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Abstract. The theory of record-breaking processes offers a framework for understanding
extreme events which is nearly independent of the theory of extremes. The mathematical
theory of record-breaking processes is applied to the problem of identifying
nonstationarity in hydrological records. A record flood event is simply an event which
exceeds all previous events. The probability distribution and first four moments of the
number of record events in an n-year period, R, are derived for a serially independent
process. The variance of estimates of the mean, standard deviation, and coefficient of
variation R is also derived. In addition, approximate confidence intervals are derived for
the mean number of record-breaking events in a region with spatially correlated flood
series. Using these results, in combination with 1571 flood records in the United States,
we document that the average number of record breaking flood events over n-year periods
ranging from [10, 80] behaved as if the annual flood series were serially independent for
all regions of the United States. However, when spatial correlation of the flood records is
ignored, as is the case in many previous studies, it appears as if flood records are not
serially independent in the western and Midwestern regions of the United States. These

results emphasize the importance of accounting for the spatial correlation structure of
hydrologic records when performing regional hypothesis tests.

1. Introduction

In a stationary hydrologic world, persistent or not, all flood
and drought records will eventually be broken. This is even
true if the probability density function (pdf) of floods or
droughts are bounded above or below, respectively. A record
event is defined as an event whose magnitude exceeds or is
exceeded by all previously recorded events. There is a rich
literature on the mathematics of record events [see Glick,
1978; Nevzorov, 1987; Nagaraja, 1988; Nevzorov and Balakrish-
nan, 1998]. The mathematics of record events for the case of
univariate sequences is so well developed, that a textbook
exists [Arnold et al., 1998]. Nevzorov [1987] describes applica-
tions of the theory of record events to sports records, traffic
jams, rainfall, and other problems. The mathematics literature
on record events is quite advanced, and general results exist for
most univariate problems relating to record events for inde-
pendent and identically distributed (iid) random variables.
There is a growing literature on the mathematics of record
events in multivariate sequences. Since the iid assumption is
the only assumption required for most theoretical results per-
taining to record events, the theory of records has been sug-
gested for testing the iid assumption [Foster and Stuart, 1954].
One goal of this study is to introduce a mathematical frame-
work for evaluating the frequency of record events in hydrol-
ogy. Another goal is to examine the record breaking properties

Copyright 2001 by the American Geophysical Union.

Paper number 2001WR900019.
0043-1397/01/2001WR900019$09.00

of historical flood observations in the United States to deter-
mine whether or not they behave like serially independent
observations. Our final goal is to evaluate the influence of
spatial correlation of flood observations on our ability to detect
whether or not annual maximum flood series exhibit serial
dependence.

Most previous literature relating to floods and droughts is an
application of extreme value theory and the primary focus is
usually on the pdf of either observed annual maximum (or
minimum) or partial duration series events. There is no gen-
eral direct relationship between the theory of extreme value
distributions and the distribution of record breaking events
because, the theory of extremes ignores the time order of the
observations, whereas time plays an essential role in the record
breaking process. Instead of focusing on the original random
variable such as the series of annual maximum floods, the
theory of records focuses on the time series of record events.
Hence the theory of records offers a framework for under-
standing extreme events which is nearly independent of the
theory of extremes. There are a few special cases in which the
pdf of the original random variable is related to the pdf of the
series of record events. Examples of such cases include the
Weibull, Pareto, Gumbel, and Power Function pdf’s [see Ar-
nold et al., 1998, chapter 2].

There are now a very large number of theoretical and ap-
plied studies which have examined the properties of various
models of flood and drought frequency when fit to observa-
tions (for a review, see Bobee and Rasmussen [1995]). Conclu-
sions derived from such studies are limited because one never
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Figure 1. Location of streamflow gaging stations in the con-
terminous United States and definition of eastern, midwestern,
and western regions.

knows which pdf best describes observed flood series. For that
reason, many studies have constructed Monte Carlo experi-
ments, generating floods from plausible yet artificial distribu-
tion functions. Monte Carlo experiments can lead to definitive
conclusions regarding parameter estimation and hypothesis
testing, however only with respect to the flood models chosen.
Furthermore, such experiments are usually based on the as-
sumption that flood (or drought) events are independent and
identically distributed (iid) events over time. The theory of
record events enables us to construct experiments with ob-
served flood data without having to resort to a pdf assumption.
Record-breaking statistics are nonparametric.

