally result in lower

Table 2. Summary of Equations Used for Cases Derived

Approach Equation

Case 1: Traditional (W¼ 0) ln Qtð Þ ¼ ln Q0ð Þ þ tln Kb1ð Þ
Case 2: Traditional (W 6¼ 0) ln Qt þWð Þ ¼ ln Q0 þWð Þ þ t ln Kb2ð Þ
Case 3: Derivative

(W¼ 0)
ln � dQt

dt

� �
¼ ln �ln Kb3½ �ð Þ þ ln Qtð Þ

Case 4: Derivative
(W 6¼ 0)

ln � dQt

dt

� �
¼ ln �ln Kb4½ �ð Þ þ ln Qt þWð Þ
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variability. Figure 3b (n¼ 817) compares estimates of Kb

for Case 3 versus Case 4. Figure 3b illustrates a similar sys-
tematic impact of groundwater withdrawals on estimates of
the base flow recession constant. Figure 3 illustrates that

incorporation of groundwater withdrawals into estimation
of the base flow recession constant generally results in an
increased value of Kb as evidenced the fact that Kb2>Kb1

(Figure 3a) and Kb4>Kb3 (Figure 3b). A significant

Figure 3. Comparison between estimates of Kb obtained from (a) Cases 1 and 2 and (b) Cases 3 and 4.

Figure 2. Comparison of recession-weighted averages calculated by (14) for cases summarized in Ta-
ble 2. Statistical differences between estimates were tested using the Wilcoxon signed rank sum test
[Helsel and Hirsch, 2002]. Statistical differences with �¼ 0.05 were identified between summer/fall and
winter/spring in (c) and (d), between Cases 1 and 2 for all seasons (e-h), and between Cases 1 and 3 and
between Cases 1 and 4 during summer and fall (g and h). Boxplots represent 75% and 25% quantiles
while whiskers represent 90% and 10% declies.
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difference in estimates of Kb1 and Kb2 can be inferred from
standard error estimates of the base flow recession con-
stants for Cases 1 and 2. Overall it was found that with-
drawals exceeding, on average, values of �¼ 0.084
resulted in significantly different estimates of Kb1 and Kb2.
We conclude that when an average of 8.4% or more of
streamflow is withdrawn during a recession event such
withdrawals will significantly impact our ability to charac-
terize recession behaviors without considering human
interferences.

5. Relating Base Flow Recession Constants to
Watershed Characteristics

[31] In this section, we attempt to describe the relation-
ship between Kb and physical watershed characteristics and
human interferences to characterize the relation between
base flow recession and its controlling parameters. Multi-
variate regression has been used to relate the base flow
recession constant to physical [Brandes et al., 2005b;
Zecharias and Brutsaert, 1988a, 1988b] and climatological
[Farvolden, 1963; van Dijk, 2010] variables. Our hypothe-
sis is that Kb is a function of physical, anthropogenic, and
climatic influences and, therefore, is no longer dependent
solely on physical characteristics of the watershed. Our
approach to evaluate this hypothesis includes development
of a multiple regression model that accounts for the pri-
mary physical determinants related to Kb as well as those
due to climatic and anthropogenic influences.

[32] Vogel and Kroll [1992] provide a physically based
model relating Kb to watershed characteristics using simpli-
fying watershed and hydrogeologic assumptions (including
Dupuit flow) as

Kb ¼ exp ��
2kHd2

d

�%f

� �
ð16Þ

where k is the average watershed hydraulic conductivity, H
is the basin relief, dd is the drainage density, �% is the frac-
tion of the watershed underlain by aquifers contributing to
base flow and f is the drainable soil porosity, sometimes
referred to as the effective porosity or specific yield.

[33] The physical model in (16) relates the base flow
recession constant to physical watershed characteristics.
Our results suggest that Kb is not a constant related solely
to physical characteristics of a watershed and, therefore,
may be dependent on other exogenous variables including
seasonality and groundwater withdrawals.

