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ABSTRACT: A flow-duration curve (FDC) is simply the complement of the cu-
mulative distribution function of daily, weekly, monthly ( or some other time interval
of) streamflow. Applications of FDCs include, but are not limmited to, hydropower

planning, water-quality management, river and reservoir sedimentation studies,
habitat suitability, and low-flow augmentation. Although FDCs have a long and
rich history in the field of hydrology, they are sometimes criticized because, tra-
ditionally, their interpretation depends on the particular period of record on which
they are based. If one considers n individual FDCs, each corresponding to one of
the individual n years of record, then one may treat those n annual FDCs in much
the same way one treats a sequence of annual maximum or annual minimum
streamflows. This new annual-based interpretation enables confidence intervals and
recurrence intervals to be associated with FDCs in a nonparametric framework.

INTRODUCTION

"It is a capital mistake to theorize before one has data," Sir Arthur

Conan Doyle.

A flow-duration curve (FDC) represents the relationship between the

magnitude and frequency of daily, weekly, monthly (or some other time

interval of) streamflow for a particular river basin, providing an estimate

of the percentage of time a given streamflow was equaled or exceeded over

a historical period. An FDC provides a simple, yet comprehensive, graphical

view of the overall historical variability associated with streamflow in a river

basin.

An FDC is the complement of the cumulative distribution function ( cdf)

of daily streamflow. Each value of discharge Q has a corresponding ex-

ceedance probability p, and an FDC is simply a plot of Qp, the pth quantile

or percentile of daily streamflow versus exceedance probability p, where p

is defined by

p = 1 -P{Q :s; q} (la)

p = 1- FQ(q) (lb)

The quantile Qp is a function of the observed streamflows, and since this

function depends upon empirical observations, it is often termed the em-

pirical quantile function. Statisticians term the complement of the cdf the

"survival" distribution function. The 'term survival results from the fact

that most applications involve survival data that arise in various fields
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such as medicine, manufacturing, and demography [see Anderson and Vaeth
(1988) for a review of the literature].

Brief History of Application of Flow-Duration Curves
A sequel to the present paper (Vogel and Fennessey, work in progress)

summarizes, in detail, the many applications of FDCs. The first use of an
FDC is attributed to Clemens Herschel in about 1880 (Foster 1934). The
widespread use of FDCs during the first half of this century is evidenced
by many studies that sought to develop FDCs for particular regions of the
U .S. For example, Mitchell (1957) developed procedures for estimating
FDCs at gaged, partially gaged, and ungaged sites in Illinois. Cross and
Bernhagen (1949) summarized FDCs in Ohio, and Saville et al. (1933)
summarized FDCs in North Carolina. In the U .S. , regional FDC procedures
have been developed for ungaged sites in Illinois, New Hampshire, and
Massachusetts by Singh (1971), Dingman (1978) and Fennessey and Vogel
(1990), respectively. See Fennessey and Vogel (1990) for a review of other
recent regional FDC models.

Mitchell (1957), Searcy (1959), and the Institute of Hydrology ("Low"
1980) provide comprehensive manuals on the construction, interpretation,
and application of FDCs. Interestingly, most of the important work related
to the construction, analysis, and interpretation of FDCs predates the com-
mon application of computers (e.g., Foster (1934); Beard (1943); Mitchell
(1957); Searcy (1959); Hoyle (1963)].

Since the advent of computer technology, few articles on FDCs have been
written, yet, ironically, many recent advances, due to computer technology,
can be exploited along with FDC concepts as is shown in the present paper .
Fienberg (1979) found that in general, there has been a prolonged decline
in the relative use of graphical devices for displaying statistical information
ever since the advent of computer technology. Although many of the articles
on FDCs were written during the first half of this century , current textbooks
still contain discussions pertaining to this important tool [see, for example,
Warnick (1984); Gordon et al. (1992)].

