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ABSTRACT: Uniform flood frequency guidelines in the United States recommend
the use of the log Pearson type 3 (LP3) distribution in flood frequency investiga-
tions. Many investigators have suggested alternate models such as the generalized
extreme value (GEV) distribution as an improvement over the LP3 distribution.
Using flood-flow data at 383 sites in the southwestern United States, we explore
the suitability of various flood frequency models using L-moment diagrams. We
also repeat the experiment performed in the original Water Resource Council report
(Bulletin 17B, issued in 1982), which led to the LP3 mandate. All our evaluations
consistently reveal that the LP3, GEV, and the two- and three-parameter lognormal
models (LN2 and LN3) provide a good approximation to flood-flow data in this
region. Other models such as the normal, Pearson, and Gumbel distributions are
shown to perform poorly. Recent research indicates that regional index-flood pro-
cedures should be more accurate and more robust than the type of at-site procedures
evaluated here. Nevertheless, this study reveals that index-flood procedures need
not be restricted to the GEV distribution because the LN2, LN3, and LP3 distri-
butions appear to be suitable alternatives, at least in the southwestern United States.

INTRODUCTION

Many innovations in the field of flood frequency analysis have occurred
since the decision of the U.S. Water Resources Council (1967) to recom-
mend the use of the log Pearson type 3 (LP3) distribution for flood-flow
investigations in the United States. The state of the art of selecting a regional
flood frequency distribution at the time of the LP3 mandate was considerably
different from the current situation. For example, in describing the U.S.
Water Resource Council (WRC) work group study. ("Guidelines" 1967),
Benson (1968) argued that "no single method of testing [alternative hy-
potheses] was acceptable to all those on the Work Group, and the statistical
consultants could not offer a mathematically rigorous method," leading to
the conclusiqn that "there are no rigorous statistical criteria on which to
base a choice of method."

More recently, L-moment diagrams and associated goodness-of-fit pro-
cedures (Hosking and Wallis 1987; Wallis 1988; Cunnane 1989; Hosking
1990; Chowdhury et al. 1991; Vogel and Fennessey 1993; Vogel et al. 1993)
were advocated for evaluating the suitability of selecting various distribu-
tional alternatives in a region. For example, Hosking and Wallis (1987)
found L-moment diagrams useful for selecting the generalized extreme value
distribution (GEV) over the Gamma distribution for modeling annual max-
imum hourly rainfall data. Similarly, Wallis [(1988), Fig. 3] found an L-
moment diagram useful for rejecting Jain and Singh's (1987) conclusion that
annual maximum flood flows at 44 sites were well approximated by a Gumbel
distribution and for suggesting a GEV distribution instead.
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Another approach for evaluating the fit of alternate probability models
and associated parameter estimation schemes is nonparametric experiments
of the type performed by Beard (1974) and summarized by the Interagency
Advisory Committee on Water Data (IACWD) ["Guideline" (1982), Ap-
pendix 14]. Using 300 stations distributed across the United States, Beard
counted the number of stations for which the estimated 1,000-yr flood flow
was exceeded in the historical record. Eight independent methods were
employed for estimating the 1,000-yr flood at each site; results are repro-
duced in Table 1. Beard argued that with a total of n = 14,200 station-
years of data across the 300 sites, one would expect approximately 14 ex-
ceedances of the true 1,000-yr flood flow. Only the LP3 and LN2 distri-
butions came close to reproducing the 14 expected exceedances. Beard
(1974) performed many other tests, but it was this test that convinced hy-
drologists that both the LP3 and LN2 models approximate the distribution
of observed flood-flow data throughout the entire United States.

