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ABSTRACT 

Vogel, R.M. and Stedinger, J.R., 1987. Generalized storage-reliability-yield relationships. J. 
Hydrol., 89: 303-327. 

Traditionally water resource engineers have employed Rippl's mass curve approach or its 
automated equivalent sequent peak alogrithm, in conjunction with the historical streamflow 
sequence to obtain a single estimate of the design capacity of a storage reservoir. More recently 
stochastic streamflow models have been recommended for use in deriving the probability distribu- 
tion of the required capacity of a storage reservoir to maintain a prespecified release. The use of 
stochastic streamflow models in conjunction with the sequent peak algorithm leads to a 
storage-reliability-yield (S-R-Y) relationship. This study develops approximate but general ex- 
pressions which describe the over-year S-R-Y relationship when annual streamfiows are log 
normal and follow a first-order autoregressive model. These expressions were developed for three 
reasons: (1) to provide preliminary design capacity or yield estimates for storage reservoirs 
governed by over-year storage requirements; (2) to improve our understanding of the S-R-Y 
relationship; and (3) to facilitate Monte-Carlo experiments which examine the sampling properties 
of reservoir design capacity and/or yield estimates. 

INTRODUCTION 

Since the  work  of  F ie r ing  (1963, 1965, 1967) and  Svanidze  (1964) m a n y  inves- 
t i ga to r s  h a v e  employed  s tochas t i c  a n n u a l  s t reamf low models  to examine  the  
p robab i l i t y  d i s t r ibu t ion  of  ove r -yea r  r e se rvo i r  s t o rage  capac i ty  (for example ,  
Burges  and  Linsley,  1971; Wal l i s  and  Mata l a s ,  1972; Pe r r ens  and  Howell ,  1972; 
L e t t e n m a i e r  and  Burges ,  1977a, b; Bayazi t ,  1982). In  prac t ice ,  w i th in -yea r  
s to rage  r e q u i r e m e n t s  of ten p redomina te .  Accord ingly ,  a v a r i e t y  of  m o n t h l y  
s tochas t i c  s t reamf low models  h a v e  been  developed  to i nves t iga t e  the  combined  
wi th in -yea r  ove r -yea r  s t o r a g e - r e l i a b i l i t y - y i e l d  (S -R-Y)  r e l a t i onsh ip  (for exam- 
ple, L a w r a n c e  and  Ko t t egoda ,  1977; Hirsch,  1979; Klemes  et  al., 1981; S ted inger  
and  Taylor ,  1982a, b; S ted inger  et  al., 1985). A l t h o u g h  s tudies  which  model  the  
wi th in -yea r  s to rage  r e q u i r e m e n t s  a re  more  real is t ic ,  the  S - R - Y  re la t ionsh ips  
which  re su l t  a re  difficult to genera l ize  due to the  l a rge  n u m b e r  of  p a r a m e t e r s  
a s soc ia t ed  wi th  s tochas t i c  m o n t h l y  s t reamf low models .  Thus,  genera l  S - R - Y  
re l a t ionsh ips  h a v e  been  deve loped  us ing  s tochas t i c  s t reamf low models ,  for  the  
s imple  cases,  such  as when  a n n u a l  s t reamf lows  are  n o r m a l  and  ar i se  f rom a 
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first-order autoregressive model (Perrens and Howell, 1972; Bayazit, 1982) and 
over-year storage requirements predominate. 

A primary objective of this study is to develop approximate but  general 
S-R-Y relationships for the realistic situation when annual streamflows have 
a two-parameter log normal distribution and their logarithms follow a first- 
order autoregressive process. The derived analytic S-R-Y relationships are 
used in a subsequent study (Vogel and Stedinger, 1986) to examine the sampling 
properties of estimates of the design capacity of a storage reservoir. 

THE STORAGE-YIELD RELATIONSHIP 

Methods available for determining the storage-yield relationship from a 
streamflow record may be broadly classified into (1) sequential, and (2) nonse- 
quential  procedures. Sequential analysis requires routing of the complete 
streamflow record (or synthetic traces based thereupon) through the reservoir 
system while accounting for the necessary outflows which may include: water  
supply, evaporation, seepage losses, minimum downstream releases and other 
operations. The U.S. Army Corps of Engineers (1967, p. 6; 1975, p. 6.12) em- 
phasized that  "sequential  analysis is the most accepted method for determining 
reservoir storage requirements in the United States". Although non-sequential 
procedures have been advocated for design purposes (McMahon and Mein, 
1978, p. 169) these procedures have seen limited use in design applications in 
the U.S. and are not considered here. The U.S. Army Corps of Engineers (1975, 
section 6.02) describe the use of non-sequential procedures. 