5.1. Multivariate Regression Database

[34] Watershed characteristics needed for the proposed
multivariate models include, at a minimum, aquifer perme-
ability, basin elevations, porosity, the proportion of the
watershed underlain by surficial aquifers, and the drainage
density. Additional factors including hydroclimatic indices,
a seasonality index, and the groundwater withdrawal index
� from (15) were also included in model testing. Availabil-
ity of hydrogeologic information including hydraulic con-
ductivity and porosity are limited; thus, lumped estimates
of porosity were assigned based on the reported sedimen-
tary materials while transmissivity, a parameter related to
hydraulic conductivity and aquifer depth, was used given

the availability of groundwater pumping test data. Limita-
tions of data used in the analysis are included below. A
summary of potential explanatory variables is shown in
Table 3.
5.1.1. Transmissivity (T)

[35] Most watersheds used as part of this study have
reported estimates of transmissivity derived from ground-
water pumping tests [New Jersey Department of Environmen-
tal Protection (NJDEP), 2012]. Estimates of transmissivity
are point estimates; therefore, area-weighted averages were
used via Theissen polygons to obtain representative water-
shed transmissivity. We recognize that such methods do not
provide representative estimates of bulk watershed proper-
ties; however, for this initial analysis to characterize the
effect of withdrawals on gw-sw behaviors, we used available
data which included point estimates and aquifer characteris-
tics. For watersheds without estimates of transmissivity,
methods were used to relate watershed properties with trans-
missivity estimates to those without documented transmissiv-
ity; such sites are indicated in Table 1. In general, aquifers
with high aquifer productivity and characterized as being
composed of sand and gravel exhibited high transmissivity
estimates (T> 500 m2/d) while lower aquifer productivity
and characterization as till or sand/silt exhibited low trans-
missivity (T< 300 m2/d).
5.1.2. Alpha (a%)

[36] The aerial percentage of the watershed underlain by
aquifers was calculated using GIS data available through
NJGIS [Herman et al., 1998]. Estimates of �% represent
the ratio of area of aquifers divided by the total contribut-
ing watershed area.
5.1.3. Porosity (f)

[37] Average watershed porosity was assigned based on
the available GIS coverages [Herman et al., 1998] describ-
ing aquifer productivity and aquifer formations and linked
to porosity ranges (0.1, 0.2, and 0.3) obtained from Fetter
[1994]. For example, an aquifer characterized as being
composed of silt, sand, and clay was assigned a porosity of
0.10 while sand and gravel aquifers with high yields were
assigned porosity values of 0.30. Effective porosity esti-
mates used in this study are higher than reported estimates
obtained from (16) and similar equations introduced by
Brutsaert and Nieber [1977] by orders of magnitude [Brut-
saert and Nieber, 1977, f¼ 0.045; Eng and Brutsaert,
1999, f¼ 0.017; Brutsaert and Lopez, 1998, f¼ 0.0167;
Rupp et al., 2009, specific yield �0.0021; Brutsaert, 2008,

Table 3. Potential Explanatory Variables

Variable Description Units Data Source

dd Drainage density: L/A 1/m NHD/USGS
� Degree of withdrawal (15)
�% Percentage of watershed

underlain by aquifer
NJGIS

S Average watershed slope (17)
f Porosity NJGIS/Fetter [1998]
T Transmissivity m2/d NJGIS
PDSI Palmer Drought Stress Index NCDC
RR Seasonal runoff ratio USGS/PRISM
AI Seasonal aridity ratio USGS/PRISM
Season Seasonality (18)
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specific yield �0.024]. The potential ranges of effective
porosity have been described by Johnson [1968]. Consider
an aquifer unit is described as silty-sand/clay sand; John-
son [1968] illustrates that specific yield can vary from 0.04
to 0.30. Further, complicating estimates used in this study
is that production well testing is likely to occur in the most
favorable regions of aquifers and will not capture heteroge-
neities in aquifer systems known to exist.
5.1.4. Drainage Density (dd)

[38] The New Jersey Department of Environmental Pro-
tection (NJDEP) provides National Hydrography Dataset
(NHD) GIS data which includes NHDFlowline feature
classes, or ‘‘blue lines’’ representing streams. The GIS
database was used to compile watershed variables needed
to calculate drainage density which we define as the ratio
of the total stream channel length to drainage area follow-
ing Vogel and Kroll [1992].
5.1.5. Degree of Withdrawal (c)

[39] The variable �, defined in (15), was used to charac-
terize the degree of groundwater withdrawals which are
expected to impact estimation of Kb.
5.1.6. Average Watershed Slope (S)

[40] Previous studies employed the concept of basin
relief (H) which Zecharias and Brutsaert [1985] define as
the difference between the basin summit elevation and the
basin outlet elevation. Vogel and Kroll [1992], for example,
estimate average watershed slope, S, using the relation S �
2Hdd based on the work by Strahler [1950]. For this study,
average watershed slope was calculated using the approach
by the Natural Resources Conservation Service (NRCS)
which calculates average watershed slope by