Streamflow-duration curves have been advocated for use in hydrologic
studies such as hydropower, water-supply, and irrigation planning [see,
Chow (1964); Warnick (1984)]. Mitchell (1957) and Searcy (1959) describe
additional applications to waste-Ioad allocation and other water-quality man-
agement problems. Male and Ogawa (1984) show how FDCs can be used
to illustrate and evaluate the trade-offs among the variables involved in the
selection of a wastewater-treatment-plant capacity. The U .S. Bureau of
Reclamation (Strand and Pemberton 1982) use FDCs in river and reservoir
sedimentation studies that examine the frequency of suspended sediment
loads and determine the long-term average suspended sediment yield for a
given site. The U.S. Fish and Wildlife Service (Gordon et al. 1992) use
FDCs in their "Instream Flow Incremental Methodology" for determining
the suitability of habitats to streamflow of different magnitudes and fre-
quencies. Alaouze (1989) describes the use of FDCs for determining the
optimal allocation of water withdrawals from reservoirs, where each with-
drawal is to have a unique reliability.

Some Caveats Associated with Flow-Duration Curves
Fig. 1 displays an example of an FDC along with the probability density

function (pdf) of average daily streamflow for the Acheron River in Aus-
tralia for the period 1947-1987. Also depicted are the mean, median, and
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FIG. 1. Comparison of FDC with Probability Density Function of Observed Daily
Streamflows (m3/s) for Acheron River, 1947-1987

modal daily streamflows. Note that only 34.2% of the daily flows exceeded
the mean over the period of record. This is not unusual, and this result
emphasizes how misleading it can be to use the mean as a measure of central
tendency for highly skewed data such as daily stream flow. Daily streamflows
are so highly skewed that ordinary product moment ratios such as the coef-
ficient of variation and skewness are remarkably biased and should be avoided,
even for samples with tens of thousands of flow observations (Vogel and
Fennessey 1993).

Although FDCs are appealing for depicting the hydrologic response of a
river basin, they can be misleading because the autocorrelation structure of
streamflow series is effectively removed from the plot. To clarify this point,
Fig. 2 uses a single graphical image to compare theFDC with the hydrograph
of the Acheron River. It should always be understood when viewing an
FDC, that streamflow behaves the way it is illustrated in the hydrograph
appearing as a dotted line in the background. We recommend plotting FDCs
with the complete hydrograph in the background, perhaps using light shad-
ing, to reinforce the serial structure of all flow sequences. One could also
plot a correlogram, which is a plot of the lag-k serial correlation versus lag
k, to expose the significant serial structure associated with daily streamflow.

Although FDCs have a long and rich history in hydrology, they are some-
times criticized because, traditionally, their interpretation depends on the
particular period of record on which they are based. If one considers n
individual FDCs, each corresponding to one of the individual n years of
record, then one may treat those n annual FDCs in much the same way one
treats a sequence of annual maximum or annual minimum streamflows.
Viewed in that context, the FDC becomes a generalization of the distribution
of daily streamflow where the distribution of annual maximum flood flows
and annual minimum low flows are simply special cases drawn from either
end of the complete annual-based FDC. This new annual-based interpre-
tation of FDCs provides a general approach to streamflow frequency analysis
that allows us to derive confidence intervals, recurrence intervals, and quan-
tile-estimation procedures for FDCs in a nonparametric framework.
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FIG. 2. Comparison of Hydrograph of Acheron River with Its FDC

TRADITIONAL FLOW-DURATION CURVE IS AN OGIVE

Prior to the advent of computer technology, Searcy (1959) and others
recommended constructing FDCs by separating observed streamflow into
20-30 well-distributed class intervals, and defining the FDC as the cumu-
lative histogram of streamflow based on those class intervals. Searcy (1959)
provides explicit guidelines for the construction of class intervals to be used
with his procedure [see Table 1 in Searcy (1959)]. Searcy's approach pro-
duces what statisticians term a ogive, which is a plot of the cumulative
frequency corresponding to each class interval versus the upper limit of each
class interval where straight lines connect consecutive points. An ogive is a
grouped data analog of a graph of the empirical cumulative distribution
function. Ogives are useful for representing selected percentiles or quantiles
of a distribution or for constructing box and whisker plots. However, if one
is interested in obtaining an accurate computerized description of FDCs and
t~eir a~soci~ted confidence intervals, t~e more efficient and smoother quan-
tlle-estlmatlon procedures to be descrIbed are recommended.