The most commonly used sequential procedure is the mass curve introduced 
by Rippl (1883) or its automated equivalent sequent peak algorithm. The 
sequent peak algorithm, developed by Thomas and Burden (1963), is a rather 
complex algorithm. Loucks (1970) framed the sequent peak algorithm as a 
linear programming problem (Loucks et al., 1981, pp. 235-236). Louck's (1970) 
algorithm applied to a sequence of annual streamflows Qi, i = 1 . . . . .  N may 
be described in symbols by: 

S = Maximum [Si] for i = 1 . . . . .  K N  (1) 

subject to: 

Si-1  + a~ - Qi if positive 
S~ = 0 otherwise: 

Qi+gN = Qi 

where Si = storage capacity required at the beginning of period i; Qi = 
annual streamflow, year  i, i = 1 . . . . .  N; # = mean annual streamflow (MAF); 

= demand as a fraction of the MAF; K = indicator variable equal to 1 or 2; 
and N = length of available streamflow record. 

The sequent peak algorithm, advanced "by Thomas and Burden (1963), uses 
K = 2. Thus the sequence of required storages, S~, are computed over the 
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period i = 1 . . . . .  2N which is accomplished by repeating the sequence of 
streamflows. This double-cycling algorithm is used to take care of the situation 
when the critical low flow sequence occurs at the end of the planning period. 
The double-cycling sequent peak algorithm generates the steady-state solution 
to the problem of determining the minimum storage required over an N-year 
planning period to supply the desired yield of ~g with no shortages (~tt < {~). 
Although the introduction of double cycling is often attributed to Thomas and 
Burden, Klemes (1979b, p. 138) points out that  it has been used in the past, 
starting with Stupecky in 1909. A more detailed discussion of Rippl's mass 
curve technique or its automated equivalent sequent peak algorithm may also 
be found in Klemes (1978, 1979a). 

The sequent peak algorithm in eqn. (1) is presented here to clarify the 
procedure used to generate S-R-Y relationships in this study. This study 
employs the double-cycling algorithm (K = 2) as opposed to the single-cycling 
algorithm (K = 1) used, for example, by Burges and Linsley (1971), Troutman 
(1978) and Bayazit (1982). Vogel (1985) provides a comparison of the impact of 
using the single- versus the double-cycling sequent peak algorithm; he docu- 
ments situations in which the two procedures yield substantially different 
results. 

A note of caution is appropriate here. When stochastic streamflow models 
are employed to generate the distribution of S for reservoirs on streams which 
are highly regulated (i.e., ~ close to 1) it becomes possible to generate flow 
sequences with average flow values less than ~ leading to infeasible solutions 
to the problem posed in eqn. (1). Fortunately this situation is only encountered 
when ~ approaches unity leading to a storage reservoir of enormous and 
impractical dimensions. In realistic and practical situations, feasible solutions 
to eqn. (1) are almost always possible. 

R E V I E W  OF THE L I T E R A T U R E  

Empirical relations 

The first relationships between the over-year design storage capacity, yield, 
and characterist ics of the inflows for a reservoir were developed by Hazen 
(1914). Hazen's tables provide an approximation to over-year reservoir storage 
capacity requirements based upon knowledge of the coefficient of variation of 
the inflows, Cv, and the level of development. Unfortunately his tables were 
based upon the rather  sparse records of annual streamflow available in 1914. 
Moreover tables developed for one region are not necessarily applicable to 
another. 

Hurst  (1951) developed algebraic expressions which relate the required 
over-year storage S, to the mean tt and variance ~2 of the inflows as well as the 
level of development ~. Hurst 's  relationships were of the form: 

S exp [a + bml (2) 
o 
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F i g .  1. T h e  l e v e l  o f  d e v e l o p m e n t  ~ a s  a f u n c t i o n  o f  t h e  s t a n d a r d i z e d  i n f l o w  m a n d  t h e  c o e f f i c i e n t  o f  

variation of the inflows Cv. 

or: 

S (a + b x / ~ ) ( N )  h 
- = ( 3 )  
{7 

where m = (1 - a) ~/a and a, b and k are constants. 
The constant  k in eqns. (2) and (3) is the well known Hurst  coefficient. Hurst  

applied the single-cycling sequent peak algorithm to sequences of streamflow, 
precipitation, temperature, tree ring and varve records to obtain single estima- 
tes of S which in turn were used to obtain estimates of the constants a, b and 
k using graphical curve fitting procedures. These relationships, like Hazen's, 
are subject to the pitfalls of using a single streamflow trace discussed in Fiering 
(1967, p. 7) and Vogel and Stedinger (1986) as opposed to using stochastic 
streamflow models. Most importantly, Hurst  (1951) and Hurst  et al. (1965) 
identified the form of these general relationships. However, the expressions in 
eqns. (2) and (3) are only reasonable approximations over the range considered 
by Hurst  (0.3 ~ m ~< 0.8). Actually m could be any non-negative number since 
/~ and a are non-negative and the demand as a fraction of the mean annual flow, 
~, is usually in the interval (0, 1). 

