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ABSTRACT 

Vogel, R.M., McMahon, T.A. and Chiew, F.H.S., 1993. Floodflow frequency model selection in Australia. 
J. Hydrol., 146: 421~49. 

Uniform flood frequency guidelines in Australia and the United States recommend the use of the log 
Pearson type 3 (LP3) distribution in flood frequency investigations. Many investigators have suggested 
alternate models such as the Generalized Extreme Value (GEV) distribution as an improvement over the 
LP3 distribution. Using floodflow data at 61 sites across Australia, we explore the suitability of various 
flood frequency models using L-moment diagrams. We also repeat the experiment performed in the original 
US Water Resource Council report (Bulletin 17B) which led to the LP3 mandate in the United States. Our 
evaluations reveal that among the models tested, the GEV and Wakeby distributions provide the best 
approximation 1o floodflow data in the regions of Australia that are dominated by rainfall during the winter 
months, such as southwest Western Australia and Tasmania. For the remainder of the continent, the 
Generalized Pareto (GPA) and Wakeby distributions provide the best approximation to floodflow data. 
The two- and three-parameter log-normal models and the LP3 distribution performed satisfactorily, yet 
not as well as either the GEV or GPA distributions. Other models such as the Gumbel, log--normal, normal, 
Pearson, exponential, and uniform distributions are shown to perform poorly. Recent research indicates 
that regional index-flood type procedures should be more accurate and more robust than the type of at-site 
procedures evaluated here. Nevertheless, this study reveals that index-flood procedures should not be 
restricted to a single distribution such as the GEV distribution because other distributions such as the GPA 
distribution perform significantly better in the most densely populated regions of Australia. 

I N T R O D U C T I O N  

Many innovations in the field of flood frequency analysis have occurred 
since the decision of the Institution of Engineers (Pilgrim, 1987) and the US 
Water Resources Council (1967) to recommend the use of the log Pearson 
type 3 (LP3) distribution for floodflow investigations in Australia and the 
United States, respectively. The state of the art of selecting a regional flood 
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frequency distribution around the time of the LP3 mandate in the United 
States was considerably different from the current situation. For example, in 
describing the US Water Resource Council (WRC) Work Group study 
(1967), Benson (1968) argued that 'no single method of testing (alternate 
hypotheses) was acceptable to all those on the Work Group, and the statistical 
consultants could not offer a mathematically rigorous method' leading to the 
conclusion that 'there are no rigorous statistical criteria on which to base a 
choice of method'. 

More recently, L-moment diagrams and associated goodness-of-fit 
procedures (see e.g. Wallis, 1988; Cunnane, 1989; Hosking, 1990; Nathan and 
Weinmann, 1991; Chowdhury et al., 1991 ; Pearson et al., 1991 ; Pearson, 1992: 
Vogel et al., 1993) have been advocated for evaluating the suitability of 
selecting various distributional alternatives for modeling floodflows in a 
region. For example, Wallis (1988, fig. 3) found an L-moment diagram useful 
for rejecting Jain and Singh's (1987) conclusion that annual maximum 
floodflows at 44 sites were well approximated by a Gumbel distribution and 
for suggesting a GEV distribution instead. Vogel et al. (1993) used L-moment 
diagrams to show that the two- and three-parameter log-normal models (LN2 
and LN3), the LP3 and the GEV distributions were all acceptable models of 
floodflows in the southwestern United States. 

A second approach for evaluating the fit of alternate probability models 
and associated parameter estimation schemes is that of non-parametric 
experiments of the type performed by Beard (1974) and summarized by the 
Interagency Advisory Committee on Water Data (IACWD) (1982, appendix 
14) and more recently by Gunasekara and Cunanne (1992). Using 300 stations 
distributed across the entire USA, Beard counted the number of stations for 
which the estimated 1000 year floodflow was exceeded in the historical record. 
Eight independent methods were employed for estimating the 1000 year flood 
at each site. Beard argued that with a total ofn = 14, 200 station-years of data 
across the 300 sites, one would expect approximately 14 exceedances of the 
true 1000 year floodflow. Only the LP3 and LN2 distributions came close to 
reproducing the 14 expected exceedances. Beard (1974) performed many other 
tests, but it was this test which convinced hydrologists that both the LP3 and 
LN2 models approximate the distribution of observed floodflow data 
throughout the entire US. 

Another approach to evaluating the fit of alternate probability models to 
a regional database is to employ probability plots and associated probability 
plot correlation coefficient (PPCC) tests (Vogel, 1986; Vogel and KrolL 1989; 
Vogel and McMartin, 1991; Chowdhury et al., 1991). Since PPCC hypothesis tests 
are best suited for use with two-parameter distributions, and floodflows usually 
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Fig. 1. Location map of basins used in this study. The dashed line separates the continent into two broad 
hydrologic regimes. The region above the dashed line is dominated by rainfall during summer months and 
the region below the dashed line is dominated by rainfall during winter months. 

require three-parameter distributions, we do not consider PPCC tests here. 
In the following sections, we employ L-moment diagrams and Beard's 

non-parametric test to annual maximum floodflow data in Australia. Our goal 
is to assess the adequacy of various flood frequency procedures and to choose 
plausible procedures for approximating the underlying distribution of 
floodflows for this continent. 

STUDY R EGION 

The annual maximum floodflow data employed in this study include 61 
gauging stations with unregulated streamflow record lengths of 20 or more 
years. Of those 61 stations, there are 32 with record lengths of 30 or more 
years. These stations are located across portions of the continent of Australia 
as shown in Fig. 1. The station numbers, river names, periods of record, 
record lengths and drainage areas are summarized in Table 1. To aid in future 
comparisons we refer to each of the major drainage divisions shown in Fig. 
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TABLE 1 

Streamflow gauging stations and L-moments of annual instantaneous peak flow data 

Streamflow gauging station Catchment Period of data L-C, L-skew L-kurtosis 
area (km 2) (years of record) z, r3 r4 

Northeast coast 

111105 Babinda Creek at the 39 1967-1989 (22) 0.264 0.112 0.068 
Boulders 

113004 Cochable Creek at 93 1967-1989 (23) 0.376 0.419 0.347 
Powerline 

120204 Broken River at Crediton 41 1956-1987 (32) 0.446 0.138 0.038 
130503 Carnavon Creek at 570 1967-1987 (21) 0.404 0 . 1 4 1  0.064 

