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Abstract

A derived flood frequency distribution (DFFD) combines a stochastic rainfall model with a deterministic rainfall–runoff
model to obtain a physically based probability distribution of flood discharges. Previous DFFD studies have either assumed that
rainfall intensity and duration are independent or negatively correlated. This study is more general than previous studies
because it accommodates both positive and negative correlations between rainfall intensity and duration. Rainfall–runoff
processes are modeled using af-index infiltration model and a geomorphoclimatic instantaneous unit hydrograph. Applica-
tions to four Indian watersheds and one US watershed demonstrates that (1) the correlation of rainfall intensity and duration has
an important impact on the DFFD and (2) the DFFD provides a potentially useful alternative for estimating flood flow quantiles
at ungaged sites.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Very few methods exist for the estimation of the
probability distribution function (PDF) of flood
discharges for catchments without discharge measure-
ments. Yet estimation of flood quantiles at ungaged
sites is one of the most common and important
problems in hydrology. The location of most flood
problems is rarely coincident with a streamflow
gage, hence physically based methods such as the
derived flood frequency distribution (DFFD) are
needed which relate storm characteristics and
watershed information to the PDF of flood discharges.
Flood frequency problems are even more challenging

in underdeveloped regions where streamflow
networks are sparse.

Methods for estimation of the PDF of flood
discharges at ungaged sites include: (1) transfer of
streamflow records from a nearby river basin using a
drainage area scaling relationship, followed by fitting
a PDF and (2) use of regional flood frequency
methods such as the index-flood or regional regression
methods (see Stedinger et al., 1993). Each of these
approaches has attendant problems. Transfer of
flows from a nearby watershed is only reliable when
an adequate length of good flow records existand if
the nearby basin is hydrologically similar to the basin
in question. Regional flood frequency models are not
available for all regions of the world. Furthermore,
regional hydrologic models do not usually take into
account the site-specific nature of the intensity and
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duration of rainfall for the basin in question. Physi-
cally based derived flood frequency distribution
models offer a promising alternative to these
approaches for estimating the PDF of flood flows at
an ungaged site. Essentially, a DFFD uses readily
available catchment information relating to rainfall
intensity and duration, along with a rainfall–runoff
model whose parameters do not require calibration.
DFFD methods are unique because they integrate
our theoretical knowledge of both the deterministic
hydrologic processes and the stochastic rainfall
processes.

DFFD models are an analytic combination of a
stochastic rainfall model and a deterministic rain-
fall–runoff watershed model. DFFD models usually
have three components: (1) a stochastic rainfall
model, (2) infiltration model and (3) effective rain-
fall–runoff model. Kurothe et al. (1997) developed a
DFFD model using a bivariate exponential rainfall
model with negatively correlated intensity and

duration, constant loss rate (f -index) infiltration
model and a geomorphoclimatic instantaneous unit
hydrograph (GcIUH) as the effective rainfall–runoff
model. The form of the bivariate exponential distribu-
tion was not appropriate for most rainfall data, which
exhibits a positive correlation between rainfall inten-
sity and duration. In this study, a different form of
bivariate exponential distribution (Nagao and
Kadoya, 1971) has been adopted which does not
pose any restriction on the sign of the correlation
coefficient. Raines and Valdes (1993), Kurothe
(1995) and Kurothe et al. (1997) review physically
based flood frequency models. Avoiding the repetition
of a literature review, the following section derives
the DFFD for the generalized case of correlated rain-
fall intensity and duration.

2. Stochastic rainfall model

The stochastic rainfall model used in earlier DFFD
models is a bivariate exponential PDF of storm rain-
fall intensity ir and durationtr. In most of the previous
studies, these random variables were assumed to be
independent of each other. The joint PDF ofir and tr
can be expressed as

fIr;Tr
�ir; tr� � bd exp�2bir 2 dtr� �1�

where the marginal PDFs of intensity and duration are
exponential with parametersb andd , representing the
inverse of the mean storm intensity and the mean
storm duration, respectively. The assumption of inde-
pendence will affect the output of a DFFD model.
Rainfall records can exhibit either positive or negative
correlation betweenir andtr. For negatively correlated
ir and tr the joint PDF

fIr;Tr
�ir; tr� � bd��1 1 bgir��1 1 dgtr�2 g�

� exp�2bir 2 dtr 2 bdgirtr� �2�
was introduced by Gumbel (1960) and Bacchi et al.
(1994). The parameterg ranges from 0 to 1 and
describes the correlation coefficientr�ir; tr� between
intensity and duration which is defined by

r�ir; tr� � 21 1
Z∞

0

1
1 1 gx

exp�2x� dx �3�

This model is only valid for correlation coefficients
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Nomenclature