Another practical consequence of Hurst 's  work was his use of the non- 
dimensional parameter rn which has subsequently found use in both analytic 
investigations in "Water  Storage Theory" (Gomide, 1975; Troutman, 1978; 
Pegram et al., 1980) and Monte-Carlo investigations of the S-R-Y relationship 
(Perrens and Howell, 1972; Bayazit, 1982). Figure 1 depicts the relationship: 

rn = (1 - ~) 
{T 

( 1  - ~) 
- ( 4 )  cv 



307 

Thus m may be thought  of as the standardized inflow; that  is, the mean net 
inflow ~ - ~#) standardized by the scale parameter of the inflows. Although 
m could be any non-negative number, m is normally in the interval (0, 1) for 
over-year storage problems. For example in the U.S., values of Cv in the range 
0.1 ~< Cv ~< 0.5 are common, which corresponds to development levels in the 
range of 50-100% of the mean annual  flow (MAF) when m is taken to range 
from 1.0 to 0.0 respectively. Values of m in excess of unity correspond to 
situations in which within-year storage requirements become significant rela- 
tive to over-year storage requirements. 

Analy t i c  relations 

Hurst 's (1951) development of over-year storage-yield relationships using a 
variety of different natural  and simulated records initiated the field of "Water 
Storage Theory" which has been summarized by Pegram et al. (1980). The 
subset of "Water Storage Theory" applicable to this study consists of analytic 
expressions for the distribution of over-year storage based upon a complete 
specification of the inflow to the reservoir. Recent contributions were made by 
Gomide (1975) and Troutman (1978), both having derived the probability den- 
sity function (pdf) of S and its first two moments #s, and a 2, which results from 
application of the single-cycling sequent peak algorithm to realistic models of 
annual  streamflows. For example, when the annual  streamflows, Q, are nor- 
mally distributed and follow a first-order autoregressive model: 

Vi+l = jx ÷ Q1 ( Q i -  ]~) 4- ~i a x /1  - Q2 (5) 

where the ei are independent normal random disturbances with mean 0 and 
variance 1, Gomide (1975) derived the pdf of S and its first moment, #s. The 
resulting expressions were so complex that  Gomide only presented his results 
graphically for Q1 equal to 0.0, 0.2, 0.5; m equal to 0.0 (full regulation) and N 
ranging from 0 to 100 years. For Q1 = 0 in eqn. (5) Gomide (1975) presents the 
pdf of S and its first two moments #s and a s, when the reservoir is partially 
regulated (m = 0.0, 0.25, 0.50, 1.0), for planning periods which range from 0 to 
50 years. Again the derived expressions were too complex to report; instead 
Gomide presents the results of selected cases in his figs. 5.7, 5.8, 5.9 and 5.10. 

Similarly Troutman (1978) derived the mean /~s, and variance as of the 
asymptotic distribution of S when m = 0 (full regulation) and inflows are 
described by an AR(1) log normal model: 

X,+I = Px + QI(x)(X i - #x) + e,axx/1 - Q2(x) (6) 

where X i = In [Qi], the ~i are independent normal disturbances with mean 0, 
variance 1 and px, a 2 and Q, (x) are the mean, variance and serial correlation 
of the log transformed streamflows. No analytic expressions have been de- 
veloped for the pdf or moments of the steady-state required storage obtained 
using the double-cycling sequent peak algorithm. 
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Experimental relations 

With the advent of computer technology and the introduction of stochastic 
streamflow models by Thomas and Fiering (1962) and Svanidze (1964) it was 
possible to use Monte-Carlo procedures to generate the pdf of S corresponding 
to a range of values oftt, a 2, Q1, N a n d  ~. Fiering (1963; 1965; 1967) generated 200 
traces of gamma and normally distributed streamflows from a first-order auto- 
regressive model which were subsequently analyzed by the double-cycling 
sequent peak algorithm. Fiering tabulated the mean Ps and standard deviation 
as of the distribution of steady-state storage corresponding to planning periods, 
N, equal to 10, 25, 50 and 100 years, annual autocorrelations, Q1, of 0.0, 0.1 and 
0.2 and levels of development, ~, of 0.8, 0.9 and 1.0. Since Fiering held the 
coefficient of variation of the inflows, Cv, constant  at 0.25, his simulations 
correspond to values of m equal to 0.0, 0.4 and 0.8 (m = (1 - ~)/Cv). 