Wyseby Station 

Southeast coast 

203002 Coopers Creek at 62 1921-1990 (40) 0 . 3 7 1  0.156 0.067 
Repentance 

204006 Bookookoorara River at 127 1922-1982 (22) 0.646 0.584 0.391 
Undercliffe 

204008 Guy Fawkes River at 31 1924-1990 (40) 0.503 0.404 0.254 
Ebor 

204017 Bielsdown Creek at 82 1948-1990 (38) 0.435 0.305 0.165 
Dorrigo 

204025 Orara River at Karangi 135 1926-1990 (37) 0.339 0.173 (I.019 
204036 Cataract Creek at Sandy 236 1952-1990 (38) 0 . 5 3 1  0.408 0.174 

Hill 
206001 Styx River at Jeogla 163 1919-1991 (72) 0.526 0.394 (1.175 
206009 Tia River at Tia 261 1928-1990 (60) 0.550 0 . 4 3 1  0.178 
206010 Yarrowitch River at 70 1929-1984 (48) 0.519 0.394 0.210 

Yarrowitch 
208001 Barrington River at Bob's 20 1945-1989 (24) 0.372 0.399 0.205 

Crossing 
208009 Barnard River at Barry 150 1950-1991 (30) 0.432 0.320 0.188 
210011 Williams River at Tilligra 194 1932-1986 (45) 0.443 0.228 0.055 
210017 Moonan Brook at 103 1941-1988 (40) 0.465 0.383 0.175 

Moonan Brook 
210022 Allyn River at Halton 205 1941-1990 (42) 0.380 0.194 0.137 
210026 Congewai Creek at 83 1949-1978 (26) 0.334 -0.192 -0.058 

Eglinford 
212008 Cox River at Bathurst 199 1951-1989 (34) 0.623 0.485 (1.289 

Road 
214003 Macquarie Rivulet at 35 1950-1990 (33) 0.624 0.464 0.239 

Albion Park 
215004 Corang River at Hockeys 166 1925-1990 (61) 0.429 0.273 0.161 
215006 Mongarlowe River at 130 1950-1980 (21) 0.349 0.049 0.148 

Mongarlowe 
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TABLE 1 (continued) 

Streamflow gauging station Catchment Period of data L-C, L-skew L-kurtosis 
area (kin 2) (years of record) t2 r3 r4 

218001 Turros River at Turros 93 1949-1990 (30) 0.432 0.122 0.028 
Vale 

219001 Rutherford Creek at 15 1949-1990 (41) 0.528 0.298 0.118 
Brown Mountain 

219006 Tantawanglo Creek at 88 1952-1989 (38) 0.557 0.376 0.196 
Tantawanglo Mountain 

221201 Cann River (West 311 1958-1990 (31) 0.450 0.204 0.125 
Branch) at Weeragua 

222213 Suggan Buggan River at 357 1958-1989 (32) 0.460 0.303 0.134 
Suggan Buggan 

223204 Nicholson River at 293 1963-1990 (28) 0.473 0.136 -0.056 
Deptford 

223205 Tambo River D/S 2 6 8 1  1966-1987 (22) 0.502 0.238 0.045 
Ramrod Creek 

224203 Mitchell River at 3903 1961-1990 (30) 0.443 0.344 0.164 
Glenaladale 

224206 Wonnangatta River at 1096 1954-1989 (32) 0.378 0.164 0.064 
Crooked River 

225208 Thomson River at 906 1970-1990 (21) 0.604 0.586 0.384 
Cooper Creek 

226220 Loch River at Noojee 97 1963-1989 (27) 0.322 0.434 0.322 
227219 Bass River at Loch 52 1967-1990 (24) 0.317 0.308 0.246 
228207 Bunyip River at 41 1951-1987 (37) 0.338 0.133 0.030 

Headworks 
233214 Barwon River (East 17 1956-1990 (35) 0.514 0.328 (I.122 

Branch) at Forrest 
235205 Arkins River (West 90 1960-1990 (29) 0 . 5 0 1  0.586 0.442 

Branch) at Wyelangta 
238208 Jimmy Creek at Jimmy 23 1951-1990 (36) 0.427 0 . 2 3 1  0.171 

Creek 

Tasmania 
3040089 Nive River at Gowan 185 1965-1991 (27) 0.197 0.280 0.202 

Brae 
3070001 Davey River D/S 686 1966-1991 (25) 0.175 0.227 0.137 

Crossing River 
3080003 Franklin River at Mount 757 1954-1991 (37) 0.160 0.165 0.117 

Fincham Track 
3090001 King River at Crotty 449 1949-1990 (42) 0.200 0.307 0.281 
3100010 Que River below 119 1964-1991 (28) 0.202 0.297 0.168 

Bulgobac Creek 
3120001 Hellyer River at 102 1923-1991 (64) 0.193 0.256 0.228 

Guildford Junction 
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TABLE 1 (continued) 

R M .  VOGEL E3 ,~,l 

Streamflow gauging station Catchment Period of data L-C, L-skew L-kurtosis 
area (km 2) (years of record) T2 ~ ~4 

3150006 Forth River above 311 1963-1990 (28) 0.214 0.359 0.344 
Lcmonthyme 

3180028 South Esk above 3 2 8 0  1957-1990 (34) 0.464 0.400 0.218 
Macquarie River 

Murray-Darling 
401212 Nariel Creek at Upper 252 1935-1981 (29) 0.274 0.204 0.112 

Nariel 
403218 Dandongadale River at 182 1963-1989 (26) 0.460 0.449 0.379 

Matong North 
407214 Creswick Creek at Clunes 308 1965-1990 (25) 0 .358  0 .021  0.010 
408202 Avoca River at 78 1967-1991 (24) 0 .465  0 . 1 9 3  0.008 

Amphitheatre 
410534 Happy Jacks River above 109 1961-1982 (22) 0 .545  0.650 0.536 

Happy Jacks Pondage 
420003 Belar Creek at Warkton 133 1952-1989 (34) 0.579 0 . 4 5 5  0.244 
421034 Slippery Creek at Dam 15 1955-1988 (311 0.575 0.472 0.251 

Site 

Southwest coast 
606185 Shannon River at Dog 350 1965-1990 (211 0.286 0 . 1 2 8  0.232 