We begin our evaluations with a discussion of U.S. flood
observations and envelope curves which provide an upper
bound on record-breaking flood experiences to date. Next we
summarize and derive some new properties of the record-
breaking process for serially independent but spatially corre-
lated events. Finally, we apply that theory to compare the
record-breaking frequency of actual floods with our theoretical
relations in order to detect any serial dependence.

2. U.S. Flood Observations

We employ the data set compiled by Slack et al. [1993],
which comprises average streamflow values recorded on a
daily, monthly and annual basis in the conterminous United
States as well as in Alaska, Hawaii, and the Caribbean. This
Hydro-Climatic Data Network (HCDN) is a subset of the
much larger U.S. Geological Survey streamflow gaging net-
work and is intended for use in “climate-sensitive” studies. The
HCDN contains records spanning the time period 1874-1988
and is available on a CD-ROM and on the World Wide Web.
For the purpose of this study, only data pertaining to the 48
conterminous states are considered. The United States is par-
titioned into three regions, east, midwest, and west as shown in
Figure 1, which also illustrates the stream gage locations.

Most flood studies employ annual maximum instantaneous
flow records; hence such records might be preferred to the
annual maximum daily flows included in the HCDN. On the
other hand, annual maximum daily flows are more reliably
measured and are a measure of extremes that can reveal
trends. According to J. R. Slack (personal communication,
1998), annual maximum daily and annual maximum instanta-
neous streamflows occur on the same day 73% of the time and,
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on average, the average daily flow is 80% of the instantaneous
maximum flow; the standard deviation of the ratio of the av-
erage daily over the instantaneous flows is 0.2.

3. Bounds on Flood Experience

One traditional approach to investigating the record break-
ing behavior of floods in a region is to create an envelope
curve. An envelope curve is a plot of the observed “flood of
record” at many sites in a region versus their drainage areas,
with an envelope drawn in such a way as to enclose all flood
experience to date. Envelope curves sidestep the issue of flood
frequency yet they are quite useful in practice, because they
provide a bound on flood experience. Envelope curves provide
a motivation for the remainder of this study which introduces
a statistically rigorous approach for investigating the record
breaking properties of floods.

Jarvis [1925] first introduced an envelope curve for flood
experience in the United States as of 1924. Later Crippen and
Bue [1977] updated the Jarvis bound on flood experience in the
United States using the flood of record experienced in the
United States as of 1974 on 883 basins with drainage areas less
than 16,000 km? (10,000 miles?). In the intervening years from
1924 to 1974 the envelope curve developed by Jarvis [1925] was
exceeded many times in spite of a claim of paleoflood evidence
of a natural upperbound to flood magnitudes [Enzel et al.,
1993]. Matalas [1997] summarizes the Crippen and Bue and
Jarvis envelope curves along with the flood data compiled by
Crippen and Bue [1977] and a world-wide data set compiled
through UNESCO [1971a, 1971b] for rivers whose drainage
areas are one or two orders of magnitude larger than the rivers
compiled by Crippen and Bue. Kirby [see Matalas, 1997] com-
piled the experience as of 1994 at 740 of the gaging stations
considered by Crippen and Bue. Matalas [1997] documents
that during the subsequent period 1974-1994 record breaking
floods occurred at 88 of the 740 sites considered by Crippen
and Bue but still the Crippen-Bue results bounded even this
more recent flood experience. In this study we tested to see if
flood experience in the United States summarized by the larger
group of 1571 stations in the HCDN [Slack et al., 1993] exceeds
the Crippen and Bue bound. Again, the Crippen-Bue bound
still remains a bound to U.S. flood experience. Unless we have
already experienced a natural upper bound on floods in the
United States the theory of record-breaking events assures that
in time, even the Crippen-Bue bound will be exceeded in spite
of arguments to the contrary by Enzel et al. [1993]. Yet inter-
estingly, the expected waiting time until the next record flood
(or drought) is infinite [Chandler, 1952].