Burges and Linsley (1971) generated the complete pdf of over-year required 
storage capacity using eqn. (5) in conjunction with the single-cycling sequent 
peak algorithm. They suggest that  at least 1000 streamflow traces are required 
to specify the pdf of S. 

Perrens and Howell (1972) used a stochastic streamflow model to develop 
generalized S-R-Y relationships in graphical form. Perrens and Howell used 
eqn. (5) in conjunction with an algorithm which determined the number of 
times a reservoir of fixed capacity with a fixed m failed to deliver the target 
yield over a 14,400-year interval. This algorithm, which allows failures, differs 
substantially from the sequent peak algorithm. Perrens and Howell plotted S/a 
(which they termed standardized capacity) versus - m  (which they termed 
standardized use) to form general graphical relations. 

More recently, Bayazit (1982) generated AR(1) normal flows from eqn. (5) and 
used the single-cycling sequent peak algorithm to obtain general graphical 
relationships between S/a and m. Bayazit compared his estimates of the pdf of 
S, #s, and as with Gomide's (1975) analytic expressions for #s and a8 of the 
asymptotic pdf of S; the agreement was poor as is to be expected. Gomide also 
derived Ps and a8 for non-asymptotic cases. In fact, a comparison of Bayazit 's 
results for Q~ = 0 to Gomide's non-asymptotic analytic results for normal 
independent inflows depicted in his figs. 5.7, 5.8, 5.9 and 5.10, show excellent 
agreement. Thus Bayazit simply compared his results to the wrong analytic 
results when he concluded that  his results differ from Gomide's. 

A review of the l i terature reveals that  general graphical S-R-Y relations 
exist when inflows are AR(1) normal and a single-cycling sequent peak 
algorithm is used (Bayazit, 1982; Gomide, 1975). However, such relations have 
not been generalized when the double-cycling sequent peak algorithm is used 
nor when inflows are AR(1) log normal. No general and convenient S-R-Y 
relationships exist in analytic form for any of the cases discussed here. 
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MONTE-CARLO EXPERIMENT 

A Monte-Carlo experiment was performed to determine the generalized 
over-year S-R-Y relationship when inflows are AR(1) log normal (eqn. (6)) and 
a double-cycling sequent peak algorithm is used. Vogel (1985) summarizes 
additional experiments for the case when inflows are AR(1) normal and both 
single-and double cycling sequent peak algorithms are employed. To explore 
these S-R-Y relationships in detail requires consideration of a wide range of 
possible inflow parameters, reliabilities and yields. 

In the following experiments values of m were chosen to span the region 
0.1 ~< m ~< 1.0 which includes most over-year storage problems of interest in 
the U.S. For example, in the U.S., values of Cv in the range 0.2 ~< Cv ~< 0.5 are 
considered quite common which corresponds to demand levels in the range 
50-98% of the mean annual  flow (MAF) when m is taken to range from 1.0 to 
0.1, respectively. Values of the first-order autocorrelation, Q~, of annual  stream- 
flows are generally positive (Matalas, 1963). In a study of annual streamflow 
data from 140 gaging stations around the world, with records of at least 37 
years, Yevjevich (1964) found estimates of Q1 to vary from - 0.4 to 0.75; however, 
most values were in the range 0.0-0.4. Similarly, using 106 basins in New 
England, Vicens et al. (1975) found the mean and standard deviation of estima- 
tes of Q~ to be 0.22 and 0.14, respectively. Thus a reasonable range of Q~ for these 
experiments is 0.0 ~< Q1 ~< 0.5. This should capture most cases of practical 
interest. 

Distribution of over-year reservoir storage capacity 

Burges and Linsley (1971) suggest that  the cumulative distribution function 
(cdf) of estimates of S derived using the single-cycling sequent peak algorithm 
with AR(1) normal inflows is well described by the extreme value type I (Gum- 
bel) probability distribution. Burges and Linsley only examined the cases when 
Q1 = 0.2, N = 40 and m = 0.2, 1.0 and 1.2. 

In this section we seek to determine a cdf which approximates the distribu- 
tion of over-year storage derived with the double-cycling sequent peak 
algorithm with AR(1) log normal inflows and realistic combinations of m, N and 
Q1. To accomplish this task, 1000 streamflow traces were generated correspond- 
ing to planning periods, N, equal to 20 and 60 years, annual autocorrelations, 
Q~, equal to 0.0 and 0.3 and values of the standardized inflow, m, equal to 0.1, 
0.3, 0.5, 0.7 and 1.0. The double-cycling sequent peak algorithm was applied to 
each streamflow trace to produce 1000 over-year storage estimates. An extreme 
value type I (EVI) distribution, a normal (N) distribution and 2- and 3-par- 
ameter log normal distributions (LN2, LN3) were fit to each set of 1000 over- 
year storage estimates as described in the following sections. Filliben's (1975) 
probability plot correlation coefficient (PPCC) test for normality, extended by 
Vogel (1986), was used to test the hypothesis that  S is distributed N, LN2 and 
LN3. The PPCC test is quite flexible and may be used to test distributional 
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T A B L E  1 