A third approach to evaluating the fit of alternative probability models
to a regional data base is to employ probability plots and associated prob-
ability plot correlation coefficient (PPCC) tests (Vogel 1986; Vogel and
Kro111989; Vogel and McMartin 1991; Chowdhury et al. 1991). Such tests
are usefu., simple, and powerful for most two-parameter distributional al-
ternatives, (VogeI1986; Vogel and KrollI989). However, Vogel and McMartin
(1991) show that a PPCC test for the LP3 distribution exhibits remarkably
low power in discriminating against similar distributional hypotheses.
Chowdhury et al. (1991) arrived at similar conclusions for the GEVPPCC
test. We elected not to perform PPCC hypothesis tests here due to the likely
ambiguity of such test results for the three-parameter alternatives consid-
ered.

In the following sections, we employ L-moment diagrams and Beard's
nonparametric test to annual maximum flood-flow data in the southwestern
United States. Our goal is to both assess the adequ.acy of the existing LP3
flood frequency procedures and to choose other plausible procedures for
approximating the underlying distribution of flood flows in this region.

STUDY REGION

The annual maximum flood-flow data employed in this study include 383
U.S. Geological Survey gaging stations with unregulated streamflow record
lengths of 30 or more years. These stations are located in the 10-state region

TABLE 1. Number of Stations Where One or More Observed Flood Events Ex-
ceeds 1,OOo-Yr Flood Flow

Method Number of exceedances
(1) (2)

Log Pearson type 3 (LP3) 14
Lognormal (LN2) 18
Gumbel (MLE estimators) 77
Log Gumbel 1
Gamma 68
Pearson type 3 (P3) 56
Regionallog Pearson type 3 20
Gumbel (best linear invariant estimator) 253

Note: From Beard (1974) and IACWD ["Guidelines" (1982), Table 14-2].
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FIG. 1. Ten-State Study Region in Southwestern United States

of the southwestern United States shown in Fig. 1. The 383 stations are a

subset of the 1,059 stations employed by Thomas et al. (1992) for developing

regional hydrologic equations for estimating floodflow quantiles in this 10-

state region. Our data base is considerably smaller than the one used by

Thomas et al. (1992) because we only considered sites with records longer

than 30 years; and we rejected sites that contained annual maximum flood

flows equal to zero. Sites that contained annual maximum flood flows equal

to zero were rejected so that our goodness-of-fit evaluations would not be

confounded by methods for the treatment of zeros, which would have been

required had we included these sites. Fig. 2 illustrates the distribution of

record lengths, with an average length of 50 yr .
The basins with longer records in the southwestern United States tend

to be operated for water supply purposes, hence such basins contain higher

base flow runoff than short-record sites. Since we dropped sites with zero

annual maximum flood flows, and since we only used sites with longer

records (n ?; 30 yr), the data base employed here consists of mostly larger,

less arid basins in the arid southwestern United States. We would have liked

to include the smaller, more arid basins since such basins exhibit the most

variable streamflow and pose the greatest hydrologic modeling challenge.
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A4 .
T4=~=L-kurtOSlS (lc)

where Ar, r = 1, ..., 4 = first four L-moments; and T2' T3, and T4 = L-
coefficient of variation (L-Cv), L-skewness, and L-kurtosis, respectively.
The first L-moment, At, is equal to the mean IJ., hence it is a location
parameter. Hosking (1990) shows that A2, T3, and T4 can be thought of as
measures of a distributions scale, skewness, and kurtosis, respectively, anal-
ogous to the ordinary moments a, "Y, and K, respectively.

L-Moment Diagrams
An L-moment diagram compares sample estimates of the dimensionless