NONPARAMETRIC QUANTILE-ESTIMATION PROCEDURES

Consider the construction of an FDC or empirical quantile function from
n observations of streamflow qi' where i = 1, ..., n. If the streamflows
are ranked, then the set of order statistics q(i)' where i = 1, ..., n, results

where q(l) is the largest and q(n) is the smallest observation.
Even before the era of computers, quantiles and associated FDCs could

be estimated from one or two order statistics. For example, the simplest
empirical quantile function, or quantile estimator, is obtained from a single

order statistic using

Qp,l = q(i) if i = [(n + l)p] (2a)

Qp.l = q(i+l) if i < [(n + l)p] (2b)

where the quantity in brackets [(n + l)p] denotes the integer component
of (n + l)p that is always less than or equal to (n + l)p. We recommend
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setting the smallest possible observation q(n+l) equal to zero, the natural
minimum for streamflow. If the observations are not bounded above, the
estimator Qp.l is undefined for values ofp that lead to i = [(n + l)p] =
0, since q(O) = 00. Essentially, Qp.l is equivalent to plotting the ordered
observations q(i) versus an estimate of their plotting positions Pi' where Pi
= i/(n + 1) is an estimate of the exceedance probability p in (1) known as
the Weibull plotting position. The Weibull plotting position provides an
unbiased estimate of 1 -FQ(q), regardless of the underlying probability
distribution from which streamflows arise.

The main drawback to the simple quantile estimator Qp.l, is that due to
the variability of individual order statistics, it is often an inefficient estimator .
An efficient quanti le estimator is one with low bias, variance, and mean
square error. The lack of efficiency associated with Qp,l is particularly sig-
nificant for small samples (n < 100) and for values of p near zero or unity,
even for large samples.

One way to improve the efficiency of Qp,l is to reduce its variability by
fonning a weighted average of two or more adjacent order statistics using
an appropriate weighting function, Such quantile estimators, based on a
linear combination of the order statistics are termed L-estimators, analogous
to L-moment estimators of distributional parameters recently advanced by
Hosking (1990) and summarized by Stedinger et al, (1993) for hydrologic
applications.

For example, Parzen (1979) introduced a simple quantile estimator based
on the weighted average of two adjacent order statistics. One such weighted
estimator, which is slightly smoother than Qp,1 is

Qp,2 = ~1 -6)q(i) + 6q(i+l) (3)

where i = [(n + l)p] [and the brackets are defined as in (2)]; and 6 =
«n + l)p -i). The estimator Qp,2 is undefined for values of p that lead
to i = [(n + l)p] = 0. .

In a comparison of 10 alternative quantile estimators, Parrish (1990) found
that (3), with i = [np] and 6 = (np -i + 0.5), perfonned slightly better
than (3), with i = [(n + l)p] and 6 = «n + l)p -i); however, these
estimators of i and 6 only yield improvements for small samples. Again,
one sets the smallest possible observation q(n+l) equal to zero; the natural
minimum for streamflow.

The estimators Qp.l and Qp,2 are probably adequate for constructing FDCs
when thousands of daily streamflows are available; however, if one wishes
to construct a series of annual FDCs, each of which is only based on 365
highly correlated daily streamflow observations, it may be wise to use more
efficient nonparametric quantile estimators. Similarly, if one wishes to es-
timate the empirical quantile function associated with a particular quantile
estimator, as we do later on, then one requires a reasonably efficient non-
parametric quantile estimator for independent samples with n ranging from
10 to 100.