P r o b a b i l i t y  p l o t  c o r r e l a t i o n  c o e f f i c i e n t  t e s t  s t a t i s t i c  v a l u e s  f o r  t h e  d i s t r i b u t i o n  o f  o v e r - y e a r  s t o r a g e  

Q1 N m C v = 0 .25 Cv = 0 .50 

S ~ L N 3  S ~ E V 1  a S ~ L N 3  S ~ E V 1  

0.0 20 0.1 0 .975  0 .9954 0 .9688  0.95 0 .9973 0 .9732 

0 .0  20 0.3 0 .925 0 .9947  0 .9496  0.85 0 .9951 0 .9545  

0 .0  20 0.5 0 .875 0 .9975  a 0 .9778  0.75 0 .9976 ~ 0 .9849  

0.0 20 0.7 0 .825 0 .9989  a 0 .9988  a 0.65 0 .9989  ~ 0 .9988  a 

0.0 20 1.0 0 .750 0 .9876" 0 .9973  a 0 .50 0 .9694  a 0 .9918 

0.0 60 0.1 0 .9984 a 0 .9649  0 .9989  ~ 0 .9666 

0 .0  60 0.3 0 .9989  ~ 0 .9825 0 .9988 a 0 .9832  

0 .0  60 0.5 0 .9989  a 0 .9974 ~ 0 .9988" 0 .9973  a 

0.0 60 0.7 0 .9994" 0 .9982  ~ 0 .9993 a 0 .9983 a 

0.0 60 1.0 0 .9982  a 0 .9987  ~ 0 .9978 ~ 0 .9959  a 

0.3 20 0.1 0 .9967  0 .9803 0 .9967 0 .9829  

0.3 20 0.3 0 .9976" 0 .9650  0 .9976" 0 .9652 

0.3 20 0.5 0 .9993  a 0 .9828 0 .9994" 0 .9834 

0.3 20 0.7 0 .9997 ~ 0 .9971 ~ 0 .9984  ~ 0 .9980 a 

0.3 20 1.0 0 .9801 0 .9958  0 .9647 0 .9917 

0.3 60  0.1 0 .9979  ~ 0 .9792 0 .9978 ° 0 .9833  

0.3 60 0.3 0 .9991 ~ 0 .9850  0 .9994  a 0 .9777 

0.3 60 0.5 0 .9993  ~ 0 .9970  ~ 0 .9994  ~ 0 .9871 

0.3 60 0.7 0 .9996  a 0 .9974" 0 .9997 ~ 0 .9972 ~ 

0.3 60 1.0 0 .9992 a 0 .9971 ~ 0 .9988" 0 .9981 ° 

Note: T h i s  t a b l e  is  b a s e d  u p o n  1000 r e p l i c a t e  e x p e r i m e n t s .  

a C a s e s  f o r  w h i c h  o n e  c o u l d  n o t  r e j e c t  t h e  h y p o t h e s i s  t h a t  S ~ L N 3  o r  S ~ E V 1  u s i n g  t h e  

p r o b a b i l i t y  p l o t  c o r r e l a t i o n  c o e f f i c i e n t  t e s t  w i t h  a t y p e  I e r r o r  p r o b a b i l i t y  o f  0.01.  

hypotheses for any one or two-parameter distribution which exhibits a fixed 
shape. The PPCC test has the additional and attractive feature that  it is 
invariant  to the parameter estimation procedure. Vogel (1986) summarizes the 
use of the PPCC test for the normal, log normal and Gumbel distributional 
hypotheses. In addition, Vogel (1986) provides tables of the PPCC test statistic 
for sample sizes of interest in Monte-Carlo experiments. 

Results 

Table 1 summarizes the computed values of ? when LN3 and EV1 distribu- 
tions were fit to the values of S and annual flows are AR(1) log normal and a 
double-cycling sequent peak algorithm is employed. Table 2 displays the results 
for the normal (N) and 2-parameter lognormal (LN2) distributions which did 
not fit nearly as well. If we allow type I errors 1% of the time, when the null 
hypothesis is true, then, from Vogel (1986), the test statistic f must exceed 
0.9975 and 0.9933 for the normal (lognormal) and Gumbel PPCC tests, respec- 
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TABLE 2 

Probability plot correlation coefficient test statistic values for the distribution of over-year storage 