Pool 
606195 Weld River at Ordnance 240 1965-1990 (22) 0 .243  0.332 0.265 

Road Crossing 
607155 Dombakup Brook at 114 1963-1990 (21) 0.397 0 . 3 9 5  0.205 

Malimup Track 
613109 Samson Brook below 62 1960-1989 (211 0.434 0.432 0.293 

Dam 
614016 North Dandalup River at 153 1962-1990 (24) 0.274 0.226 0.093 

Scarp Road 
614044 Yarragil Brook at 73 1959-1990 (24) 0 .352  0.217 0.183 

Yarragil Formation 
614047 Davies Brook at Murray 67 1960-1989 (21) 0 .361 0 . 4 6 2  (1.386 

Valley Plantations 

1 and  Tab le  1 using the first n u m b e r  in the s ta t ion  number .  Regions  1, 2, 3, 

4 and  6 c o r r e s p o n d  to the no r theas t  coast ,  sou theas t  coast ,  T a s m a n i a ,  Mur -  
r a y - D a r l i n g  and  sou thwes t  d ra inage  divisions,  respectively.  N o t e  tha t  the 
highest  densi ty  o f  s t r eamgauges  is coincident  with the highest  p o p u l a t i o n  
densit ies in the sou theas t  coas t  (region 2). Overal l ,  the densi ty  o f s t r e a m g a u g e s  
e m p l o y e d  here can  be cons idered  to reflect the i m p o r t a n c e  o f  the regions,  in 

t e rms  o f  popu la t i on ,  e c o n o m y  and  agricul ture .  The  sou theas t  region (region 
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2) is by far the most densely populated region and the Murray-Darling region 
(region 4) is the most important agricultural region. 

No significant withdrawals, diversions or other regulating structures are 
contained in these basins; hence we consider the streamflows to be essentially 
unregulated. Overall, Australia is divided into 12 drainage basins. Of these, 
seven do not have a single stream with 20 or more years of data. The eight 
stations employed in Tasmania (region 3) and the seven on the southwest 
coast are the only stations in those regions with 20 or more years of record. 
There are more stations in the northeast coast (region 1), the Murray-Darling 
(region 4) and the southeast coast (region 2), that were not employed because 
information regarding their degree of regulation is not readily available. 

THE METHOD OF L-MOMENTS 

L-moments and probability weighted moments (PWMs) are analogous to 
ordinary moments in that their purpose is to summarize theoretical prob- 
ability distributions and observed samples. Similar to ordinary product 
moments, L-moments can also be used for parameter estimation, interval 
estimation and hypothesis testing. Although the theory and application of 
L-moments parallels that for conventional product moments, L-moments 
have several important advantages. Since sample estimators of L-moments 
are always linear combinations of the ranked observations, they are subject to 
less bias than ordinary product moments. This is because ordinary product- 
moment estimators such as the sample variance and sample skew coefficient, 
require squaring and cubing the observations, respectively, which causes them 
to give greater weight to the observations far from the mean, resulting in 
substantial bias and variance (Wallis et al., 1974). Hosking (1990) and 
Stedinger et al. (1993) provide a summary of the theory and application of 
L-moments. Greenwood et al. (1979) summarize the theory of PWMs. 

Perhaps the simplest approach to describing L-moments is by first defining 
probability weighted moments (PWMs) because L-moments are linear 
functions of PWMs (Greenwood et al., 1979; Hosking, 1990). PWMs may be 
defined by 

fl~ = E{X[Fx(x)] '  } (1) 

where fl~ is the rth order PWM and Fx(x)  is the cdf of X. When r = 0, fl0 is 
the mean streamflow. Hence a sample estimate of the first PWM, which we 
term b 0 is simply the sample mean. All higher order PWMs are linear com- 
binations of the order statistics X¢,)~<,...,~<X¢u. 

Landwehr et al. (1979) recommend the use of biased estimates of PWMs 
and L-moments, since such estimators often produce quantile estimates with 
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lower root mean square error than unbiased alternatives. Nevertheless, 
unbiased estimators are often preferred in goodness-of-fit evaluations such as 
L-moment diagrams (see Stedinger et al., 1993). Unbiased sample estimates of 
the PWMs, for any distribution can be computed from 

1 n 
= ~ xj (2a) h0 n, : 

"-'  r (n - j )  
b, = j~l[n(--~L--i- ) ]xu) (2b) 

= "v2 [(" -J)(" - J - 1 )  l:'"' (2c) 
b, j~tL n(n- 1)(n-2) 

",-? [(n -j)(n - j -  1)(n - j -  2) 3 
b3 = 2.,,L n(-~--Z-1)--~-_~-n_ ~ ]xu, (2d) 

where x(/~ represents the ordered streamflows with x(t) being the largest 
observation and x(,) the smallest. The PWM estimators in eqn. (2) can be more 
generally described using 

, r(n;)] 
: (3) 

For any distribution, the first four L-moments are easily computed from 
the PWMs using 

21 = flo (4a) 

2, = 2fl~-fl0 (4b) 

,;~ = 6fl2-6fl, +rio (4c) 

24 = 20fl3 - 30fl2 + 12fl~ --rio (4d) 

The first four unbiased L-moment sample estimators are obtained by 
substituting the PWM sample estimators br, from eqn. (2) into the L-moment 
equations in eqn. (4). Equations (4a)-(4d) are special cases of the general 
recursion 

)-,.,, ~ fl,.( 1)r k ( ;  ) ( r k  k) = - (5) 
k = () 

A generalized computer program is available for implementing the method 
of L-moments for a wide range of commonly used distributions (Hosking, 
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1991b). In the following sections we briefly define L-moment  ratios, discuss 
their relationship to conventional moments  and introduce L-moment  
diagrams. 

L-moment ratios and the interpretation of L-moments 

Analogous to the product moment  ratios; coefficient of  variation C, = a/y, 
skewness 7 and kurtosis K, Hosking (1990) defines the L-moment  ratios 

2~ 
7:2 = =-:- = L-coefficient of  variation (6a) 

AI 

23 
r 3 = =- = L-skewness (6b) 

A 2 

and 

24 
= L-kurtosis (6c) 

q~4 - -  22 

where 2r, r = 1, ..., 4 are the first four L-moments and r2, 7:3 and r4 are the 
L-coefficient of  variation (L-Cv), L-skewness and L-kurtosis, respectively. The 
first L-moment  21 is equal to the mean streamflow/t,  hence it is a measure of  
location. Hosking (1990) shows that 22, ~3 and r4 can be thought of as 
measures of  a distribution's scale, skewness and kurtosis, respectively, 
analogous to the ordinary moments a, 7 and to, respectively. 