4. Number of Record-Breaking Events
in a Sequence of Length n

Let X,, X,, ..., X,,, represent a sequence of annual max-
imum flood observations, where n is the total number of time
periods for which records are available. The observation X is
a record high if X; exceeds all previous records in the se-
quence, or if and only if X; = max (X,, X5, ..., X;). The
trials at which record highs occur in the original sequence may
be expressed as the series of binary variates

1 X;=max (X}, X5, ..., X))
Y= {0 otherwise. @)

Let R denote the number of record-breaking events in an
n-year period where
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R=2X Y. )

In this initial study we focus our attention on the theoretical
properties of the number of record high events R in a series of
length n. Other properties such as the waiting time between
record events and the time of occurrence of each record event
provide substance for future investigations. Similarly, one
could focus attention on droughts instead of floods. If the max
function in (1) is replaced by min, one obtains the lower record
events. Alternatively, one can switch from upper to lower
record events by replacing the original sequence by —X,,
—X,, ..., —X,. Some initial theoretical results are taken
from the mathematics literature and others are introduced
here for the first time.

4.1. Probability Distribution of the Number of Record
Events

David and Barton [1962] first introduced an expression for
the exact probability mass function (pmf) for the number of
upper and lower record events in an n-year period. The exact
pmf of R can be expressed compactly using Stirling numbers of
the first kind S7,, where

S5

PIR =r] = (5 3)

with

r_nir_kn—l%—k 2n —r
S"fz( 1)(n—r+k>(n—r—k
k=0

1 S = k n—r+
{izer G}

(l:) - r!(nni !’

The result in (3) is given in numerous other papers however,
the result reported by Glick [1978] has a typographic error. A
much simpler expression which yields exactly the same pmf as
in (3) is P,,[R = r] defined by the recursion

PR =r] = (1 - ]1>P,_1[R =r]+ (%)P,-_][R =r—1]
©)

forr = 1 andj = 2 with the initial values P,[R = 0] = 0 and
P.[R = 1] = 1. Glick [1978] also reports the asymptotic result
for large sample sizes

[In (m)]"
PIR=r]l= "1 ®)
Figure 2 compares the exact and asymptotic pmf and cumula-
tive mass function (cmf) of the number of record floods in an
n-year period. The cmf is defined by P[R = r] = 2 _, P[R =
k]. For values of n > 20 the exact expressions for the pmf of
R are extremely large numerical problems, making the asymp-
totic formula quite useful in those situations.
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Figure 2. The cumulative mass function P[R = r] and the
probability mass function of the number of record floods in an
n-year period.

4.2. Moments of the Number of Record Breaking Events

The first observation is defined to be a record event. The
second observation has an equal chance of being smaller or
larger than the first; that is, its probability of surpassing the
initial record is exactly 1/2. With probability 1/3 the third event
will be a new maximum, since the third observation is equally
likely to be smallest, equal, or largest. For an independent
sequence all ranks are equally likely hence the maximum rank
has probability 1/i. The following results for the mean and
variance of Y and R are due to Glick [1978]. The expectation
of Y, is

E[Y]=YP{Y,= 1} = 1/i. (6)
Similarly,
Var [Y;] = E[Y}] - (E[Y,)* = 1/i — 1/i*. (7)
In general,
E[Y¥] = 1/i. (8)

The mean and variance of R are then

pr= > 1/i, )
i=1

(10)

ok= > 1/i— >, 1/i%
i=1

i=1

A focus of this study is on the sampling properties of esti-
mates of wp and og. For this purpose, the moment ratios,
skewness and kurtosis are required. Neither of these statistics
are reported in the literature so they are derived here. Zafira-
kou-Koulouris [2000] derived the skewness of R, denoted y, =
E[(R — pg)’llo} as
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D=3 > 17+ 2 > 1/
e = i=1 i=1 1;/12

DRVEDISVE
i=1 i=1

(11)

An alternative to deriving the moments of R is to use the
pmf in either (3) or (4) to obtain the noncentral moments of R
using

E[R¥] = > P,[R = ili*.

(12)
i=1
Then the central moments of R are simply
& (n
R - )= 3 (1) RN, (13)

j=1

which leads to expressions for the moment ratios, coefficient of
variation C [R], skewness vy, and kurtosis k, respectively:

E[(R — pp)]"?

E[(R — pr)’]
Yt EL(R — p]"? ()
E[(R — pr)’]
“ ELR = ) T (1o
1.42 543
Kp=3.19 — —— — —5-—0.00419 \/n (17)

The approximation in (17) is accurate to at least three decimal
places for 4 = n = 100.