ratios, T2, T3, T4, with their population counterparts for a range of assumed
distributions. An advantage of L-moment diagrams is that one can compare
the fit of several distributions using a single graphical instrument. Fig. 3
compares the relationship between nearly unbiased sample estimates of T4
and T3 (using open circles) anQ their population values. Here, sample es-
timates of T2 , T3 , and T4 are obtained using the unbiased probability-weighted
moment estimators of At, A2, A3, and A4 as recommended by Stedinger et
al. (1993), when constructing L-moment diagrams. Unbiased probability
weighted moment estimators are equivalent to the unbiased L-moment es-
timators introduced by Hosking (1990). However, use of unbiased esti-
mators of the sample L-moment Ar, r = 1, ..., 4, does not imply that the
L-moment ratio estimators TI' i = 1, 2, and 3, are unbiased. Fig. 3(a) was
constructed using annual maximum flood flow data for the 383 sites de-
scribed previously. The true relationships between L-kurtosis and L-skew-
ness corresponding to the Pearson type 3 (P3), LN3, GEV, Gumbel, and
normal distributions are shown for comparison in Fig. 3. These theoretical
rel1itionships are summarized in Hosking (1991a) and Stedinger et al. (1993)
hence we only report the theoretical relationships "for normal (T3 = 0; T4 =
0.1226) and Gumbel (T3 = 0.1699; T4 = 0.1504) distributions since their
coordinates are difficult to discern amidst the scatter of points in Fig. 3.

Fig. 3(a) reveals that of the models tested, only the LN3 and GEV
distributions appear consistent with this regional sample, and of those two
distributions, it appears that the LN3 model provides the better fit to the
data. Roughly half the observations are above the LN3 line and half are
below; there are fewer than half the observations above the GEV line.

Unfortunately, a theoretical relationship between L-kurtosis and L-skew-
ness is unavailable for the LP3 distribution. Since such a theoretical rela-
tionship only exists for the P3 distribution, we synthetically generated LP3,
LN3, GEV, normal, and P3 samples for comparison in Fig. 3(b-.n, re-
spectively. We generated 383 independent samples of LP3, LN3, GEV,
normal, and P3 data with record lengths equal to record lengths of the
observed flood-flow data in Fig. 3(a). In generating the synthetic samples
at each site, we assumed that population values of each model parameter
equaled the sample estimates obtained at each site. The purpose of using
different population parameters at each site was to attempt to capture the
hydrologic heterogeneity of flood flows across the region. The character of
generated LP3, LN3, and GEV samples displayed in Fig. 3(b-d) appears
to be very similar to the observed floodflow samples in Fig. 3(a), yet the
character of generated normal and P3 samples is quite different from the
observed flood-flow samples in Fig. 3(a).

In Fig. 4 we plot estimates of L-kurtosis versus estimates of L-skewness
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using logarithms of the annual maximum flood flows. For comparison, we
plot the theoretical relationship for P3 data, which provides a test on whether
the distribution of the logarithms of flood-flow data resembles a P3 distri-
bution, which is equivalent to checking whether the distribution of the flood
flows resembles an LP3 distribution. Since the average skewness of the
logarithms in this region is approximately zero, it is not surprising that the
data cluster around the value T4 = 0.1226 and T3 = 0, which corresponds
to the population values for an LN2 distribution. Here again, in Fig. 4(b
and c), we compare synthetic LP3 and synthetic LN3 data, respectively.
Similar to Fig. 3, Fig. 4 documents that both synthetic LP3 and synthetic
LN3 data behave much like the original flood-flow data.

From all our comparisons in Figs. 3 and 4, we conclude that observed
flood-flow samples are well approximated by LP3, LN2, LN3, and GEV
probability distributions, yet are poorly approximated by a P3, normal, or
Gumbel distribution. Our conclusions are derived from a subjective graph-
ical evaluation of the goodness of fit of alternative distributions. Hosking
and Wallis (1993) describe more objective quantitative goodness-of-fit pro-
cedures that may be employed in association with L-moment diagrams.

NONPARAMETRIC EVALUATION OF FLOOD-FREQUENCY PROCEDURES

The previous L-moment diagrams focused on the ability of alternative
probability models to approximate the distribution of flood flows; however ,
those comparisons did not evaluate the ability of alternative methods to
provide estimates of design quantiles. In this section we evaluate the per-
formance of alternative models and parameter-estimation schemes in terms
of their ability to predict the 100- and 1,000-year flood flows. We repeat a
portion of the experiment performed by Beard (1974) and summarized in
Table 1 and in IACWD ("Guidelines" 1982), which led to the original
uniform flood-frequency guidelines in the United States. The experiment is
conceptually simple and focuses on the important question of how well each
model and associated parameter-estimatio"n scheme performs in terms of
predicting extreme flood flows with a fixed exceedance probability.