Q1 N rn Cv = 0.25 Cv = 0.50 

S ~  N S ~  LN2 ~ S ~  N S ~  LN2 

0.0 20 0.1 0.975 0.8863 0.9952 0.95 0.8954 0.9952 
0.0 20 0.5 0.875 0.9157 0.8505 0.75 0.9298 0.9891 
0.0 20 1.0 0.750 0.9773 0.6740 0.50 0.9774 0.7329 

0.0 60 0.1 0.8801 0.9926 0.8825 0.9921 
0.0 60 0.5 0.9573 0.9988 ~ 0.9574 0.9985 ~ 
0.0 60 1.0 0.9718 0.9935 0.9820 0.7807 

0.3 20 0.1 0.9115 0.9977 ° 0.9178 0.9978 a 
0.3 20 0.5 0.9164 0.9010 0.9177 0.9852 
0.3 20 1.0 0.9531 0.7256 0.9477 0.7763 

0.3 60 0.1 0.9075 0.9957 0.9046 0.9963 
0.3 60 0.5 0.9531 0.9995 a 0.9547 0.9995 a 
0.3 60 1.0 0.9541 0.9980 ~ 0.9581 0.8540 

Note: This table is based upon 1000 replicate experiments. 
a Cases for which one could not reject the hypothesis that S ~ LN2 using the probability plot 
correlation coefficient test with a type I error probability of 0.01. 

tively. On the basis of  Table 1 we must  reject  the null  hypothes is  tha t  the 
d is t r ibut ion of  S is EV1 in 24 of the 40 cases represented (60% of the trials). 
Similar ly we must  re ject  the null  hypothes is  t ha t  the d is t r ibut ion of  S is LN3 
for only  8 of  the 40 cases (20% of the cases). I t  should be noted t h s t  the PPCC 
test  was developed for a two pa rame te r  normal  (or log normal)  distr ibution,  ye t  
it is being used here  for a three pa ramete r  log normal  distr ibution.  Use of  the 
pe rcen tage  points  of  ~ given in Vogel (1986) for tes t ing the null  hypothes is  tha t  
S is dis t r ibuted LN3 will lead to fewer re ject ions  of the null  hypothes is  t han  
one would otherwise  ant icipate.  

Even  t h o u g h  we must  reject  the null  hypothes is  tha t  S is dis t r ibuted EV1 or 
LN3 in m a n y  instances,  an examina t ion  of  Table 1 reveals  tha t  the est imated 
probabi l i ty  plot  cor re la t ion  coefficients are a lways  in excess of  0.94, and in most  
cases are in excess of  0.99. Such  large values  of  ~ indicate  t ha t  the dis t r ibut ions  
of  S genera l ly  are well "approx imated"  by both  the EV1 and LN3 distr ibut ions,  
even if the small d iscrepancies  are s ta t is t ica l ly  significant.  In  the fol lowing 
analysis  the LN3 dis t r ibut ion is used to describe the dis t r ibut ion of S. The values  
of  ~ for the LN3 fits were a lways  in excess of  0.994. 

Fur the rmore ,  the values  of  ~ for the LN3 PPCC test  are a lways grea te r  t han  
the values  of ~ for the EV1 PPCC test  when  the s tandardized inflows m are 0.7 
or  lower. The only  s i tua t ion  in which  an LN3 dis t r ibut ion did not  provide a 
good approx imat ion  to the d is t r ibut ion  of  S is when  the p lann ing  period N is 
equal  to 20 and the s tandardized inflow m = 1.0. However  in these ins tances  
the EV1 dis t r ibut ion  provides  a reasonable  and adequate  al ternat ive.  
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Probability plot correlation coefficients were also computed when values of 
S were fit to normal (N) and 2-parameter log normal (LN2) distributions; the 
results are displayed in Table 2. In general, the normal distribution provides a 
poor approximation to the distribution of S for all the cases considered. 
Although in some instances the LN2 distribution provides a reasonable ap- 
proximation to the distribution of S, Table 2 documents many instances in 
which f is less than 0.9. These situations occur primarily at the lower demand 
levels (i.e., m = 1). The N, LN2 and EV1 distributions do not appear to fit the 
distribution of S nearly as well as the LN3 distribution. 

Development of storage-reliability-yield relationships 

Unfortunately the general analytic form of the S-R-Y relationship is at 
present unknown when inflows are AR(1) log normal and the double-cycling 
sequent peak algorithm is employed. Here a Monte-Carlo procedure is used to 
generate the storage, reliability and yield data. Multivariate regression equa- 
tions were then fit to that  data to obtain approximate but general S-R-Y 
relationships. 