S ¼ length of contour lines; ftð Þ contour intervalð Þ 100ð Þ
watershed area; sq mið Þ 43; 560ð Þ ð17Þ

[41] Contour lines were created in GIS from New Jersey
digital elevation grid data [New Jersey Geological Survey
(NJGS), 1999].
5.1.7. Runoff Ratio (RR)

[42] The seasonal runoff ratio, the ratio of seasonal stream-
flow to seasonal precipitation (Q/P) defined by Chang [2007],
characterizes the seasonal behavior of watershed response to
precipitation. The runoff ratio (RR) is a function of climate
and watershed properties as it depends on antecedent moisture
conditions and maximum soil water retention. For this study,
monthly precipitation data were obtained from PRISM and
area-weighted averages for each watershed. PRISM data
were selected for this study since the spatial regression proce-
dure to produce the spatial and temporal data set accounts for
topographic impacts on precipitation [Daly et al., 1994]. Av-
erage monthly streamflow was obtained from USGS stream
gages and normalized by contributing watershed area.
5.1.8. Aridity Index (AI)

[43] The seasonal aridity index (P/PET) defined as the
ratio of seasonal precipitation (P) to seasonal potential
evapotranspiration (PET) compares available water to the
energy within a system. To calculate the seasonal aridity
index, monthly precipitation data was obtained using
watershed-area-weighted averages from PRISM [Daly
et al., 1994] while PET was estimated using the Hargreaves
method [Shuttleworth, 1993].

5.1.9. Palmer Drought Stress Index (PDSI)
[44] PDSI was introduced by Palmer [1965] to evaluate

soil moisture deficiency by accounting for the interaction
of precipitation and evapotranspiration. Alley [1984] docu-
mented deficiencies with PDSI including its inability to
characterize temporal estimation of water budget compo-
nents. In spite of this criticism, PDSI remains commonly
used as a climate index [e.g., Huang et al., 2011]. Monthly
PDSI was obtained for the regions of New Jersey from the
National Climatic Data Center (NCDC).
5.1.10. Seasonality

[45] Estimates of Kb are shown to vary depending on
season by Kroll [1989], Szilagyi et al. [2007], and Aksoy
et al. [2001] and as illustrated in Figure 2. To account for
the potential relationship between Kb and season, a season-
ality term is introduced as

Season¼�1sin !tð Þ þ �2cos !tð Þ ð18Þ

where ! is (2�/4) and t is the season numbered from 1 to 4
(winter-fall) following Helsel and Hirsch [2002].

5.2. Model Development

[46] Ordinary least squares (OLS) multivariate regres-
sion procedures were used to estimate the model parame-
ters of the hybrid physical/statistical model of the form
given in (16). To enable the use of multivariate OLS
regression we fit the model

ln �ln Kbi½ �ð Þ ¼ �0 þ �1X1 þ � � � þ �nXn þ "i ð19Þ

where Xi, . . . , Xn are the natural logs of the explanatory
variables summarized in Table 3, �0, . . . , �n are model
coefficients and "i are normally distributed model errors
with zero mean and constant variance �2. As summarized
in Table 3, potential explanatory variables include climatic
and anthropogenic variables in addition to physical water-
shed attributes. The dependent variable for (19) is obtained
from recession-weighted averages from (14) and thus rep-
resents seasonal estimates of Kb from all sites for each
case. Various multivariate regression model selection
methods were used including stepwise regression analysis
and best subsets regression in addition to the working
knowledge of the physical model form for Kb in (16). For
this study, we only include independent variables whose
model coefficients are significantly different from zero
using a 5% level t test. In addition, influence statistics were
calculated to identify observations that exhibited unrealistic
influence on the regression model parameter estimates. To
ensure that statistical inference associated with our model
testing was reasonable, we performed diagnostics to ensure
the normality, independence, and homoscedasticity of the
model residuals. Finally, variance inflation factors were
examined to assure against multicollinearity among the ex-
planatory variables. In general, we followed the guidelines
of Helsel and Hirsch [2002] for the diagnostic evaluation
of the resulting multivariate models summarized in
Table 4.