Flood-Flow Frequency Methods Evaluated
The experiment begins by estimating the 100- and 1,000-yr flood flow at

each of the 383 sites using the following methods.

Log Pearson Type 3 Distribution ( LP3 )
The method of moments in log space, as recommended by IACWD

("Guidelines" 1982) is always used for estimating the mean and variance
of the logarithms. Four different methods are considered for estimating the
skew of the logarithms.

1. LP3-'Y = 0: The skew is always set to zero.
2. LP3-G1: The at-site skew estimator described in IACWD ("Guide-

lines" 1982) is used.
3. LP3-G,: The at-site probability plot correlation coefficient skew esti-

mator described by Vogel and McMartin (1991) is used.
4. LP3-Gw: The weighted skew estimator described in IACWD ("Guide-

lines" 1982) is used where the regional skew is assumed to be zero with a
mean square error of 0.31. Thomas et al. (1992) found that the mean square
error associated with four alternate regional estimators of the skew coef-
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ficient for this lo-state region [including the regional map skew from IACWD
("Guidelines" 1982)] were all about equal to the mean square error of the
sample of 1,059 gaged records, which was 0.31. Their tests failed to reject
the hypothesis that the regional population skew is zero. Hence, Thomas
et al. (1992) recommend assuming a fixed regional skew of zero for the
entire region and using Tasker's (1978) recommended formula [also see
IACWD ("Guidelines" 1982), pages 12-13] for obtaining a weighted esti-
mator of the at-site skew coefficient and the regional skew. Here, the mean
square error of the regional skew coefficient is assumed to be 0.31. We term
this skewness estimator Gw.

Lognormal Distribution
Two procedures are considered. The two-parameter lognormal procedure

(LN2) employs maximum likelihood estimators and the three-parameter
lognormal procedure (LN3) employs Stedinger's (1980) estimator of the
lower bound ~ along with sample estimators of the mean and variance of Yi
= In (xi -~), where xi are the observed flood flows. Stedinger (1980) and
Stedinger et al. (1993) summarize these procedures.

Generalized Extreme Value Distribution
The generalized extreme value (GEV) procedure and the Gumbel or

extreme value type I procedures (GUM) were also examined. These pro-
cedures employ unbiased L-moment estimators of each distributions pa-
rameters as described in Stedinger et al. (1993).

Expected Probability Adjustment
Most quanti le estimators provide almost unbiased estimates of the per-

centile of interest. Hence, one expects, on average, the estimated 100- and
1,000-yr events to equal their population values. However, an unbiased
estimator of the T -yr event will not, in general, be exceeded with an average
probability of p = I/T. Beard (1960), Beard (1978), IACWD ["Guidelines"
(1982), Appendix 11], Stedinger (1983), Gunasekara and Cunnane (1991),
and Stedinger et al. (1993) discuss this issue in greater detail.

For normal and lognormal samples, Bulletin 17B [IACWD ("Guidelines"
1982), Appendix 11] provides formulas for the probabilities that an almost
unbiased quantile estimator of the T -yr event will be exceeded. For example,
for the T = 1 ,000-yr event, the expected exceedance probability is 0.001(1.0
+ 280/N1.sS), and for the T = 100-yr event the expected exceedance prob-
ability isO.01(1.0 + 26/Nl.16), for normal samples. Note that, for the average
sample size employed here (n = 50), expected exceedance probabilities for
T = 1,000 and T = 100-yr events are 0.00165 and 0.0128, :espectively,
instead of 0.001 and 0.01. Although these corrections were derived for the
normal and lognormal distributions, they have been recommended by IACWD
("Guidelines" 1982) for use with the LP3 distribution. We employ these
corrections for all of the methods considered. Gunasekara and Cunnane
(1991) showed that the expected probability correction for normally dis-
tributed samples is approximately valid for other distributions.