Perrens and Howell (1972), Gomide (1975) and Bayazit (1982) found that  
when inflows are AR(1) normal, a general relationship exists between the 
standardized storage capacity S/a, m, N, and Q1. Thus when the inflows are 
AR(1) normal, S's distribution is only a function of m, N, Q1 and a. For AR(1) 
normal inflows, when the demand level is given, m and a completely charac- 
terize the location, scale and shape of the distribution of inflows since the shape 
of a normal distribution is fixed. When the inflows are AR(1) log normal an 
additional parameter, Cv, is required to characterize the shape of the distribu- 
tion of inflows since an LN2 distribution exhibits non-zero skew. 

Since the distribution of S may be well approximated by an LN3 distribution, 
the pth quantile of the distribution of standardized storage capacity is: 

S p  _ 

G 

where: 

/2 l ~ I n  

L + exp (Pl + zpal) 

-- -- --2 

1+ - - ¢ J  (~ ~,)2 

(7.__8 
a~ = In 1 + (P8 ~8) i 

(7) 

and #8, a, 2, and ~8 are the mean, variance and lower bound of the distribution 
of S/a and zp is the pth  quantile of a standard normal distribution. This study 
develops a general relationship between Sp/a and the planning period length 
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N, the development level m, the autocorrelat ion of annual streamflows, Q~ and 
the coefficient of variat ion of the inflows, Cv. This is accomplished by develop- 
ing regression equations between ~8, as, and 38 and the values of N, m, Q~, Cv and 
~. A Monte-Carlo experiment was performed to generate values of the depen- 
dent variables corresponding to reasonable and practical  combinations of the 
independent variables. 

The coefficient of variation, Cv, of most mean annual flow series in the U.S. 
is in the range 0.1 ~< Cv ~< 0.5. As discussed earlier, practical combinations of 
the other explanatory (independent) variables will likely fall within the inter- 
vals: 0.1 ~ m ~< 1.0; 20 ~< N ~< 100; and 0.00 ~< Q1 ~< 0.5. 

In the following experiments, values of S/a were estimated for: m = 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0; N = 20, 40, 60, 80, 100; Q1 = 0.0, 0.1, 0.2, 0.3, 0.4, 
0.5; and Cv = 0.1, 0.2, 0.3, 0.4, 0.5. 

The chosen sample space includes 1500 different combinations of the plan- 
ning parameters. Of those 1500 different combinations, there are only 30 com- 
binations of the streamflow model parameters Q1 and C~. For each of the 30 
combinations of Q~ and C~, fifty-thousand 100-year streamflow traces were 
generated from an AR(1) log normal model. Each streamflow trace was subjec- 
ted to ten double-cycling sequent peak algorithms for each value of N and m. 
Therefore a total of 1500 different combinations of the dependent and indepen- 
dent variables were generated. The fifty-thousand streamflow traces were re- 
quired to insure that  estimates of g,, a8 and v8 were of sufficient precision; with 
fifty-thousand streamflow traces, 95% confidence intervals for estimates of ~8 
and a~ were always within + 1% and + 3.5%, respectively, of the estimated 
values. Ninety-five percent confidence intervals for Sp obtained from eqn. (7) 
were always within + 1% of the estimated values as long as 0.10 ~< p ~< 0.95. 
Thus the sampling error in estimates of Sp/a, #8, a~, and 38 may be neglected in 
this study. However the cost of the Monte-Carlo analysis was high because 
effectively 30 x 50000 x 100 = 150 million generated annual streamflows 
were required to produce 300 estimates of the dependent variable S/a. 

Regression model selection 

The best practical regression equations for ~8, a8 and 38 in terms of m, N, Q1 
and Cv had to be identified. On the basis of empirical work by Hurst  (1951), 
theoretical  work by Gomide (1975) and Troutman (1978), and experimental 
work by Svanidze (1964), Perrens and Howell (1972) and Bayazit (1982), one 
would expect these relationships to be highly nonlinear and fairly complex. 
Multivariate linear regression procedures were employed to fit several families 
of non-linear models.' Three linear regression equations for In ~8), In (as) and 
In (~8) were thus obtained in terms of functions of the explanatory variables m, 
N, Q1 and Cv. 

Suppose that  W~, W2, • • . ,  Wr, are functions of m, N, Q~ and Cv, and represent 
the complete set of variables from which the equations are to be chosen. They 
may include functions such as cross-products, logarithms, inverses, squares 
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and products of logarithms. In this classical problem one must strike a balance 
between: (a) including as m a n y  Wi's as possible to insure that  the resulting 
models produce sufficiently reliable predictions; and (b) including as few Wi's 
as possible to insure that  the resultant  models are not too complex for their 
intended purpose(s). 

A compromise is usually required. These models may be used for two pur- 
poses: (1) to provide planning level estimates of Sp for use in preliminary 
feasibility studies; and (2) for research applications which seek to understand 
the general S-R-Y relationship and to determine the sampling properties of Sp 
estimates. 