The mean, coefficient of variation, skewness, and kurtosis of
R are displayed in Figure 3 as a function of n. For large
samples the skewness approaches 0.4, and the kurtosis con-
verges to 3.13. From the central limit theorem, one might
expect R to follow a normal distribution for large samples,
since it is the sum of the random variable Y. Figure 4 compares
a moment ratio diagram for R with a moment ratio diagram for
the lognormal, Gamma, and Weibull pdf’s. See Bobee et al.
[1993] for a discussion of moment ratio diagrams. The relation
between y, and C [R] in Figure 4 is based on a variation of
the record length from n = 3 to n = 20,000 with points
denoted for the casesn = 10 and n = 10,000. Figures 3 and
4 illustrate that in spite of the central limit theorem, the tail
behavior of the distribution of R differs significantly from other
common distributions even for large sample sizes.

4.3. Sampling Properties of Estimates of
Moments R for Independent Samples

Our later experiments with actual flood data require knowl-
edge of the sampling properties of moment estimators of R.
Such sampling properties are required to derive confidence
intervals for regional average estimates of R, which enable us
to evaluate whether actual flood records are in accord with the
theory of record events for independent processes. It is always
useful to report the sampling properties of statistics along with
any sample statistic, and it is common practice to summarize
the sampling variability of a statistic by reporting the statistics’
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Figure 3. The mean, coefficient of variation, skewness, and
kurtosis of R as a function of record length n.

standard error. This section derives the standard error of sam-
ple estimates of the mean ug, standard deviation o, and
coefficient of variation C(R) of R for serially independent
samples.

The sampling variance of an estimate of the mean number of
record floods R in an n-year period for a region of s (spatially)
independent (samples) sites is

2
_ o
Var (R) = Ta (18)
2 | | | I I
15F |
I g
L j
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| Sy
N D=y i
| -~
0 - |
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~
-~
05+ ,// |
- ‘ I

1 1 1
0 0.1 0.2 0.3 04 0.5
Coefficient of Variation
Lognormal
“““““ Gamma
- Weibull
n=10
n=10000
R

Figure 4. Moment ratio diagram illustrating relationship be-
tween skewness and coefficient of variation for the lognormal,
gamma, Weibull distributions, and the distribution of R.
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where

R =

2R,

i=1

1 s
: (19)
and o is given in (10). Here the s sites are assumed to have
an equal record length n. Kendall and Stuart [1977] document
that (18) is an exact result for any independent random vari-
able. An exact result for the sampling variance of the standard
deviation, does not exist. Instead, we employ the first-order
approximation derived by Kendall and Stuart [1977] and others:

(kg — 1)0'122

Var (SR) = 4S s

(20)
where o7, is given in (10), ky is given in (16) and (17), and s,
denotes a sample estimate of the standard deviation of R given
by

1 ’ -
se= o 2 R-R (1)
i=1
Kendall and Stuart [1977] also provide a first-order estimate of

the sampling variance of an estimate of the coefficient of vari-
ation

B2 s

Var (C,) =
4us  opt pa

Cv 2 _ 2

(C)) { Mg = M2 } 7 (22)
s

where u, = E[(R — pg)*] denotes the kth central moment
defined in (13). Substitution of the first four central moments

of R into (22) leads to

CJIR))? (kpok — ok  OF
(C.[R]) { ROR . RJr 71;7 ’YRU'R}, (23)
S 4oy KR

Var (C [R]) = "

where the sample coefficient of variation is defined by C_[R]
= s,/R and the theoretical coefficient of variation is defined
by Cr/[R] = O-R/MR'