L-moment diagrams 

An L-moment  diagram compares sample estimates of the dimensionless 
ratios 7:2, "c3, 7:4 with their population counterparts,  for a range of assumed 
distributions. An advantage of  L-moment  diagrams is that one can compare 
the fit of  several distributions using a single graphical instrument. Figure 2 
compares the theoretical relationships between L-kurtosis and L-skewness for 
the exponential, uniform, normal, Gumbel, GEV, three-parameter log- 
normal (LN3), Pearson type 3 (P3), lower bound of  a Wakeby (WA5) and the 
GPA distributions. Figure 2 is a plot of  L-moments  of  streamflow in real 
space, hence it is not possible to represent the log Pearson type 3 (LP3) 
distribution. We consider L-moment  diagrams in log space for that purpose, 
later on. 

Clearly the two-parameter distributions, which are defined by only a point 
in L-kurtosis-L-skewness space, do not have nearly the flexibility of their 
three-parameter versions. The line marked WA5 represents the lower bound 
of the L-kurtosis-L-skewness space which can be captured by the five- 
parameter Wakeby distribution. The Wakeby distribution is the most flexible 
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Fig. 2. Theoretical L-moment  relationships for the exponential, uniform, normal, Gumbel,  Generalized 
Extreme Value (GEV), log-normal (LN3), Pearson (P3), Generalized Pareto (GPA) distributions and the 
lower bound of the Wakeby distribution (WA5). 

distribution considered since it defines a two-dimensional region in Fig. 2 
rather than a line or a point as is the case for the three- and two-parameter 
distributions, respectively. Figure 2 was constructed using the polynomial 
approximations developed by Hosking (1991a) and summarized by Stedinger 
et al. (1993). 

L - M O M E N T  D I A G R A M S  F O R  A U S T R A L I A N  F L O O D F L O W S  

Figure 3 compares the relationship between sample estimates of r4 and r~ 
(using circles) and their population values for the 61 stations in Australia. 
Here sample estimates of r 2, z 3 and "c 4 are obtained using the probability 
weighted moment  estimators of2j,  22,23 and 24 as recommended by Stedinger 
et al. (1993), when constructing L-moment diagrams. Unbiased probability 
weighted moment  estimators are equivalent to the unbiased L-moment 
estimators introduced by Hosking (1990). Note that use of unbiased 
estimators of the sample L-moments 2r, r = 1 . . . .  4, does not imply that the 
L-moment ratio estimators zi, i = 1, 2, and 3, are unbiased. Figure 3(a) was 
constructed using annual maximum floodflow data for the 61 Australian 
basins with record lengths greater than or equal to 20 years. Since the sample 
estimates of L-kurtosis and L-skewness are extremely variable for small 
samples we drop the short-record sites in Fig. 3(b), which uses only 32 basins 
with record lengths greater than or equal to 30 years. Figure 3(b) eliminates 
some of the sampling variability in the estimated L-kurtosis and L-skewness. 
enabling us to better distinguish which probability models best represent the 
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Fig. 3. L-moment  diagrams comparing the sample and theoretical relationships between L-kurtosis and 
L-skewness for annual  maximum floodflow data at (a) 61 Australian catchments with record lengths greater 
or equal to 20 years and (b) 32 Australian catchments with record lengths greater or equal to 30 years. 

reduced data set. The true relationships between L-kurtosis and L-skewness 
corresponding to the P3, LN3, GEV, GPA and the lower bound of the WA5 
distribution are shown for comparison in Fig. 3. Figures 3(a) and (b) reveal 
that, of the models tested, the GPA and Wakeby distributions appear to be 
most consistent with this entire regional sample. In both Figs. 3(a) and (b), 
roughly half the observations are above the GPA line and half below. None 
of the other two- or three-parameter distributions considered, approximate 
the behavior of this regional sample nearly as well as the GPA distribution. 
Since only one point in Fig. 3(a) falls below the Wakeby line, we also conclude 
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that a Wakeby distribution provides a good approximation to the distribution 
of floodflows in this region. However, since the Wakeby distribution requires 
estimation of five parameters, resulting quantile estimators are likely to 
perform poorly for the small samples normally encountered in flood 
frequency investigations. 

Overall, there is significant variability in the L-moment ratio estimates 
illustrated in Fig. 3. Even though the GPA distribution appears to provide the 
best overall fit, the LN3 and GEV distributions also provide reasonable 
approximations to most of this regional sample. 

In Fig. 4 we plot estimates of L-kurtosis and L-skewness of the logarithms 
of the annual maximum floodflows. For comparison we plot the theoretical 
relationship for P3 data which provides a test on whether the distribution of 
the logarithms of floodflow data resembles a P3 distribution, which is 
equivalent to checking whether the distribution of the floodflows resembles an 
LP3 distribution. Again, Fig. 4(a) uses the 60 basins (one basin was deleted 
since it had a zero floodflow) with record lengths greater or equal to 20 years 
and Fig. 4(b) uses the 32 basins with record lengths greater or equal to 30 
years. We conclude that the LP3 distribution appears consistent with this 
regional sample of floodflows in Australia. McMahon and Srikanthan (1981) 
reached similar conclusions using ordinary product-moment diagrams. Using 
L-moment diagrams, Pearson et al. (1991) rejected the LP3 model in Western 
Australia, however their conclusions appear to be in error because their fig. 
1 should have been labeled P3 rather than LP3, hence they should have 
rejected the P3 distribution not the LP3 distribution. In fact, Pearson et al. 
(1991) never tested the LP3 model. 

Figure 5 illustrates the relationship between L-coefficient of variation 
(L-C,) and L-skewness based on the 61 Australian basins. For comparison we 
plot, using a solid line, the theoretical relationship for the two-parameter GPA 
distribution. Again Figs. 5(a) and (b) compare the impact of dropping the sites 
with short records. When one drops the short-record sites, one observes in 
Fig. 5(b) that except for three sites, a two-parameter GPA distribution 
appears consistent with this regional sample. Here ~, the third parameter in 
a GPA distribution is set to zero (see the Appendix). Since the GPA distribu- 
tion has not been used commonly in hydrologic studies, we summarize its 
probability density function, cumulative density function and parameter 
estimation procedures in the Appendix. Hosking and Wallis (1987) provide an 
introduction to the GPA distribution and its use in flood frequency analysis. 