Harrell and Davis (1982), Kaigh and Lachenbruch (1982), Yang (1985),
and Sheather and Marron (1990) introduced quantile estimators with smaller
mean squared error than either Qp,1 or Qp,2 for a wide range of distributions
and sample sizes. Harrell and Davis (1982) introduced a distribution-free
quantile estimator based on linear combinations of all n order statistics,
with significantly lower variance than the estimators Qp,l and Qp,2. Their
estimator is derived from the fact that the cumulative probability FQ[q(i)]
associated with each ranked streamflow q(i) follows a beta distribution [see
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Loucks et a" (1981)] Hence, the expected value of the ith order statistic

is given by

E[q",] = ~ I:. qF(q)'-.[1 -F(q)]"-' dF(q) (4a)

I ('E[q",] = w:n -i :;:---ij J, F-.(q)q'-'(1 -q)"-' dq (4b)

where B[a, b] denotes the beta function. Now taking i ~ (n + I)p, regardless
of whether or not i is an integer, E[q(,,] converges to F-'(p) as n ~ 00,

which leads to the Harrell and Davis estimator

Q,3 = i A,q", (5a)
,-,

with the weights " estimated from

I
i ""

, ~ -,."" q'"+"p-'(1 -q)("+"(.-P'-' dq
, B[(n + I)p, (n + I)(I -p)] "-,,,"

(5b)

" ~I.,Jp(n + I), (1- p)(n + I)] -l"-,,m[p(n + I), (1- p)(n + I)]

(5c)

where IJa, b] ~ the incomplete beta function and B[a, b] ~ the beta
function Yang (1985), and Sheather and Marron (1990) describe Q.'i' as
an analytical form of the bootstrap estimate of the mean of the i = [(n +
I)p]th order statistic In other words, if one were to use simulation to obtain
the bootstrap estimate of E[q",], for i ~ (n + I)p, one would obtain the

estimate Qp, Eq (5a) is the exact analytical version of the computationally
intensive bootstrap estimate of E[q",] that requires simulated resampling
Efron (1982) provides an introduction to the bootstrap method

As long as n 2 100, Harrell and Davis (1982) suggest estimating the

weights A, using numerical integration with two intervals between (i -1)/
n and i/n Otherwise they suggest estimating the incomplete beta function

exactly For this purpose one caneither use the efficient algorithm suggested
by Majumdar and Bhattacharjee (1973) or the approximations given by

Abramowitz and Stegun (1972)
IJa, bJ = 1 -"'(X'/'1) if (a + b -I)(I -x) $ Q8 (6a)

IJa, b] = "'(y) if (a + b -I)(I -x) 2 Q8 (6b)

where
x' = (a + b -I)(I -x)(3 -x) -(I -x)(b -I) (7a)

'1 ~ 2b (7b)

y ~ 3 ( w, ( I -~) -w, ( I -~) ] (¥ + ~) -." (7c)

w, ~ (bx)"' (7d)

w, = [a(1 -x)]"' (7e)
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ies. Nevertheless, the estimators Qp.3 and Qp.. provide markedly smoother
estimates of the quantile function than the simpler estimators for small
samples, and bootstrap and jackknife estimates of the variance of these
estimators are available and perform well. One cannot obtain bootstrap or
jackknife estimates of the variance of Qp.l since the quantile function is
discontinuous.

Each of the above quantile estimators has advantages in particular set-
tings; these situations are described in the following sections within the
context of estimating FDCs.

PERIOD-OF-RECORO FLOW-DURATION CURVE

Previous investigators, for example, Searcy (1959), Mitchell (1957), Beard
(1943), and Foster (1934), have suggested constructing FDCs as ogives.
Those studies, which were published prior to the advent of computers,
advocated plotting the empirical cumulative histogram or ogive since only
approximately 30 points needed to be plotted. When the complete period
of record is used to construct an FDC, the quantile estimators described
here are based on 365n daily streamflows or between 3,650 and 36,500
observations for records ranging from 10 to 100 years, respectively! With
so many observations, one need not fit a curve through the points, since
the points, themselves, could be used to create a curve. Another equivalent
approach is to plot a hundred or so points and use spline curve-fitting
procedures to draw a smooth curve through the points. Furthermore, with
such large samples, the differences among the estimators Qp I, Qp 2, Qp 3,and Qp.. are negligible, and the simplest estimators Qp.l or Qp.2 suffice. .