4.4. Influence of Spatial Correlation
on Sampling Properties of Moments of R

Observations of floods in a region are correlated in space
and this influences the sampling properties of the moments of
the number of record events. Assume in a given region that
there are s sites (samples), each with a flood flow sequence of
length n, where all sequences are concurrent. Let p denote a
fixed spatial correlation between the observations at all sites in
the region. Let R; denote the number of record events at site
i. Then the average number of record breaking events in the
region R, is still given by (19). If the sequences are spatially
independent of each other, then p = 0, and the mean and
variance of the average number of records in the region are
given by E[R] = px and Var[R] = og/s. On the other
extreme, if the s sequences in a region are perfectly correlated
with one another, p = 1 in which case R; = R V i so that the
regional average number of record events R is equal to all the
at-site values of R. In this case the mean and variance of R are
E[R] = ug and Var[R] = o. The mean number of record
events in a region does not depend upon the degree of spatial
dependence among the flow sequences, whereas the same can-
not be said about the variance of R. In general, when flow
sequences are spatially correlated, Var [R] will depend on the
number of sites (samples) in the region, s, and the spatial
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Figure 5. Plot of relationship between standard deviation of
R based on Monte Carlo experiments and approximate rela-
tion given in (25).

correlation of the number of record events across the sites
which we term pg. Matalas and Langbein [1962], Stedinger
[1983], and others document the variance of the regional mean
of a variable subject to cross correlation among the stations. In
this case, one obtains

Var [R]=[1+ (s — 1)pgloi/s, (24)

which reduces to Var [R] = o%/s when pr = 0 and to Var [R]
= g% when p, = 1. The current literature on record-breaking
processes does not provide a theoretical relationship between
the cross correlation of flow sequences p and the cross corre-
lation of the number of record events pg; hence we resort to a
Monte Carlo experiment. Multivariate normal flow sequences
were generated fors = 2 and s = 3 sites with cross correlation
p among the flow sequences ranging from 0 to 1 and sample
sizes ranging from 10 to 100. The variance of the average
number of record events was estimated from 100,000 Monte
Carlo experiments and the results are reported in Figure 5
using solid circles. Also shown in Figure 5, using solid lines, is
the empirical approximation

Var[R]= |1+ (1 03200 1 var (g 25
ar[ ]_ ( S) p_1.337 ar[ ]/S, ( )
which is shown to provide a good fit to the Monte Carlo results.
Equation (25) is useful for approximating the inflation in the
variance of the mean number of record events in a region
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which results from spatial correlation of the flow records equal
to p > 0. Note that for the two extreme cases: (1) p = 0, (25)
yields Var [R] = o&/s and (2) p = 1, (25) yields Var [R] = 0%
as expected. Since (25) was only developed for small s, its
extrapolation later on for large s is speculative; however, it
does enable us to approximate the impact of spatial correlation
on our evaluations of the frequency of record-breaking prop-
erties of floods. A more definitive approach to dealing with
spatial correlation of the flood records would have been to
employ the bootstrap as suggested by Walker [1999] and Dou-
glas et al. [2000], or the approach used by Lettenmaier et al.
[1994].

4.5. Approximate Confidence Intervals for
Moments of Number of Record Events

Ideally, exact confidence intervals for each of the moment
estimators would be available to enable us to determine, with
a specified level of confidence, whether observed flood obser-
vations follow the theory of record events for serially indepen-
dent processes. Owing to the complexity of the distribution of
R, the sampling distributions of moment estimators of R, such
as R, sg, and C_[R] are even more complex than the sampling
distribution of R; hence we resort to approximate confidence
intervals due to Chebyshev [see Ross, 1994]. We realize that
Chebyshev confidence intervals are only a crude approxima-
tion; however, they are expedient here because they can be
easily parameterized to document the influence of spatial cor-
relation on the width of the derived intervals. Chebyshev’s
inequality for any random variable X with mean w and variance

o’ is

0_2

PlIX —plz=c]=—, (26)

o

where ¢ is a constant equal to one half the width of the
confidence interval. In this study we set ¢ = 3¢, which implies
P[|X — u| = 30] = 0.111. For example, application of this
result to the statistic R leads to an approximate 89% confi-
dence interval equal to [R — 3V Var [R], R + 3V Var [R]].
Analogous confidence intervals are constructed for the statis-
tics s and C_[R].