A area of the watershed (km2)
ie effective rainfall intensity (cm/h)
ir areal rainfall intensity (cm/h)
LV length of the highest order stream (km)
mv mean number of independent storms per

year
PNR probability of null runoff
qP peak of the IUH (1/h)
QP peak discharge from the catchment

(m3/s)
RL Hortons stream length ratio
tb time base of the IUH (h)
te effective rainfall duration (h)
tr point/areal storm duration (h)

Greek symbols
aV kinematic wave parameter for the

highest order stream (m21/3 s21)
b inverse of mean areal storm intensity

(h/cm)
d inverse of mean storm duration (1/h)
f spatially averaged potential loss rate;

f -index (cm/h)
r correlation coefficient betweenir andtr



ranging from 0�g � 0� to 20.404�g � 1�: Using the
PDF of ir andtr in Eq. (2), thef -index as an infiltra-
tion model and the GcIUH as an effective rainfall–
runoff model, the cumulative flood frequency distri-
bution of streamflow was derived by Kurothe et al.
(1997). One objective of this paper is to extend that
work to the case of generalized (positive or negative)
correlation betweenir and tr. Another objective is to
demonstrate the ability of the DFFD to reproduce the
PDF of observed flood flows at an ungaged site.

For the development of a DFFD for the generalized
case of correlated rainfall intensity and duration, the
joint PDF given by Nagao and Kadoya (1971) is
employed here. This PDF does not pose any restric-
tions on the correlation coefficient. The joint PDF is

fIr;Tr
�ir; tr� � bd

1 2 r
exp�2b1ir 2 b2tr�

� I0
2�rbdirtr�1=2

1 2 r

" #
�4�

where the marginal PDFs ofir and tr are exponential
with parametersb andd , r is the correlation coeffi-
cient betweenir and tr, I0� � is the modified Bessel
function of order zero, and

b1 � b

1 2 r
�5a�

b2 � d

1 2 r
�5b�

The functionI0� � may be expressed as (Gradshteyn
and Ryzhik, 1965):

I0�z� �
X∞
k�0

�z=2�2k

�k!�2 �6�

Combining Eqs. (4) and (6) leads to

fIr;Tr
�ir; tr� �

X∞
k�0

hk�irtr�k exp�2b1ir 2 b2tr� �7�

where

hk � rk�bd�k11

�1 2 r�2k11�k!�2 �8�

The PDF introduced by Nagao and Kadoya (1971)
in Eq. (4) was also used by Cordova and Rodriguez-
Iturbe (1985) in their study of probabilistic structure

of storm surface runoff to account for correlation
betweenir and tr.

An even more flexible stochastic model of rainfall
was suggested recently by Lambert and Kuczera
(1998) who introduce a generalized exponential
model which can be adapted to account for the sea-
sonal nature of rainfall. The bivariate exponential
distribution has been documented to be a realistic
model for rainfall intensity and duration by many
previous investigators (see for example Cordova and
Bras, 1981).

2.1. Probability of rainfall excess

Estimation of rainfall excess requires knowledge of
the spatial and temporal variation in soil moisture.
Index methods, using only one or two parameters,
provide an approximation to the infiltration process
and are often used in practice. The most common
infiltration index is the f -index, defined as the
(constant) infiltration rate to be subtracted from the
rainfall rate resulting in rainfall excess. Thef -index
is normally estimated from concurrent rainfall and
runoff records, however when such records are
unavailable, it is possible to relate values off to the
hydraulic conductivity of the prevailing catchment
soil types.

Effective rainfall intensityie and durationte for a
spatially averaged potential loss ratef are given by

ie � ir 2 f ir . f �9a�

te � tr ir . f �9b�

ie � 0 ir # f �9c�

te � 0 ir # f �9d�
Whenir # f; no runoff is generated. In terms of the

joint distribution of ie and te this situation is repre-
sented by a spike atie � 0 and te � 0 which is the
probability of null runoff (PNR) and is given by

PNR � P�ie � 0; te � 0� �
Z∞

0

Zf

0
fIr;Tr
�ir; tr� dir

" #
dtr

�10�
Substitution offIr ;Tr

�ir; tr� from Eq. (7) into Eq. (10)
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leads to