Comparison or Quantile Estimators
Fig. 3 uses lognormal probability paper to compare the period-of-record

(1947-1987) FDC of daily streamflow constructed using an empirical cu-
mulative histogram [Searcy's (1959) recommended approach] with the es-
timator Qp.1 for the Acheron River. Lognormal probability paper is con-
structed by plotting the logarithms of Qp versus the inverse of the standard

100.0
~ Qp,l

~- ~~, Ogive
O 10.0 "

~ , ro

Q) 1.0

~
+J
(/J

0.1
12 51020305070609095 99

P~Q)q~ X 100

FIG. 3. Period-of-Record FDC (m3/s) Based On Searcy's (1959) Ogive Method
Compared with Estimator Qp,1 for Acheron River
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normal cdf Zp = <I>-I(p). See Stedinger et al. (1993) for a review of pro-
cedures for constructing probability plots.

The estimator Qp.l yields a slightly smoother and more representative
FDC than the piecewise linear empirical cumulative histogram advocated
by Searcy (1959) and others, even for a large sample such as this one. One
could argue that both curves in Fig. 3 are almost equivalent, but that the
estimator Qp.l has the advantage of being easily implemented on a computer
and leads to significantly smoother quantile functions than the traditional
ogive for small samples.

Fig. 4 uses lognormal probability paper to compare the period-of-record
FDC for the Acheron River using the estimators Qp,l, Qp.2, and Qp.3 based
on the complete 40-year period-of-record 1947-1987 in Fig. 4(a) and based
on only the single year 1987 in Fig. 4(b). Here one observes that the three
quantile estimators are almost indistinguishable for the 40-year sample of
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q .',-
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p,l '\

-Qp,2
--Qp.s
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,.
q 10 "
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Q ,p.l -Q p.2 Qp.s

1
12 510203050 70809095 99

P~Q)q~ x 100

FIG. 4. Comparison of Period-of-Record FDC for Acheron River: (a) Based on
Complete Record 1947-1987; and (b) Based on Single Year 1987
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FIG. 5. Comparison of Period-of-Record FDC with Mean and Median Annual FDCs:
(a) Moss Brook; and (b) Acheron River

except for exceedance probabilities above about 0.8 (Iow-flows), in which
case the period-of-record FDC is always significantly lower than either the
mean or median annual FDC. Similar results were found at other sites in
Massachusetts. The significant differences between the period-of-record FDC
and either the mean or median annual FDC occurs because the period-of-
record FDC is highly sensitive to the hydrologic extremes associated with
the particular period of record chosen, whereas the mean and median annual
FDCs are not nearly as sensitive. This effect is explored in Fig. 6.

Fig. 6 compares the median annual FDC at Moss Brook with the period-
of-record FDC using two different periods of record. Fig. 6 illustrates how
sensitive the lower tail of an FDC can be to the chosen period of record.
The period of record 1950-1981 contains the 1960s' drought that was more
severe than any drought experienced over the 1917-1949 period, hence the
FDC for these two periods are significantly different. Fig. 6 makes it obvious
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Qp(U)], where Qp(L) and Qp(U) denote the lower and upper limits of that

interval computed from

Qp(L) = (1 -9)Qp(i) + eQp(i + 1);

with i = [(n + 1)a/2] and e = (n + 1)a/2 -i (lOa)

Qp(U) = (1 -e)Qp(i) + 9Qp(i + 1);

with i = [(n + 1)(1 -a/2)] and 9 = (n + 1)(1 -a/2) -i (lOb)

In Fig. 7(a) we use (10) to illustrate 90% confidence intervals for each
quantile associated with the median annual FDC (solid line) for the Quahog
River at West Brimfield, Massachusetts. Here, the solid line Qp is estimated
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FIG. 7. 90% Confidence Intervals Associated with Quantiles of Median Annual

FDC for Quabog River Using: (a) Qp,2; and (b) Qp,3
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using the median of the sample of n values Qp( i) .These confidence intervals
were constructed by setting a = 0.10 in (10) and repeating these compu-
tations 365 times to obtain values of Qp(U) and Qp(L) corresponding to p
= i/366 for i = 1, ...365. Smoother confidence intervals are obtained by
using the estimator Qp.3 instead of Qp.2' which is assumed in (10). For
example, Fig. 7(b )illustrates the 90% confidence intervals for each quantile
of the median annual FDC at the Quabog River when Qp.3 is used instead
of Q 2.