[47] For all cases, significant explanatory variables sum-
marized in Table 4 include drainage density (dd), average
watershed slope (S), transmissivity (T), groundwater with-
drawals (�), and aquifer percentage (�%). One would
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expect the variable season to be significant given results in
Figure 2; however, one must note that � is a function of
streamflow and withdrawals (15) which are known to
depend on season. Thus, a seasonal signal is already inher-
ent in the model via incorporation of the impact of water
withdrawals. Climate variables were not found to be signif-
icant for the sites considered; such a result may be due to
the limited spatial area employed for this study over which
many climatic variables are relatively homogeneous.

5.3. Evaluation of Multivariate Model Results

[48] McCuen et al. [1990] and many others have docu-
mented retransformation bias due to retransformation of a
model which was fit using a log transformation of model
variables, as is the case in (19). The bias was calculated for
each model in Table 4; the relative bias was found to be low
(maximum relative bias of 0.009 for the four cases), thus no
bias correction factors were employed. Nash-Sutcliffe effi-
ciency [Nash and Sutcliffe, 1970] was calculated for esti-
mated values of Kb and is presented in Figure 4. Figure 4
illustrates a comparison between estimated Kb from the mul-
tivariate regression based on the recession-weighted aver-
ages at each site and season. We avoid comparisons of R2

between models due to the potential for spurious correlation
for Cases 2 and 4 which included � in the estimation scheme
and in the multivariate regression results. Results summar-
ized in Table 4 and Figure 4 indicate that the multivariate
models which include groundwater withdrawals exhibit a
lower prediction sum of squares (PRESS). The PRESS sta-

tistic is defined by
Pn�1

i¼1
e2

i where ei is the prediction (or delete

1) residual (see Helsel and Hirsch [2002] for further back-
ground on prediction residuals). Here PRESS units are the
square of the dependent variable which in our case is dimen-
sionless. Further, we note that Case 2 exhibits the lowest
PRESS and highest NSE among the cases considered. We
conclude, for this particular application, that the traditional
semilog base flow recession approach adapted to include
groundwater withdrawals yields more physically realistic
estimates of Kb as compared to the other estimators tested.

[49] To evaluate the sensitivity of estimates of Kb to
changes in the watershed variables used to explain their
variability, we employ the nondimensional sensitivity con-
cept of elasticity. The units of explanatory variables (Table
4) are not identical ; thus, it is difficult to interpret their
resulting impact on Kb. Elasticity is an attractive concept
because it is a dimensionless approach to evaluating sensi-
tivity defined as

"x ¼
@Kb

Kb

@x
x

¼ @Kb

@x

x

Kb
ð20Þ

where x is an explanatory variable used to predict Kb as
summarized in Table 4. Elasticity "x represents the percent-
age increase (decrease) in the magnitude of Kb, which
results from a one percent increase (decrease) in the ex-
planatory variable x. Here @Kb

@x is estimated from the regres-
sion model in (19) for each case and evaluated for each site
and for each season. We define elasticity of: geomorphol-
ogy (dd), geology (T and �%), topography (S), and human
withdrawals (�) of Kb. The absolute value of the elasticity
of each explanatory variable is shown using boxplots in
Figure 5 to illustrate the relative importance of each vari-
able. For all cases illustrated in Figure 5, the geomorphol-
ogy elasticity of the base flow recession constant was found
to be the most influential factor impacting Kb. This result is
consistent with previous research which suggests that
drainage density is the main contributor to spatial varia-
tions in Kb [Zecharias and Brutsaert, 1988b, Brandes et al.,
2005b, Farvolden, 1963; Brutsaert and Nieber, 1977].
Importantly, the next most influential factor for all cases
was the human withdrawal elasticity of Kb. For Cases 1 and
2, the value of the elasticity of human withdrawals is
roughly equal to the geomorphology elasticity. This result
highlights the high sensitivity of Kb to variations in human
groundwater withdrawals.

[50] Figure 5 shows that the elasticity of the remaining
explanatory variables was small, especially when compared
to the water withdrawal and geomorphology elasticity.
These results support the results of previous research which
documented the influence of basin slope (S) [Zecharias and
Brutsaert, 1988a, 1988b; Farvolden, 1963], aquifer area
(�%) [Brutsaert and Nieber, 1977], and aquifer conductiv-
ity (T) [Brutsaert and Nieber, 1977] on base flow reces-
sions. However, it must be stressed that Kb itself is a
sensitive parameter ; a change in Kb from 0.93 to 0.92, for
example, is a large difference and can greatly affect results
such as low flow estimation [Kroll et al., 2004] and base
flow separation procedures [Eckhardt, 2011].