PNR �
X∞
k�0

hk

Z∞

0
tkr exp�2b2tr� dtr

�
Zf

0
ikr exp�2b1ir� dir �11�

Completion of the integration in Eq. (11) with respect
to tr yields

PNR �
X∞
k�0

hk
k!

bk11
2

Zf

0
ikr exp�2b1ir� dir �12�

The integral in Eq. (12) has the solutionZf

0
ikr exp�2b1ir� dir

� k!

bk11
1

2 exp�2b1f�
Xk
n�0

k!
n!

fn

bk2n11
1

�13�

Using Eqs. (5), (8) and (13) we obtain

PNR � 1 2 exp
2bf

1 2 r

� �X∞
k�0

rkbk11

�1 2 r�kk!

�
Xk
n�0

k!
n!

fn�1 2 r�k2n11

bk2n11 �14�

2.2. The joint PDF of rainfall intensity and duration

The PDF ofie andte can be derived as a function of
the PDF ofir andtr by using the general relationship

fIe;Te
�ie; te� � fIr;Tr

�g21
1 �ie; te�;g21

2 �ie; te�� 2�ir; tr�2�ie; te�
���� ���� �15�

whereg21
1 �ie; te� andg21

2 �ie; te� are the inverse func-
tions of ir and tr. Substitution of Eqs. (7) and (9) into
Eq. (15) leads to

fIe;Te
�ie; te� �

X∞
k�0

hk��ie 1 f�te�k

� exp�2b1�ie 1 f�2 b2te� �16�
Eqs. (14) and (16) completely define the distribution
of ie and te.

3. Derivation of cumulative density function of
peak discharge

The stochastic rainfall model discussed above is
used to derive the cumulative distribution function
(CDF) of peak discharge. Considering a triangular
IUH, Henderson (1963) describes the peak discharge
QP at the outlet of a catchment as

QP � 2ieteA
tb

1 2
te
2tb

� �
for te , tb �17�

QP � ieA for te $ tb �18�
whereA is the area of the catchment andtb is the time
base of the IUH. For a triangular IUH:

qPtb � 2 �19�
Using Eq. (19), Eqs. (17) and (18) can be expressed as

QP � ieteAqP 1 2
qPte
4

� �
for te ,

2
qP

�20�

QP � ieA for te $
2
qP

�21�

Rodriguez-Iturbe et al. (1982) express the GcIUH
peak as

qP � 0:871�ieARL�2=5a 3=5
V

LV
�22�

whereie is the effective rainfall intensity (cm/h),A the
area of the watershed (km2), RL the Horton’s stream
length ratio,aV the kinematic wave parameter of the
highest order stream (m21/3 s21), andLV the length of
the highest order stream (km). Using Eq. (22), Eqs.
(20) and (21) can be written as

QP � 0:871K1Ai 7=5
e te 1 2

0:871K1i2=5e te
4

" #

for te ,
2

0:871K1
i22=5
e

�23�

QP � ieA for te $
2

0:871K1
i22=5
e �24�

where

K1 � �ARL�2=5a 3=5
V

LV
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Solving Eq. (23) forte we obtain

te � 2
0:871K1

i 22=5
e 1 2 1 2

QP

Aie

� �1=2
" #

�25�

Defining te � tp
e andQP=A� Qp

P Diaz-Granados et al.
(1983, 1984) evaluated the CDF ofQP as

FQP
�QP
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Table 1
Model parameters of Davidson and four Indian watersheds

Parameters Kharanala Pausar Tairhia Lakhora Davidson

b (h/cm) 7.85 4.69 6.33 5.35 2.46
d (1/h) 0.113 0.124 0.075 0.124 0.19
mv 64 70 62 65 24
f -index (cm/h) 0.015 0.015 0.015 0.015 1.125
A (km2) 42.7 67.4 101.0 151.4 104.6
RL 2.00 2.15 2.64 1.96 2.41
LV (km) 7.57 8.05 14.06 12.66 8.80
aV (m21/3 s21) 0.26 0.13 0.14 0.13 1.00
r 0.101 0.204 0.122 0.095 NA

Fig. 1. Comparison of DFFD models with 95% confidence intervals associated with observed flood discharges for the Kharanala watershed.



region is a wet pocket of the State with a yearly
precipitation of 1676 mm. The watershed area is
104.6 km2. The mean catchment slope is approxi-
mately 0.33 m/m. This watershed has been considered
previously by Diaz-Granados et al. (1983) and
Kurothe et al. (1997).