5. Record-Breaking Behavior of U.S. Flood
Observations

In the following experiments, we report estimates of the
regional average, standard deviation and coefficient of varia-
tion of R as a function of n for the three geographic regions
illustrated in Figure 1. Sample estimates of skewness and kur-
tosis are known to be significantly biased, so they are not
calculated here [Wallis et al., 1974; Vogel and Fennessey, 1993].
In each of Figures 6, 7, and 8 we compare theoretical and
sample estimates of the mean, standard deviation, and coeffi-
cient of variation of the number of record floods in an n-year
period for the eastern, midwestern, and western regions of the
United States, respectively. Also shown are the approximate
89% Chebyshev confidence intervals for each statistic. The
heavy confidence intervals denote intervals based on the as-
sumption of spatial independence (p = 0) of the flood obser-
vations. The light weight confidence intervals (shown only for
) are based on the assumption that the cross correlation of
the flood observations is equal to the average cross correlation
of flow records for all sites in the region.
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Figure 6. Comparison of sample and theoretical estimates of
the mean E[R], standard deviation, s|R], and coefficient of
variation C,[R] of R as a function of n for the eastern region.

Average cross correlations of the annual maximum flow
records in the eastern, midwestern, and western regions of the
United States are 0.23, 0.19, and 0.42, respectively [Walker,
1999]. The average value of p for the entire United States is
0.28. These sample estimates of the average spatial correlation
of the annual maximum flood series were computed for all
possible pairs of observations which had at least 10 years of
record in common. Employing the regional average value of
cross correlation is the simplest approach to describe the dis-
tribution of spatial correlations in a region. Stedinger [1983]
and Hosking and Wallis [1988] also used regional average val-
ues of cross correlation to describe the dependence between
flow series at different sites. Douglas et al. [2000] compared the
use of regional trend tests of U.S. flood records based on (1)
regional average spatial cross correlations and (2) the boot-
strap approach for preserving the empirical regional distribu-
tion of the spatial dependence of flood observations. They
found good agreement between these two approaches. Never-
theless, our use of a regional average spatial cross correlation
is a gross simplification because the complex spatial and tem-
poral climatic mechanisms which give rise to flood observa-
tions will lead to spatial correlation structures which depend
significantly upon how the regions are defined.

In computing the moments of R all possible nonoverlapping
sets of n-year periods within the HCDN database are consid-
ered. Table 1 reports the number of such nonoverlapping 7-
year periods available in each region. The reason that the



VOGEL ET AL.: FREQUENCY OF RECORD-BREAKING FLOODS

9- m Sample Estimate - MIDWEST
? 1 — Theoretical Estimate
6 4
x 5
34
3 4
2 4
14
0 T T T T T T T T —
o} 10 20 30 40 50 60 70 80 90
Years, n
5 - = Sample Estimate - MIDWEST
4 - — Theoretical Estimate
34 \
p=0
x ) I
@) 24 5 [ Ld ]
./A’f 1
3 i bl
0 4
-1 T T T T T T T T |

0 10 20 30 40 50 60 70 80 90

Years, n
14 = Sample Estimate - MIDWEST
0.8 - —— Theoretical Estimate
\ p=0
— 06
% 0.4 —% X § ¥ { i
o |
0.2
0 4
-0.2 T T T T T T T T —

Years, n

Figure 7. Comparison of sample and theoretical estimates of
the mean E[R], standard deviation, o[R], and coefficient of
variation C [R] of R as a function of n for the midwestern
region.

confidence intervals widen as n increases is due to the fact that
in each region, the number of nonoverlapping sets of n-year
samples decreases as n increases. The confidence intervals
reflect the increasing uncertainty associated with our ability to
determine properties of record-breaking events as n increases.
If we had used smaller regions than defined in Figure 1, the
confidence intervals would have widened. If the sample esti-
mates of R reported in top graph of Figures 68 fall within the
reported 89% confidence intervals for w, (which account for
cross correlation), we conclude that the flood series in that
region are serially independent since that was the only assump-
tion required for the theoretical analysis. Note that the confi-
dence intervals for ug, which account for the spatial correla-
tion of the flood observations are much wider than the
confidence intervals which assume spatial independence.

In general, Figures 68 illustrate that when one accounts for
the spatial correlation of the flood observations, the observed
regional mean R falls within the 89% confidence intervals for
g for all three regions of the United States. However, if the
flood observations are assumed to be spatially independent
(which they are not), we would conclude that flood observa-
tions in the midwestern and western regions of the United
States are serially dependent. Hence our results indicate that
flood observations in the eastern United States are consistent
with theory of record-breaking phenomena for serially inde-
pendent processes.
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Figure 8. Comparison of sample and theoretical estimates of
the mean E[R], standard deviation, o[R], and coefficient of
variation C ,[R] of R as a function of n for the western region.