From all our comparisons in Figs. 2, 3, 4 and 5, we conclude that the entire 
regional sample of annual maximum floodflows is reasonably well approxi- 
mated by the GPA, LP3 and Wakeby probability distributions, marginally 
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record lengths greater or equal to 20 years and (b) 32 Australian catchments with record lengths greater 
or equal to 30 years. 

approximated by a GEV and LN3 distribution and poorly approximated by 
a P3, normal, exponential, uniform or Gumbel distribution. 

Until now, we have attempted to choose a flood frequency model that can 
approximate the distribution of annual maximum floodflows for the entire 
continent of Australia. Since Australia exhibits a number of very different 
hydrologic and climatic regimes, it is informative to examine L-moment 
diagrams for selected homogeneous regions. The following sections reveal 
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that separation of Australia into broad homogeneous regions can improve 
our ability to discriminate among potential flood frequency models. 

Comparison with previous L-moment studies 

Using L-moment diagrams, Pearson et al. (1991) concluded that annual 
maximum floodflows in the southwest coast (region 6) were well approximated 
by a GEV distribution. Pearson et al. (1991) used 28 basins with record 
lengths ranging from 10 to 36 years and an average length of only 18 years. 
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In our analysis, we elected to drop basins with record lengths of less than 20 
years, hence we only employ seven basins in the southwest coast region of 
Australia. 

Similarly Nathan and Weinmann (1991) used L-moment diagrams to 
evaluate alternative regional distributional hypotheses in central Victoria. 
Similar to Pearson et al. (1991) they concluded that annual maximum 
floodflows in the southwest portions of regions 2 and 4 are well approximated 
by a GEV distribution. 

Pearson et al. (1991) and Nathan and Weinmann (1991) concluded that the 
GEV model best approximates the distribution of floodflows in southwest 
Western Australia, and central Victoria, respectively, yet our Fig. 3 
documented that the GEV distribution performed poorly relative to the GPA 
distribution. This result suggests the need to define hydrologically homo- 
geneous regimes for use in regional flood frequency analysis. 

The dashed line in Fig. 1 separates the continent of Australia into two 
distinct rainfall regimes. The area below the dashed line receives most of its 
rainfall during the winter months, whereas the area above the dashed line 
receives most of its rainfall during the summer season. The entire Tasmania 
(region 3) and southwest coastal (region 6) regions are located within the 
winter-dominated rainfall zone. Similarly, most regions of central Victoria 
evaluated by Nathan and Weinmann (1991) fall within the winter-dominated 
rainfall zone. Approximately three quarters of the stations in lhe northeast 
coastal (region 1) and Murray-Darling regions (region 4) are located in the 
summer-dominated rainfall zones. However, half the stations are too close to 
the border separating the summer- and winter-dominated rainfall zones, for 
an accurate distinction to be made. 

Figure 6 is an L-moment diagram based on only the eight sites in Tasmania 
(region 3) and the seven sites in the southwest coastal region (Region 6) which 
are subject to winter-dominated rainfall. Figure 6(a) reveals that the GEV 
distribution provides the best fit for the winter-dominated rainfall region. 
Roughly half the observations fall below the GEV line and half above it. This 
result supports the conclusions of both Pearson et al. (1991) and Nathan and 
Weinmann (1991), however neither of those investigators evaluated the GPA 
distribution. 

In Fig. 6(b) we plot the observed values of L-Cv vs. L-skewness for the 
winter-dominated rainfall sites located in Tasmania (region 3) and the 
southwest coastal region (Region 6). This figure reveals that these sites are 
poorly approximated by a two-parameter GPA distribution and that these 
sites are exactly the sites which were outliers in Fig. 5(a). We conclude that the 
GEV distribution provides a good approximation to the distribution of 
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Fig. 6. L-moment diagrams comparing the sample and theoretical relationships between (a) L-kurtosis and 
L-skewness and (b) L-coefficient of variation and L-skewness for eight catchments in Tasmania (region 3) 
and seven catchments in Western Australia (region 6) which are dominated by rainfall daring the winter 
months. 

floodflow data in the winter-dominated rainfall regimes and the GPA distri- 
bution provides a good approximation in the remaining regions. 

Different flood frequency models for different hydrologic regions 

Considering the evidence provided in Fig. 6 and in Pearson et al. (1991 ) and 
Nathan and Weinmann (1991), one questions whether a single flood 
frequency model is suitable for the entire continent of Australia. One could 
employ the quantitative discordancy and heterogeneity measures introduced 
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Fig. 7. L-moment diagrams comparing the sample record length weighted averages for each region with 
theoretical relationships for (a) L-kurtosis and L-skewness of floodflows and (b) L-coefficient of variation 
and L-skewness of floodflows. The numbers next to each point denote the region number. 

by Hosking and Wallis (1993) to evaluate which regions of Australia are 
hydrologically homogeneous. 

Rather than explaining and employing the procedures advocated by 
Hosking and Wallis (1993), we elected to compute the record length weighted 
average of L-Cv, L-skewness and L-kurtosis for each of the major Australian 
drainage divisions considered here. The results are illustrated in Fig. 7, where 
the number next to each point denotes the drainage region described in Fig. 
l. Figure 7(b) confirms again, that the basins in the winter-dominated rainfall 
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regime (southwest coast and Tasmania) behave quite differently from the 
remaining Australian basins. Figure 7(a) documents that the record length 
weighted average values of L-skewness and L-kurtosis for the winter-domi- 
nated rainfall regimes (regions 3 and 6) fall on the theoretical GEV curve. 
Most of the remaining sites (35 sites in the southeast coastal region; region 2) 
fall close to the theoretical GPA curve. Even though the record length 
weighted average L-moments for regions ! and 2 fall very close to the 
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theoretical P3 relationships, we recall from Fig. 3 that the P3 model provides 
a poor representation of the distribution of floodflows for all regions 
considered. 

We conclude from Fig. 7, that the GPA distribution should provide a good 
approximation to the distribution of floodflows in the southeast coastal 
region, which is the most densely populated region of Australia. We also 
conclude from Fig. 7 that the GEV distribution provides a good approxi- 
mation to the distribution of floodflows in the winter-dominated rainfall 
regions; southwest coastal region (region 6), Tasmania (region 3), and 
portions of the Murray-Darling basin (region 4). 