5. Results

5.1. The accuracy of DFFD models

The DFFD model introduced here was applied to
each of the five catchments summarized in Table 1.
For the four Indian watersheds, the CDF of flood
discharges is illustrated in Figs. 1–4, along with

95% confidence intervals assuming a lognormal
distribution of flood discharge. The confidence inter-
vals were constructed by fitting a lognormal distribu-
tion to the flood discharge observations at each site
and estimating 95% confidence limits about the true
distribution. The confidence intervals reflect our
uncertainty regarding the underlying CDF of flood
discharges at each site, and hence provide a useful
and informative basis for evaluating the results of
the DFFD models.

The DFFD models are not calibrated to at-site data,
hence one would not expect the derived CDFs to
reproduce the observed CDF of flood discharges.
Nevertheless, one would expect each DFFD to be
enclosed by the 95% confidence intervals. Although
the DFFD models are not always able to reproduce the
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Fig. 2. Comparison of DFFD models with 95% confidence intervals associated with observed flood discharges for the Pausar watershed.



observed CDF of flood discharges in Figs. 1–4, they
are enclosed by the 95% confidence intervals, for the
most part, in the upper tail of the distribution. Future
research relating to the use of DFFD models would
benefit from calibration of the models to observations
and subsequent regionalization of the key model para-
meters such as the infiltration index which we are
unable to measure from field observations.

5.2. The impact of correlation

Cordova and Rodriguez-Iturbe (1985) showed that
assumptions regarding the correlation of rainfall
intensity and duration can have a significant impact
on the moments of flood discharges. Therefore, one
would expect that such correlation should also influ-

ence flood flow quantiles. This section evaluates the
impact of correlation on the magnitude of flood flow
quantiles using the DFFD models introduced here.

5.3. Davidson watershed

Diaz-Granados et al. (1983) applied their model to
the Davidson catchment and produced a reasonable fit
to observed data by using 50% contributing area and a
f-index of 0.72 cm/h. The model parameters for this
watershed are listed in Table 1. A contributing area of
52.3 km andf -index of 0.72 cm/h are assumed here.
Other parameters were held constant. The value of the
correlation coefficientr was varied from20.5 to
10.4 in steps of 0.1.

The computed discharges corresponding to various
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Fig. 3. Comparison of DFFD models with 95% confidence intervals associated with observed flood discharges for the Tairhia watershed.



return periods for different values ofr are given in
Table 2 and illustrated in Fig. 5. A positive correlation
coefficient of 0.4 results in a quantile of about 347 m3/s
for the 100-year return period event as compared to

about 338 m3/s when a DFFD model with independent
rainfall intensity and duration�r � 0� is used. The
under estimation is only 2.7% in this case. As the return
period decreases the percentage under-estimation
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Fig. 4. Comparison of DFFD models with 95% confidence intervals associated with observed flood discharges for the Lakhora watershed.

Table 2
Effect of correlation coefficient on quantiles (Davidson watershed)

Return period (years) Correlation coefficient,r

20.5 20.4 20.3 20.2 20.1 0.0 0.1 0.2 0.3 0.4

2 76 81 87 93 98 104 109 113 116 118
5 111 120 130 140 149 157 163 168 170 172

10 133 147 162 176 188 198 204 209 212 213
25 156 178 201 223 240 251 262 263 265 267
50 168 196 229 257 278 292 300 304 306 307

100 175 211 252 292 317 332 341 345 347 347



increases. Under-estimation is about 8% for the 2-year
return period flood. Computed discharges are 110 and
119 m3/s for r � 0 andr � 0:4; respectively. It may
be concluded that quantiles estimated by DFFD
models for the independent case�r � 0� are lower
than the flood quantiles estimated by the proposed
model, which accounts for the positive correlation
between these variables.

On the contrary, negative correlation coefficient
has a significant and opposite effect on the quan-
tiles. Bacchi et al. (1994) have reported negative
correlation coefficients as high as20.5. Therefore,
Table 2 presents the effect of negative correlation
coefficients up to 20.5. The 100-year return
period quantile of 175 m3/s for r � 20:5 value
is over-estimated to 338 m3/s, an increase of
over 50%. The percentage over-estimation
decreases with decrease in the return period.

However, the percentage over estimation is still
over 30%.