The nonparametric confidence intervals illustrated in Fig. 7 and described
by (10) have a precise interpretation that corresponds to each individual
quantile Qp associated with the median annual FDC. For a particular quan-
tile Qp, the confidence intervals Qp(L) and Qp(U) represent the random
interval within which one would expect the true annual median quanti le Qp
to fall 100(1 -a)% of the time.

GENERALIZED NONPARAMETRIC HYDROLOGIC
FREQUENCY ANAL YSIS

Given the annual interpretation of FDCs illustrated in Figs. 5- 7, one
may now think of each individual annual FDC in much the same way one
thinks of each annual maximum flood flow or each annual minimum low
flow drawn from a streamflow record of length n years. On~ may envision
each annual FDC as a continuum bounded by two end points that are the
annual maximum and annual minimum daily streamflow for that particular
year. Then, similar to our assumption of independence among the n annual
minimum and n annual maximum streamflows, one envisions n independent
annual FDCs.

Another advantage of defining and estimating annual-based FDCs is that
it allows us to define an annual probability of exceedance, which we term
£, (or probability of nonexceedance, which we term v) associated with each
annual-based FDC 0! quantile function Qp. The definition of an annual
probability of exceedance or nonexceedance associated with each annual
FDC allows one to define an annual FDC with a specified average recurrence
interval T, where T = 1/£ for high flows, and T = l/v for low flows. For
example, one could easily define and estimate the annual FDC with an
exceedance probability of £ = 5%, which would be the hypothetical annual
FDC that is exceeded on average, once every T = 1/0.05 = 20 years,
assuming independence among years. Unfortunately, one would never ac-
tually observe a T-year FDC. Nevertheless, if one wishes to understand the
frequency of daily streamflow during an unusual but hypothetical year, a
T-year FDC provides such information. This concept is analogous to the
uSe of T-year design hydrographs and hyetographs used in flood studies.
One could never observe a T-year hydrograph or a T-year hyetograph.

To formalize this concept, we first recall that Qp(i) is the estimate of the .
pth quantile of streamflow based on the 365 daily streamflows in year i,
using one of the estimators Qp.l' Qp,2' or Qp.3' described earlier. The n
years of stream flow data yield n estimates of Qp(i) for i = 1, ...n. Now
suppose we wish to estimate the annual FDC with a prespecified annual
probability of exceedance £, or probability of nonexceedance v. The three
nonparametric quantile estimators can be used again to define the £th and
vth quantiles of Qp(i), which we term Qp,. and QI""' respectively. We rec-
ommend the use of Qp.3 for this purpose, since there are only n values of
Qp(i) for each value of p, and Qp.3 leads to much smoother estimates than
any of the alternative quantile function estimators.
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The annual FDCs described by Qp.£ and Qp." are identical when £ = v
= 0.5 or, equivalently, T = 1/£ = l/v = 2 years. In this case both FDCs
correspond to the median annual FDC, which we term Qp.O.5. In general
Qp.£ lies above Qp.O.5 and Qp." lies below Qp.O.5.

In Fig. 8 we apply the generalized annual FDCs described to the Quabog
River, Using the 77-year record of available daily streamflows, we first
estimated 77individual annual quantile functions Qp(i), i = 1, , , , 77, using
the estimator Qp,2' Next, in Figs. 8(a) and 8(b), the estimators Qp,2 and Qp.3
are used, respectively, to estimate the median annual quantile function Qp.O.5
(depicted using solid lines) along with the generalized quantile functions
Qp,£ for T = 1/£ = 20 and 50 years, and Qp", for T = l/v = 20 and 50
years (depicted using dashed and dotted lines), For example, the dashed
and dotted lines above each solid line represent the annual FDC that is
exceeded on average once every T = 20 and 50 years, respectively.