Figure 8, like Fig. 7, illustrates record length weighted averages for each 
river basin, however, Fig. 8 depicts L-moments of the natural logarithms of 
the floodflows. Figure 8(a) demonstrates, as does Fig. 4, that the LP3 distribu- 
tion provides a reasonably good approximation to the distribution of 
floodflows throughout the regions of Australia considered here. Figure 8(b) 
shows again that the southwest coastal region and Tasmania behave hydro- 
logically quite different from the remainder of Australia. On the one hand, 
these two regions are similar because they are dominated by rainfall during the 
winter months. Yet these two regions are shown in Fig. 8(b) to have dramatic- 
ally different values of L-Cv in log space. This is to be expected since Tasmania 
receives much higher rainfall than the southwest coastal region. We conclude 
from Fig. 8 that the LP3 distribution, currently adopted in Australia, provides 
a reasonable approximation to the distribution of floodflows for all regions of 
Australia considered here. 

N O N - P A R A M E T R I C  E V A L U A T I O N  OF F L O O D  F R E Q U E N C Y  P R O C E D U R E S  

The previous comparisons focused on the ability of alternate probability 
models to approximate the distribution of floodflows, however, those 
comparisons did not evaluate the ability of alternate methods to provide 
estimates of design quantiles. In this section we evaluate the performance of 
alternate models and parameter estimation schemes in terms of their ability to 
predict the 100 year floodflow. We repeat a portion of the experiment 
performed by Beard (1974) and summarized in IACWD (1982), which led to 
the original uniform flood frequency guidelines in the US. The experiment is 
conceptually simple and focuses on the important question of how well each 
model and associated parameter estimation scheme perform in terms of 
predicting extreme floodflows with a fixed annual exceedance probability. 
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Floodflow frequeno, methods evaluated 

The experiment begins by estimating the 100 year floodflow at each of the 
61 sites using the following at-site methods. 

Log Pearson type 3 distribution (LP3) 
The method-of-moments in log space, as recommended by Pilgrim (1987) 

and IACWD (1982) is always used for estimating the mean, variance and 
skewness of the logarithms. We do not consider the use of a weighted skew 
coefficient, as recommended in practice by Pilgrim (1987) and IACWD (1982), 
because that procedure would be a regional procedure and all of our 
comparisons are limited to at-site procedures. 

Log-normal distribution 
Two procedures are considered. The two-parameter log-normal procedure 

(LN2) employs maximum likelihood estimators and the three-parameter 
log-normal procedure (LN3) employs Stedinger's (1980) estimator of the 
lower bound ~ along with sample estimates of the mean and variance ofyi = 
ln(xi - 4), where the xi are the observed floodflows. Stedinger (1980) and 
Stedinger et al. (1993) summarize these procedures. 

Generalized Extreme Value distribution 
The generalized extreme value procedure (GEV) employs unbiased L- 

moment estimators of each distribution's parameters as described in Stedinger 
et al. (1993) and Hosking (1990). 

Generalized Pareto distribution 
The Generalized Pareto procedure (GPA) employs the unbiased L-moment 

estimators of its three parameters as described in the Appendix. 

Expected probability adjustment 

Most quantile estimators provide almost unbiased estimates of the 
percentile of interest. Hence one expects, on average, the estimated 100 year 
event to equal its population value. However, an unbiased estimator of the T 
year event will not, in general, be exceeded with an average probability of p 
= lIT. Beard (1960, 1978), IACWD (1982, appendix 11), Gunasekara and 
Cunnane (1991) and Stedinger et al. (1993) discuss this issue in greater detail. 

For normal and log-normal samples, Pilgrim (1987, section 10.6) provides 
tables and Bulletin 17B (IACWD, 1982, appendix 11) provides formulae for 
the probabilities that an almost unbiased quantile estimator of the T year 
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TABLE 2 

The number of observed floodflows that exceed the 100 year floodflow computed from each 
station's complete record using five different methods with an expected probability adjustment 

Method Number of exceedances X 

All sites Only region 2 All sites except 
regions 3 and 6 

LP3 13" 4 8 
LN3 13 ~ 5 8 
LN2 16 ~ 4 7 
GEV 17" 9" 12 '~ 
GPA 26 ~ 144 18" 
Total no. of sites 60 34 45 
Total site-years 1936 1208 1497 
Theoretical expectation 19 12 15 
90% likely interval (13, 26) (7, 17) (9, 21) 

[X00~, x0~s] 

~' Denotes results that fall inside 90% likely interval. 

event will be exceeded. For example, for the T = 100 year event the expected 
annual exceedance probability is 0.01(1.0+26/NLI6). Note that for the 
average sample size employed here (N = 32 years), the expected exceedance 
probability for the T = 100 year event is 0.0147, instead of 0.01. Thus, a 
design for the T = 100 year event, will lead to floods exceeded on average 
every T = 68 years. Although these corrections were derived for the normal 
and log-normal distributions, they have been recommended by IACWD 
(1982) for use with the LP3 distribution. We employ these corrections for all 
of  the methods considered. Gunasekara and Cunnane (1991) showed that the 
expected probability correction for normally distributed samples employed 
here. is approximately valid for other distributions. 

Experimental procedure 

Using each of the above five methods, we counted the number of times an 
observed annual maximum floodflow, at each site, exceeded the estimated T 
= 100 year floodflow using an expected probability adjustment. The results 
are reported in Table 2. If one assumes that the sites are independent and that 
floods occur independently from one year to the next, at each site, then the 
number of  exceedances, X, follows a binomial distribution with mean E[X] = 
np and variance Var[X] = np(1 -p), where n is the number of independent 
trials and p is the exceedance probability associated with each event (p = 1 / 73. 
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For example, across the 60 sites employed (one site is dropped due to a zero 
flow), there are n = 1936 site-years of data (or independent trials). On 
average, over many such experiments, one expects to observe approximately 
E[X] = 19 exceedances of the 100 year event. Furthermore, since X follows 
a binomial distribution we can estimate the 90% likely interval as the range 
of values one might expect, 90% of the time, over repeated experiments of this 
kind. The 90% interval (x005, x095) is reported in Table 2 and found from 

0.90 = ~ p~(1-p)  'I " (7) 
. \  = x~) (15 

where n = 1936 and p = 0.01. 