Experimental Procedure
Using each of the foregoing methods, we counted the number of times

an observed annual maximum floodflow exceeded the estimated T = 100
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and T = 1,000-yr flood flow with and without the use of an expected
probability adjustment. The results are reported in Table 2. If one assumes
that the 383 sites are independent, and that floods occur independently from
one year to the next at each site, then the number of exceedances, X, follows
a binomial distribution with mean E[X] = mp and variance Var[X] =
mp(l -p ), where m is the number of independent trials and p is the
exceedance probability associated with each event (p = l/T). There are m
= 19,196 site-years of data (or independent trials) across the 383 sites.
Hence, on avera~e, over many such experiments, one expects to observe
approximately ElX] = 19 and E[X] = 192 exceedances of the 1,000- and
100-yr events, respectively. Furthermore, since X follows a binomial dis-
tribution, we can estimate the 95% likely interval as the range of values
one might expect (95% of the time) over repeated experiments of this kind.
The 95% intervals (XO.025 , XO.97S) are reported in Table 2 and are found from

xO.97' ( )0.95 = ~ m px(l-p)m-x (2)
x-XO02S X

where m = 19,196 and p = 0.01 and 0.001 for the 100- and 1,000-yr events,

respectively.

Results
Table 2 reports the number of observed flood flows, out of the entire

sample of m = 19,196 site-yrs of flood flows that exceeded the 100- and
1,000-yr events. We document the results with and without the expected
probability adjustment corresponding to eight different methods. The only
procedure that leads to observed exceedances that always fall within the
95% likely interval, both with and without th.e expected probability ad-
justment, is the LP3-Gw method, the method recommended by IACWD

TABLE 2. Number of Observed Flood Flows that Exceed 100- and 1,000-Yr Flood
Flow Computed from Each Station's Complete Record Using Eight Different Meth-
ods.

NUMBER OF EXCEEDANCES

T = 100 T = 1,000

No expected Expected No expected Expected
probability probability probability probability

Method adjustment adjustment adjustment adjustment
(1) (2) (3) (4) (5)

LP3-'Y = 0 176" 217. 25. 34
LP3-G, 244 292 75 88
LP3-Gr 164 210" 45 52
LP3-Gw 172. 216. 18. 26"
LN2 165. 207. 21. 33
LN3 172. 229 816"
GEV 152 215. 11. 13.
GUM 377 443 132 161

Theoretical expectation 192 192 19 19
95% likely interval (165, 219) (165, 219) (11, 28) (11, 28)

.Results fall inside 9~% likely interval.
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(.'Guidelines" 1982). The only methods leading to observed exceedances
that always fall within the 95% likely interval with the expected probability
adjustment are the LP3-Gw and the GEV procedures. Since an expected
probability adjustment is required to reproduce the theoretical expectation
and to produce results that fall within the 95% likely interval of the number
of exceedances we place greater weight on the results with the expected
probability adjustment. Unfortunately, an exact expected probability ad-
justment is unavailable for the GEV and LP3 methods, hence our results
for those cases are approximate .

For the T = 1,000-yr event, the LP3-Gw , LN3, and GEV procedures are
the only methods that produce exceedances that fall within the 95% likely
interval when the expected probability adjustment is made. This result agrees
with our previous conclusions based on L-moment diagrams, which showed
that these distributions seemed to behave most like the observed flood-flow
samples. For the T = 100-yr event, similar results are obtained since now
the LP3-"y = 0, LP3-G" LP3-Gw, LN2, and GEV procedures are the only
methods that produce exceedances that fall within the 95% likely interval
when the expected probability adjustment is made.