We illustrate the generalized annual FDCs in Fig, 8 using lognormal
probability paper, although we make no distributional assumptions, The
generalized FDCs depicted in Fig, 8(b) are slightly smoother than the cor-
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FIG. 8, Generalized Annual FDCs for Quabog River Using: (a) Qp,2; and (b) Qp.3
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responding curves depicted in Fig. 8(a). This is because the estimator Qp.3
provides a smoother estimate of the generalized quantile functions than the
estimator Qp.2. This effect is particularly apparent in the tails of the gen-
eralized quanti le functions. In general, we recommend the use of the esti-
mator Qp.3 for constructing generalized quantile functions, as shown in Fig.
8('1J).

Since there are only n = 77 annual values of Qp(i) available for estimating
the annual FDCs Qp.. and Qp.v, the selection of an appropriate quantile
estimator is extremely important. In most hydrologic applications for which
these procedures are appropriate, n is in the range 10 s; n s; 100. The
nonparametric quantile estimators presented are limited to applications in
which both E and v are greater than l/n, or, equivalently, T is less than n.

FLOW-DURATION CURVES IN FLOOD FLOW AND LOW-FLOW
FREQUENCY ANAL YSIS

The nonparametric quantile-estimation procedures provide a generalized
alternative for estimating the magnitude and frequency of the complete
continuum of daily streamflow ranging from the T -year annual minimum
low flow to the T -year annual maximum flood flow. In this section, we
describe how an annual FDC can be used to estimate extreme design events.
Beard (1943) first suggested the use of FDCs in flood frequency analysis.

In a given year, an unbiased estimate of the expected probability of
exceedance associated with the largest observed average daily streamflow
q\.I), is p = l/(n + 1) = 1/366 = 0.002732. Similarly, an unbiased estimate
of the expected probability of exceedance associated with the smallest ob-
served average daily streamflowq(n)isp = n/(n + 1) = 365/366 = 0.99726.
Hence, the distribution of annual maximum average daily flood flows is
given by Q~.. with p = 0.002732, and the distribution of annual minimum
average dally low flows is given by Qp.v with p = 0.99726. In Fig. 8, we
plot, using filled diamonds, the log Pearson type 3 estimators of the T =
2-year, 20-year, and 50-year annual maximum flood flows. Similarly, we
plot using filled diamonds, the log Pearson type 3 (LP3) estimators of the
T = 2-year, 20-year, and 50-year annual minimum low flows. We use the
standard method-of-moment estimators in log space for estimating quantiles
of the LP3 distribution as described in "Guidelines" (1982) and in most
hydrology textbooks.

Fig. 9 uses lognormal probability paper to illustrate the goodness of fit
of a LP3 distribution to the annual maximum flood flows and annual min-
imum low flows of the Quabog River. The LP3 distribution provides a good
approximation to the distribution of annual minimum low flows and only a
fair approximation to the distribution of annual maximum flood flows at
this site. This is why there is good agreement in Fig. 8 between the non-
parametric and parametric LP3 procedures for the annual minimum low
flows, and poor agreement between the nonparametric and parametric LP3
procedures for the annual maximum flood flows. Since Vogel and Kroll
(1989) showed that the LP3 distribution provides an excellent approximation
to the distribution of annual minimum 7-day low flows at 23 sites in Mas-
sachusetts, the agreement between parametric and nonparametric proce-
dures for the annual minimum low flows is not surprising. The smoother
~ene;ralized nonp:arametric quantile fun~tions based on !he estimator Qp.3
ID FIg. 8(b) provIde better agreement with the parametnc LP3 procedures
than the generalized quanti le functions based on the estimator Qp.2 in Fig.
8(a). This is to be expected since the estimator Qp,3 uses all the observations
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FIG. 9. LPJ Distribution Fit to Annual Maximum and Annual Minimum Stream-
flows at Quabog River

to obtain each value of Qp.. and Qp"" unlike Qp,2, which only uses two
adjacent observations.