RESULTS 

Table 2 reports the number of observed floodflows, out of the entire sample 
of 1936 site-years of floodflows, which exceeded the 100 year event. We 
document the results corresponding to five different quantile estimation 
methods. The experiment is repeated three times, first with all 60 sites, next 
using only the 35 sites in the southeast coastal region (region 2) and finally for 
all sites except those in Tasmania (basin 3) and southwest coastal region 
(region 6). The only procedures which led to observed exceedances that always 
fell within the 90% likely interval are the GEV and GPA procedures. 

Table 2 reveals that all five procedures led to observed exceedances that fall 
within the 90% likely interval when one considers all 60 sites, however the 
GEV and LN2 procedures came closest to the theoretical expectation. One 
might expect all these procedures to perform credibly, given the large scatter 
shown in Fig. 3(a), and our earlier conclusions based on Figs. 3, 4 and 5. The 
LN2 and GEV procedures best reproduced the theoretically expected number 
of exceedances for all sites (19 exceedances) due to the robustness of those 
procedures. Vogel et al. (1993) obtained similar results using 383 sites in the 
southwestern United States. 

When we only employ the 35 southeast coastal catchments (region 2), Table 
2 documents that the GPA distribution reproduces, almost exactly, the theo- 
retically expected number of exceedances. This result is to be expected from 
Fig. 7(a) where we showed that the record length weighted average L-moment 
ratios for this region fell on the GPA theoretical curve. This result supports 
our prior recommendation to employ the GPA distribution for modeling 
floodflows in the most populated region of Australia, the southeast coastal 
region. 

When one employs the 45 catchments that are not located in the winter- 
dominated rainfall regions (regions 3 and 6), again the GEV and GPA 
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procedures are the only procedures that reproduce the theoretically expected 
number of exceedances. Again one would have expected the GPA distribution 
to perform credibly, since we showed earlier in Figs. 3, 5 and 7 that the GPA 
distribution provides a good approximation to sample L-moment ratios for 
all regions except the winter-dominated rainfall regions. One may not have 
predicted the GEV distribution to perform satisfactorily here since it 
performed poorly for basins 1, 2 and 4 in Fig. 7(a), hence we suspect that this 
result is due again to the robustness of the GEV procedures. 

Unfortunately, experiments such as the one reported in Table 2, can never 
be definitive because actual floodflow samples are cross-correlated in space. 
Cross-correlation reduces the amount  of regional experience, implying that 
one needs more basins to obtain convergence between the theoretical number 
of exceedances and the observed number of exceedances. To obtain more 
definitive results one needs to employ hundreds of basins, similar to the 
studies by Beard (1974), Gunasekara and Cunnane (1992) and Vogel et al. 
(1993). 

Interestingly, Gunasekara and Cunnane (1992) reached almost identical 
conclusions to ours by repeating Beard's experiment with synthetic floodflow 
data. Gunasekara and Cunnane (1992) generated 40 year synthetic floodflow 
traces at 300 artificial sites from seven different parent probability distribu- 
tions. They employed 13 different model/parameter estimation procedures to 
estimate the 10, 100 and 1000 year floodflow at each site. They found that for 
both the 100 and 1000 year events, the regional LP3 procedures advocated by 
IACWD (1982) and Pilgrim (1987) (which use regional skew estimates) and 
the GEV procedures employed here, reproduced the expected number of 
exceedances better than any of the procedures they evaluated. These results 
are similar to ours except we also found that the LN2, LN3 and GPA 
procedures performed well. Gunasekara and Cunnane (1992) did not consider 
the GPA and LN3 procedures and the reason they rejected the LN2 procedure 
was probably due to the fact that the average skewness of the logarithms of 
their artificial samples was significantly different from zero. The average 
L-skewness of the logarithms of the floodflow data at all 60 sites used here was 
-0 .06.  This fact taken together with Fig. 7(a) document why the LN2 
procedure performed so well in this study. 

The at-site LP3 method did not perform well in all regions because such 
procedures are highly dependent upon our ability to estimate skewness and 
small sample estimates of the skew coefficient are known to be highly 
imprecise. It is likely that the use of a weighted skew coefficient as recommend- 
ed by IACWD (1982) and Pilgrim (1987) would have improved its perfor- 
mance. 
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CONCLUSIONS 

The primary objective of this study was to select a set of suitable probability 
distributions for modeling annual maximum floodflows in Australia. L- 
moment diagrams revealed that the Generalized Pareto (GPA), log Pearson 
type 3 (LP3), three-parameter log-normal (LN3), Generalized Extreme Value 
(GEV), and Wakeby (WA5) distributions all provide acceptable approxi- 
mations to the distribution of floodflows in Australia. Of all the models 
evaluated, Figs. 3, 4, 7 and 8 reveal that the GPA and LP3 distributions 
probably provide the best description of the distribution of floodflows across 
the entire continent of Australia, however, further analysis revealed that 
separation of Australia into broad homogeneous regions can improve our 
ability to discriminate among potential flood frequency models such that the 
GPA distribution provides the best approximation to the distribution of 
floodflows in the most densely populated regions of the southeastern coastal 
region (region 2). Of the models tested, the GEV distribution provides the best 
approximation to the distribution of floodflows in the winter-dominated 
rainfall regions of Tasmania and the southwest coast (see Fig. 1). In addition, 
Figs. 3, 4, 7 and 8 revealed that the LN3 and the LP3 distributions also 
perform credibly across all regions considered. Figures 2 and 3 revealed that 
the Pearson type 3 (P3), normal, Gumbel, uniform and exponential distribu- 
tions perform poorly. 

To assess the ability of alternate flood frequency models and parameter 
estimation schemes to estimate design quantiles we also repeated a portion of 
the original non-parametric experiment performed by Beard (1974) which led 
to the Water Resource Council (IACWD, 1982) and Institution of Engineers' 
(Pilgrim, 1987) decisions to recommend the LP3 procedures in the United 
States and Australia, respectively. Those experiments document again that if 
one had to select a single model for all regions of Australia considered here, 
then the GPA, LN3, LN2, LP3 and GEV procedures are all acceptable 
alternatives. However, both the GPA and GEV procedures appear to be 
preferred for modeling floodflows for regions outside the winter-dominated 
rainfall regime. The GEV procedures seem to perform well for all regions 
considered, in spite of the fact that the L-moment diagrams do not always 
favor the GEV procedure (see Fig. 3(a)). These conclusions are surprisingly 
similar to the results of a recent study by Gunasekara and Cunnane (1992). 