6. Conclusions

The mathematical theory of record-breaking processes was
applied to the problem of identifying nonstationarity in hydro-
logical records. The theory of record-breaking phenomena was
introduced for serially independent processes. Since serial in-
dependence is the only prerequisite assumption to this theory,
it is possible to test the hypothesis of serial independence by
studying statistics of the record-breaking process. The proba-
bility distribution and the first four moments of the number of
record breaking events in an n-year period R were introduced
for a serially independent process. Sampling properties of es-

Table 1. Number of n-Year Samples s Available in Each

Region

Record Length
n East Midwest West
10 2680 1919 1561
20 1164 838 665
30 650 432 350
40 418 278 200
50 270 151 136
60 112 66 63
70 36 23 22
80 11 3 4

Total 5341 3710 3001
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timators of the mean, standard deviation, and the coefficient of
variation of R were derived. In addition, confidence intervals
were derived for the mean of R for spatially correlated obser-
vations and for the standard deviation and coefficient of vari-
ation of R for serially independent observations. Regional av-
erage values of R were estimated using flood observations at
1571 watersheds across the United States. Comparisons of the
theory introduced with the regional record-breaking behavior
of U.S. flood observations led to the following conclusions:

1. Observations of annual maximum flood observations do
not appear to exhibit significant serial dependence anywhere in
the United States. This conclusion is drawn from the fact that
the observed regional mean number of record-breaking events
falls within its 89% confidence intervals for the eastern, mid-
western, and western regions of the United States. However,
since these confidence intervals characterize spatial correlation
of flood observations using an average regional value of cor-
relation, the intervals may be slightly wider than they should
be. If that is the case, then there may be slight evidence of
serial dependence of flood records in the midwestern and
western regions of the United States but not in the eastern
regions of the United States. Other schemes for handling spa-
tial correlation of the observations within a hypothesis testing
framework include a bootstrap approach [Wilks, 1997; Walker,
1999; Douglas et al., 2000] or a logarithmic correlation model
[Lettenmaier et al., 1994; Bradley, 1998], either of which may
lead to more reliable confidence intervals than was reported in
Figures 6-8.

2. Many previous studies that attempted to evaluate either
nonstationarity or persistence of streamflow observations have
ignored the spatial correlation among the observations. For
example, Lins and Slack [1999] ignored spatial correlation of
the streamflow records in their national study of trends in
streamflow using the same database used here. Lins and Slack
[1999] found that between 9 and 13% of their sites exhibited
significant trends using a 5% level Mann-Kendall test. If they
had accounted for the cross correlation of the streamflow ob-
servations, it is likely that they would not have found any
significant trends at all [see Douglas et al., 2000]. Many other
examples of trend studies exist which ignored the cross corre-
lation of the flow records. This study has shown that ignoring
the spatial correlation of the flows would lead one to conclude
that there is significant serial dependence of flood observations
in the western and midwestern regions of the United States.
However, when one accounts for the cross correlation of the
flood observations in the analysis, we conclude that flood ob-
servations are serially independent throughout the United
States. This conclusion agrees with the results of Douglas et al.
[2000], who found that when the spatial correlation structure
of flood records is properly accounted for, historical flood
records in the United States do not exhibit significant upward
or downward trends.

3. In a nationwide assessment of streamflow trends which
did account for the impact of spatial correlation of stream-
flows, Lettenmaier et al. [1994] found significant trends
throughout the United States. Their study differs from this one
in many respects: (1) They examined trends in monthly stream-
flows instead of flood flows; (2) they used a different and
slightly smaller data set of streamflows than was used here; (3)
they examined trends in streamflow unlike this study which
examines serial dependence, in general; and (4) they divided
the country into nine regions instead of three as reported in
Figure 1. With all these differences it is not surprising they
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drew different conclusions than this study. They noted a very
high degree of spatial coherence among trends, so that the
significant uptrends and downtrends tended to occur in clus-
ters within their smaller regions.

4. The theory of record breaking events provides a com-
prehensive mathematical framework for evaluating the fre-
quency and magnitude of extreme events. Most applications of
the theory of records have been to sports such as in determi-
nations of the longest winning streak in professional basket-
ball, or the fastest mile. Many applications to water resources
are possible, and it is hoped that some will be inspired by this
study.
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