6. Conclusions

[51] This study has explored the sensitivity of the behav-
ior of groundwater/surface water interactions using the
base flow recession constant, Kb, which has widespread
applications in hydrologic engineering and science. We
have summarized the application of Kb in testing hydro-
logic science hypotheses and its widespread use in hydro-
logic models. Given the complex coupling of human and
natural hydrologic processes both temporally and spatially,
there is a great need to incorporate anthropogenic influen-
ces into hydrologic models in general, and in the estimation
of base flow recession constants in particular. This study
sought to accurately characterize groundwater-surface

Table 4. Summary of Case-Specific Regression Modelsa

Model Constant dd � S T �% Adj-R2 Pred-R2 PRESS

Case 1 �3.09 (>0.001) �1.14 (>0.001) 0.084 (>0.001) 0.30 (0.047) 0.216 (>0.01) 0.246 (>0.001) 74.5 72.3 1.17
Case 2 �1.63 (>0.001) �0.64 (>0.001) 0.142 (>0.001) 0.19 (0.002) 0.077 (>0.001) 0.215 (>0.001) 85.5 83.4 0.65
Case 3 �4.04 (>0.001) �0.27 (0.008) 0.085 (0.001) 0.55 (>0.001) 0.104 (>0.001) 0.107 (0.003) 53.5 42.9 1.61
Case 4 �3.94 (>0.01) �0.42 (0.009) 0.096 (>0.01) 0.52 (>0.001) 0.112 (>0.001) 0.122 (>0.001) 55.6 47.1 1.42

aThis table reports model coefficients (�’s in (19)) along with their p values (in parentheses). All coefficients were significant at the 5% level.
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water (gw-sw) behavior and characterize how the behavior
of Kb relates to both physical and anthropogenic influences.
We have shown that when groundwater withdrawals are
ignored, characterization of gw-sw behavior can be system-
atically biased, thus confounding our ability to model such
systems. As increased attention is devoted to groundwater
storage to meet water demands, this study illustrates the
necessity to incorporate anthropogenic effects, in this case
groundwater withdrawals, to properly characterize base
flow recessions.

[52] One of the primary goals of this study was to de-
velop a new approach for integrating human withdrawals
into the estimation of the base flow recession constant.
Though Wang and Cai [2009, 2010] were the first to intro-
duce withdrawals into base flow analyses, this is the first
study to introduce and compare the performance of several
estimation methods for Kb, which account for water with-
drawals. Our approach extends traditional semilog methods
and derivative methods to incorporate the influence of
human withdrawals. Our findings indicate that approaches
which include human withdrawals to obtain the base flow
recession constant (Cases 2 and 4) result in systemically
higher estimates of Kb than traditional approaches which
ignore groundwater withdrawals. Furthermore, for all cases

considered in this study, the traditional semilog method for
estimating Kb modified to include human withdrawals
(Case 2) exhibited seasonal variability (Figure 3) and led to
multivariate models for predicting Kb with higher precision
(Table 4) than all other estimators considered. Our findings
indicate that traditional approaches adapted to account for
water withdrawals yield more consistent (Figure 3) and
physically realistic (Figure 4 and Table 4) estimates of Kb

than traditional approaches which ignore withdrawals as
well as methods which employ derivative approaches. Our
results illustrate that average withdrawals of roughly 8% or
more of streamflow during a recession event impact our
ability to characterize recession behaviors.

[53] We also sought to quantify the role of geologic, geo-
morphic, topographic, and anthropogenic factors on varia-
tions in the value of Kb. For this purpose, the concept of
dimensionless elasticity is used. Geomorphologic (drainage
density) and anthropogenic (human withdrawal) elasticities
were found to be the most influential factors impacting the
base flow recession constant, Kb. Previous studies which
ignored anthropogenic influences (human withdrawals)
suggested that geomorphic variables such as drainage den-
sity or topographic variables such as basin slope are the
most important variables for explaining variations in Kb ;

Figure 4. Comparison of predicted versus observed base flow recession constants for (a) Case1, (b)
Case 2, (c) Case 3, and (d) Case 4. Nash-Sutcliffe efficiency (NSE) calculated from ‘‘real-space’’ values
of Kb.
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our study supports those previous findings but illustrates
that groundwater withdrawals can exhibit an equally signif-
icant and important influence on observed variations in Kb.