5.4. Indian watersheds

Clay soils are predominant in these watersheds.
Approximately 65% of the drainage area is cultivated
and the remainder is covered by tropical dry decid-
uous forest. The model parameters of these water-
sheds are listed in Table 1. The correlation
coefficient between rainfall intensity and duration
ranges fromr � 0:1 to r � 0:204:

Flood quantiles for the independent caser � 0 and
the positive at-site correlations are compared for the
four Indian watersheds in Table 3 for the 2, 5, 10, 25,
50 and 100-year return periods. The under-estimation
varies from 3.4 to 9.5%. As the positive correlation
coefficient increases the percentage under-estimation
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Fig. 5. Impact of correlation on flood quantiles for the Davidson watershed.



tends to increase. It can also be seen from the table
that as the size of the watershed increases the percen-
tage under-estimation tends to increase. Kharanala
(42.7 km2) and Lakhora (151.4 km2) watersheds
have a correlation coefficient of approximately 0.1
but the under-estimation is greater in Lakhora
watershed. A similar trend is observed in Pausar
watershed. In general the percentage under-estimation
(in each design quantile) decreases as the return
period increases.

6. Conclusions

We have documented that a physically based

derived flood frequency distribution (DFFD) model
offers a promising alternative to the conventional
approaches for estimating the PDF of flood flows at
an ungaged site. DFFD methods are unique because
they are the only analytic approach to flood
frequency analysis which integrates our stochastic
knowledge regarding the structure of rainfall and
our deterministic knowledge regarding the rainfall–
runoff process. The DFFD is really just an analytic
combination of a stochastic rainfall model and a rain-
fall–runoff watershed model. The stochastic rainfall
model used in this study is able to account for any
observed correlation between rainfall intensity and
duration. Earlier studies required storm duration
and intensity to be either independent or negatively
correlated. This study documents the under-estima-
tion in design quantiles which can result from assum-
ing that storm duration and intensity are either
independent or negatively correlated, when a positive
correlation exists. Overall the results of application of
a DFFD to four Indian watersheds and one watershed
in the United States indicate that cross correlation of
rainfall duration and intensity has an important
impact on the estimated quantiles.

This study has employed the geomorphoclimatic
instantaneous unit hydrograph (GcIUG) introduced
by Rodriguez-Iturbe et al. (1982) as the rainfall–
runoff model. Shamseldin and Nash (1998) provide
a critical review of the geomorphological unit hydro-
graph (GUH) along with its inherent assumptions and
constraints. Shamseldin and Nash (1998) argue that
the GUH is really an empirical model because its
shape and scale factors must still be related empiri-
cally to catchment characteristics.

The application of DFFD models in hydrology is
still in its infancy. To enable more widespread usage
of these methods several issues must still be
addressed. Hypothesis tests and goodness-of-fit tests
for DFFD models need to be applied, much like good-
ness-of-fit tests which have been applied to traditional
flood frequency models. Such tests have led to the
widespread and nearly global acceptance of the gener-
alized extreme value model for at-site flood frequency
analysis (Vogel and Wilson, 1996). To enable appli-
cation of DFFD models at ungaged sites, regional
hydrologic investigations are required to evaluate
the regional structure of both the stochastic rainfall
model and the rainfall–runoff model parameters.
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Table 3
Effect of positive correlation on quantiles of four Indian watersheds

Return period
(years);
watershed size
(km2)

Quantiles (m3/s) Under-estimation
(%)

Kharanala; 42.7 r � 0 r � 0:101
2 63 66 4.76
5 77 80 3.90

10 88 91 3.41
25 101 106 4.95
50 112 117 4.46

100 122 127 4.10

Pausar; 67.4 r � 0 r � 0:204
2 168 184 9.52
5 205 222 8.29

10 233 251 7.73
25 270 290 7.41
50 298 319 7.05

100 325 349 7.38

Tairhia; 101.0 r � 0 r � 0:122
2 185 195 5.41
5 226 238 5.31

10 257 270 5.06
25 298 312 4.70
50 329 344 4.56

100 359 376 4.74

Lakhora; 151.4 r � 0 r � 0:095
2 313 335 7.03
5 386 411 6.48

10 442 469 6.11
25 515 545 5.83
50 570 604 5.96

100 624 663 6.25



With the recent proliferation of geographic informa-
tion systems and large databases of hydrologic and
climatic data, the regionalization of DFFD models
to most regions of the world is now possible. Still
comparisons are required to evaluate DFFD models
with other regional hydrologic modeling approaches
such as regional hydrologic regression and index flood
methods.
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