Vogel and McMartin (1991) showed that the at-site PPCC skew estimator
G, should always perform as well or better than the at-site skew estimator
Gl. This result is verified in Table 2, which reveals that the LP3-G, pro-
cedure was always an improvement over the LP3-Gl procedure.

Unfortunately, experiments such as the one reported in Table 2 can never
be definitive, because actual flood-flow samples are cross correlated in space.
Cross correlation reduces the amount of regional experience, implying that
one needs more basins to obtain convergence between the theoretical num-
ber 'of exceedances and the observed number of exceedaAces. Cross cor-
relation of the flood-flow samples implies that there are effectively fewer
than 19,196 independent samples leading to a wider 95% likely interval than
is reported in Table 2.

Interestingly, Gunasekara and Cunnane (1992) reached almost identical
.conclusions to ours by repeating Beard's experiment with synthetic flood-

flow data. Gunasekara and Cunnane (1992) generated 40-yr synthetic flood-
flQw traces at 300 artificial sites from seven different parent probability
distributions. They employed 13 different model/parameter estimation pro-
cedures to estimate the 10-, 100-, and 1,000-yr flood flow at each site. They
found that for both the 100- and 1,000-yr events, the regional LP3-Gw and
the at-site GEV procedures employed here reproduced the expected number
of exceedances better than any of the procedures they evaluated. Those
results are identical to ours except that we also found that the LN2 and LN3
procedures performed well. Gunasekara and Cunnane (1992) did not con-
sider the LN3 procedure, and the reason they rejected the LN2 procedure
was probably due to the fact that the logarithms of their artificial samples
exhibited nonzero skew, unlike the logarithms of observed flood flows in
this study.

CONCLUSIONS

The primary objective of this study was to evaluate the ability of several
distributional alternatives for modeling annual maximum flood flows in a
10-state region of the southwestern United States. L-moment diagrams re-
vealed that the log Pearson type 3 (LP3), lognormal (LN2), three-parameter
lognormal (LN3), and generalized extreme value (GEV) distributions all
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provide equally acceptable approximations to the observed distribution of
flood flows at 383 sites in the region depicted in Fig. 1.

To assess the ability of alternative flood-frequency models and parameter-
estimation schemes to estimate design quantiles, we also repeated a portion
of the original nonparametric experiment performed by Beard (1974), which
led to the IACWD ("Guidelines" 1982) mandate to recommend the LP3-
Ow procedure in the United States. Those experiments also document that
the LP3-0w, LN2, LN3, and GEV procedures are all equally acceptable
procedures for modeling flood flows in this region. These conclusions are
surprisingly similar to the results of a recent study by Gunasekara and
Cunnane (1992) that employed synthetic flood-flow data instead of flood-
flow observations.

It is satisfying to report that all our evaluations consistently reach similar
conclusions. Yet these results do not imply that the current IACWD
("Guidelines" 1982) guidelines are satisfactory .Recent studies by Potter
and Lettenmaier (1990) and others demonstrate that regional index-flood
procedures for the GEV distribution with L-moment estimators should be
more accurate and more robust than the type of at-site procedures described
here and recommended by IACWD ("Guidelines" 1982). Stedinger et al.
(1993) summarize index-flood procedures. Nevertheless, this study reveals
that index-flood procedures need not be restricted to the GEV distribution
because the LN2, LN3, and LP3 distributions are suitable alternatives, at
least in the southwestern United States.

Finally, we emphasize, as Potter (1987) and others did that improvements
in regional flood-frequency analysis are usually derived from at-site pro-
cedures because the single-site (at-site) model lies at the heart of all regional
procedures. Since this study focuses on the adequacy of various distribu-
tional hypotheses, treating each site independently, our analyses could not
reveal any information regarding the adequacy of regional procedures that
exploit the GEV, LN2, LN3, or LP3 distributions. We suggest, however ,
that future studies that seek to develop improved regional flood frequency
procedures consider using the GEV, LN2, LN3, LP3, and possibly other
procedures as the basis for such methods.
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