[54] Acknowledgments. The authors would like to acknowledge par-
tial support through the Summer Institute organized by Charles
Vörösmarty at The City College of New York as part of the NSF-funded
Hydrologic Synthesis project ‘‘Humans Transforming the Hydrologic
Cycle (NSF grant 0854957, C. Vörösmarty, PI). Additional project support
was provided by a fellowship awarded to the first author by the Tufts Insti-
tute for the Environment (TIE); and by the University of California Office
of the President Multicampus Research and Programs Initiative. The
authors also express their appreciation to the three anonymous reviewers,
Editor John Selker and Associate Editor David Rupp whose comments
contributed to substantial improvements to the original manuscript.

References
Alley, W. M. (1984), The Palmer drought severity index: Limitations and

assumptions, J. Clim. Appl. Meteorol., 23, 1100–1109.
Aksoy, H., and Wittenberg H. (2011), Nonlinear baseflow recession analy-

sis in watersheds with intermittent streamflow, Hydrol. Sci. J., 56(2),
226–237.

Barnes, B. S. (1939), The structure of discharge-recession curves, Eos
Trans. AGU, 20(4), 721.

Beven, K. J., R. Lamb, P. Quinn, R. Romanowicz, and J. Freer (1995),
TOPMODEL, in Computer Models of Watershed Hydrology, edited by
V. P. Singh, pp. 627–668, Water Resour. Publ., Highlands Ranch, CO.

Biswal, B., and M. Marani (2010), Geomorphological origin of reces-
sion curves, Geophys. Res. Lett., 37, L24403, doi :10.1029/2010GL
045415.

Botter, G., A. Porporato, I. Rodriguez-Iturbe, and A. Rinaldo (2009), Non-
linear storage-discharge relations and catchment streamflow regimes,
Water Resour. Res., 45, W10427, doi:10.1029/2008WR007658.

Boussinesq, J. (1877), Essai sur la theorie des eaux courantes: Du mouve-
mont non permanent des eaux souterraines, Acad. Sci. Inst. Fr., 23, 252–
260.

Brandes, D., G. J. Cavallo, and M. L. Nilson (2005a), Baseflow trends in
urbanizing watersheds of the Delaware river basin, J. Am. Water Resour.
Assoc., 41(6), 1377–1391.

Brandes, D., J. G. Hoffman, and J. T. Mangarillo (2005b), Base flow reces-
sion rates, low flows, and hydrologic features of small watersheds in
Pennsylvania, USA, J. Am. Water Resour. Assoc., 41(5), 1177–1186.

Brutsaert, W. (2005), Hydrology: An Introduction, p. 605, Cambridge
Univ. Press, Cambridge, U. K.

Brutsaert, W. (2008), Long-term groundwater storage trends estimated
from streamflow records: Climatic perspective, Water Resour. Res., 44,
W02409, doi:10.1029/2007WR006518.

Brutsaert, W., and J. L. Nieber (1977), Regionalized drought flow hydro-
graphs from a mature glaciated plateau, Water Resour. Res., 13(3), 637–
643.

Figure 5. Comparison of elasticities obtained from (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4
summarized in Table 4. Boxplots represent 75% and 25% quantiles while whiskers represent 90% and
10% declies.

THOMAS ET AL.: BASE FLOW RECESSION CONSTANT HUMAN INTERFERENCE

7377



Brutsaert, W., and J. P. Lopez (1998), Basin-scale geohydrologic drought
flow features of riparian aquifers in the Southern Great Plains, Water
Resour. Res., 34(2), 233–240.

Chang, H. (2007), Comparative streamflow characteristics in urbanizing
basins in the Portland Metropolitan Area, Oregon, USA, Hydrol. Proc-
esses, 21, 211–222.

Craven, P., and G. Wahba (1979), Smoothing noisy data with spline func-
tions, Numer. Math., 31, 377–403.

Daly, C., R. P. Neilson, and D. L. Phillips (1994), A statistical-topographic
model for mapping climatological precipitation over mountanious ter-
rain, J. Appl. Meteorol., 33, 140–158.

Dingman, S. L. (2002), Physical Hydrology, Prentice Hall, Upper Saddle
River, N. J.

Dooge, J. C. I. (1983), Linear theory of hydrologic systems, Tech. Bull.
1468, 327 pp., U.S. Dep. of Agric., Washington DC.

Domenico, P. A., and F. W. Schwartz (1998), Physical and Chemical
Hydrogeology, John Wiley, New York.
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