The comparison in Fig. 8 does not validate either procedure; however ,
it does document the correspondence between the classical parametric an-
nual maximum flood-flow and annual minimum low-flow computations, and
the generalized nonparametric procedures recommended. Future research
is required to ascertain the efficiency of the nonparametric procedures rel-
ative to the parametric alternativ:es. Even if the nonparametric procedures
are less efficient, which they are likely to be, the nonparametric procedures
provide a wealth of information regarding the frequency and magnitude of
streamflow, in excess of the traditional parametric low-flow and flood-flow
procedures.

CONCLUSIONS

The present study introduces a variety of nonparametric quantile-esti-
mation procedures useful for estimating and interpreting FDCs. The tra-
ditional period-of-record FDC can be interpreted as representing the mag-
nitude and frequency of daily streamflow during the period of record or, in
the limit, over some long period of time. Experiments indicate that the
lower tail of such FDCs are highly sensitive to the particular period of record
used. This fact led us to consider the alternative of representing and inter-
preting FDCs on an annual basis. We introduced the median annual FDC
that represents the exceedance probability of daily streamflow in a median,
or typical, but hypothetical year. The median annual FDC is not influenced
by ~he occurrence of extreme low-flow periods or extreme fl,?ods over t~e
perIod of record, yet it still captures the frequency and magnItude of dally
~treamflow in a typical year. The use of annual FDCs ~Iso allo,!,ed us.to
Introduce simple nonparametric procedures for computing confidence 10-
tervals and for estimating a hypothet.ical T -year FD.C:.
, Annual FDCs provide an alternative to the traditional approach of es-

tImating a period-of-record FDC. A period-of-recor.d FDC. repres~n~s the
exceedance probability of streamflow over a long perIod of tIme. This mter-
pretation can be quite useful, as long as the period of record used to construct
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the FDC is long enough to provide the "limiting" distribution of streamflow
or if the period of record corresponds to a particular planning period or
design life. As an alternative, the median annual FDC represents the ex-
ceedance probability of streamflow in a typical year .

Engineers often wish to estimate quantiles of daily streamflow for use in
hydrologic design and planning. Such studies typically define a design event
using the concept of average recurrence intervals. For example, storm sewers
may be designed for the SO-year peak annual flood flow and waste-Ioad
allocations may be based upon the 7-day 10-year low-flow event. The present
study shows how FDCs can be constructed so as to provide a generalized
description of hydrologic frequency analysis using average recurrence in-
tervals. In Fig. 8, generalized FDCs were constructed to illustrate how one
could estimate a hypothetical FDC with a specified annual probability of
exceedance £ or nonexceedance v ( or corresponding average return period
T = 1/£ or T = l/v). Such FDCs provide a description of the frequency
and magnitude of the entire continuum of daily streamflows ranging from
the T -year annual maximum flood flow to the T -year annual minimum low
flow.

The annual FDC procedures introduced are appealing because they gen-
eralize both fiood-flow and low-flow events in addition to all events in
between. Yet FDCs are characterized by complex shapes requiring much
more complex probability distributions than for the usual fiood-flow and
low-flow applications. The procedures developed are entirely nonparamet-
ric, unlike the parametric procedures usually recommended in fiood-flow
and low-flow frequency analysis. Nonparametric quantile-estimation pro-
cedures are chosen to simplify the analysis and to alleviate the need for
"goodness-of-fit" procedures that typically have very low power [see Vogel
and McMartin (1991)]. Nevertheless, studies should be undertaken to de-
termine the efficiency of the proposed nonparametric quantile-estimation
procedures relative to the usually recommended parametric procedures,
such as the LP3 distribution, recommended by the Interagency Advisory
Committee on Water Data ("Guidelines" 1982).
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