It is indeed satisfying to report that all our evaluations consistently reach 
similar conclusions. Yet these results do not imply that the current IACWD 
(1982) and Institution of Engineers (Pilgrim, 1987) guidelines are satisfactory. 
Recent studies by Potter and Lettenmaier (1990) and others demonstrate that 
regional index-flood procedures for the GEV distribution with L-moment 



FLOOD FREQUENCY MODEL SELECTION 445 

estimators should be more accurate and more robust  than the type of  at-site 
procedures described here and recommended by I A C W D  (1982). Stedinger et 
al. (1993) provide a summary of  index-flood procedures. Nevertheless, this 
study reveals that index-flood procedures need not be restricted to the GEV 
distribution because the GPA distribution appears to provide a better repre- 
sentation of  floodflow data in the most densely populated regions of  

Australia. 
Finally, we emphasize, as Potter (1987) and others have, that improvements 

in regional flood frequency analysis must be derived from the type of  at-site 
procedures evaluated here, because the single-site model lies at the heart of  all 
regional procedures. Hopefully, future investigations in Australia will employ 
a significantly larger sample of  floodflow data so that more definitive 
conclusions may be reached for regions of  Australia that were not included in 
this study and for regions where streamgauge densities were low (see Fig. 1). 
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APPENDIX: GENERALIZED PARETO DISTRIBUTION 

The Pareto distribution was first introduced in the field of  economics by 
Vilfredo Pareto for modeling the distribution of income above a threshold. 
Subsequently the Generalized Pareto distribution (GPA) introduced by 
Pickands (1975) has been applied to rainfall depths (Fitzgerald, 1989) and 
floodflows (Hosking and Wallis, 1987). Hosking and Wallis (1987), Stedinger 
et al. (1993) and others show that when floodflows above a threshold follow 
a GPA distribution and the number of floodflows above the threshold follow 
a Poisson distribution, then the annual maximum floodflows follow a GEV 
distribution. Hence the GPA distribution provides an important linkage 
between the theory of annual maximum floodflow series and partial-duration 
series. 

The theoretical properties o f  the Generalized Pareto distribution 

Hosking and Wallis (1987) describe the theoretical properties of  the two- 
parameter GPA distribution. They show that if Q follows a GPA distribution 
then Q - ~  also follows a GPA distribution as long as Q >~ ~. This fact can be 
used to extend the two-parameter GPA distribution to a three-parameter 
distribution as is done in this section. The three-parameter GPA distribution 
has pdf  

.f~(q) = ~ ~[1-k (q -~) /~]  °'k-l~ k ~ 0 (Ala) 

= ~ ~ e x p [ - ( q - ~ ) / ~ ]  k = 0 (AIb) 
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and cdf  

go(q) = l - [ 1 - k ( q - ~ ) / ~ ] ' ' k  k • 0 

= I - e x p [ ( q - ~ ) / ~ ]  k = 0 

For k~<0 streamflow is bounded below so that ~<Q~<,m. For 

(A2a) 

(A2b) 

k>O, 
streamflow is bounded both above and below so that ~ <<, Q <<, (~ + a/k). When 

= 0 and k = 0, the GPA distribution reduces to the exponential distribu- 
tion. When ~ = 0 and k = 1, the GPA distribution reduces to the uniform 
distribution (see Fig. 2). 

The GPA distribution parameters can be related to conventional product 
moments (Hosking and Wallis, 1987), L-moments (Hosking, 1990; Stedinger 
et al., 1992) and probability weighted moments (Hosking and Wallis, 1987). 
If they exist, the mean, variance, skewness and kurtosis are, respectively, 

/t = ~ + ~/( 1 + k) (A3a) 

c; 2 = ~2/[(1 +k )2 ( l+2k ) ]  (A3b) 

), = 2(1 +2k)'":(1 -k ) / (1  +3k)  (A3c) 

and 

3 + ( 1 + 2 k ) ( 3 - k + 2 k  2) 
K = - 3  (A3d) 

(1 + 3k)(1 +4k)  

The distribution has infinite variance, skewness and kurtosis for k ~ < -  1/2, 
k~< - 1/3 and k~< - 1/4, respectively. The values of~,  ~ and k written in terms 
of  L-moments are 

k = ( 1 - 3 ~ ) / ( 1  +~3) 

= 2~(1 + k ) ( 2 + k )  

= )., - ~ / (  1 + k) 

where 2,, r = 1, 2 and 3 are the first three L-moments. 

(A4a) 

(A4b) 

(A4c) 

Quantile estimation using the Generalized Pareto distribution 

The cdf of  the GPA distribution is easily inverted to obtain the quantile 
function 

Qp = ~ +(~/k)[1-P k] (A5) 

where p is the annual exceedance probability and Qp is that value of  
streamflow which is exceeded with probability p. A sample quantile based on 
L-moment  estimators is easily obtained by substituting sample estimates of  2r, 
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r = 1 . . . . .  3, into eqns. (A4) and (A5). L-moment estimators are relatively 
simple to compute and always produce feasible values for the estimated 
parameters. Hosking and Wallis (1987) compared the efficiency of quantile 
estimators based on PWM, method-of-moments and maximum likelihood 
estimates of ~ and k with ~ set to zero. 

L-moment relationships for the Generalized Pareto distribution 

H osking (1990) derived relationships between the L-moments and the GPA 
model parameters 

2, = ~ + ~ / ( l + k )  (A6a) 

22 = ~/[(1 +k) (2+k) ]  (A6b) 

~3 = ( l - k ) / ( 3 + k )  (A6c) 

r4 = (1 - k ) ( 2 -  k)/[(3 + k)(4 + k)] (a6d) 

where r4 and r 3 are defined in (6). Hosking (1991a) also derived an approxim- 
ate relationship between L-kurtosis and L-skewness, useful for comparing the 
theoretical L-moment relationships with sample estimates 

r4 = 0.20196r3 +0.95924r32 -0.20096% 3 +0.04061r34 (A7) 

An L-moment diagram for the GPA distribution that illustrates the relation- 
ship between z4 and r 3, depends only upon the important shape parameter k, 
similar to the GEV distribution. 