Each regression equation must contain at least four explanatory variables 
(m, N, Q1, and Cv): the regression model simple enough to satisfy criterion (b) 
if (1) is the intended purpose would have at least five parameters. However, it 
was found that  more than five parameters were generally required to satisfy 
criterion (a) if either (1) or (2) are the intended purposes. We selected a model 
with as few parameters as is necessary to provide sufficiently reliable predic- 
tions for both purposes (1) and (2). 

A number of procedures are available for choosing the "best regression 
equation" from a set of possible regressions. For each set of explanatory 
variables WI . . . .  , Wr the stepwise regression procedure was used to generate 
regression equations with 5-10 parameters. Ten was thought to be an upper 
limit to assure compliance with criterion (b). Each fitted regression equation 
results in a set of residuals which are uniquely determined by the set of 
independent variables used to develop the equations. Therefore the residuals 
are not random errors since they could be reproduced. Nevertheless, the re- 
siduals were evaluated to see if they behaved as random errors with: 

(1) Var (~i) = a2 independent of i 

(2) Cov(ei,~h) = 0 i # k 

(3) ei "~ Normal 

These characterist ics were examined using standard plots discussed in chap- 
ter 3 of Draper and Smith (1981). In addition, Filliben's (1975) probability plot 
correlation test  statistic, f, was computed to determine if the residuals were 
essentially normally distributed. 

Ordinarily regression equations which manifest the above characteristics 
can be compared on the basis of standard indices such as the coefficient of 
determination R 2, the residual mean square s 2, or Mallow's Cp statistic (see 
Draper and Smith (1981), pp. 299-302). In this study a different approach is 
taken; each reasonable set of regression equations for #,, as, and ~8 was used to 
estimate Sp/a in eqn. (7) for a range of m, N, Q~ and Cv. The results were 
compared with the estimates of Sp/a derived from the Monte-Carlo experi- 
ments. The best set of regression equations was chosen as that  set which 
provided the best estimate of Sp/a  on the basis of graphical comparisons. 
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S u m m a r y o f c o e f f i c i e n t s a n d t - r a t i o s o f r e ~ e s s i o n e q u a t i o n s  ~ r P , , a ~ , a n d %  
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a 0.237 38 - 5.92 - 283 0.467 14 

b - 1.33 - 161 4.89 180 - 0.0398 - 55 
c 1.81 447 - 0.000958 - 31 0.189 51 

d - 1.03 - 47 10.0 101 - 0.0332 - 42 
e 0.00621 60 - 0.0342 - 34 - 0.00407 - 40 

f 0.369 205 - 0.520 - 196 0.00803 38 

g - 0.0562 - 81 0.421 219 - 0.00403 - 20 

h 0.100 145 0.0 - 0.0 - 

Note: E a c h  r e g r e s s i o n  e q u a t i o n  i s  b a s e d  u p o n  a s a m p l e  of  s i ze  1500. 

Model estimation 

p2 
G s ~ 

The final equations are: 

exp (a + bm)~cmm(d¢l+eN)N([+gln[m])(I + el~ hln[N] 

e x p [ a +  b~+ eN+ (d+e)(l+o'~INf~[m](l +e~ g~'M 

aQ, + (bN + c(l _+ Q_:)~ In Ira] 
1 - e i  / 

[ e ( "~ l  + N d + - -  + [ m l n [ N ]  + g l n  1 + O~ 
m \1 - OJJ  

(8) 

(9) 

( 1 0 )  

T A B L E  4 

S u m m a r y  s t a t i s t i c s  for  r e g r e s s i o n  e q u a t i o n s  for /~ , ,  o,  2 a n d  L 

Summary ~s t~s •s 
s t a t i s t i c  

R 2 99.95 99.72 93.89 

s r 0.01847 0.09377 0.1044 
p 8 7 7 
Cp 7.47 7.15 6.30 

r 0.989 0.985 0.991 

Note: T h e  r e p o r t e d  s t a t i s t i c s  a r e  b a s e d  u p o n  1500 s a m p l e s .  
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Fig. 2. Comparison of regression estimate S'p/a, nonparametric estimate S(kp)/a and parametric 
estimate Sp/a of the standardized storage capacity as a function of N, m, 01 and C v. 

where the parameter  estimates are given in Table 3. It was found that use of the 
demand level, ~, as an explanatory variable instead of C, led to more reasonable 
relationships. For a given value of m, Cv and ~ are directly related by eqn. (4), 
thus eqns. (8) and (9) are strictly functions of m, Q1 and C~, even though Cv does 
not appear in these expressions. Values of the t-ratio: 

vzq T  (11) 
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where ~ is an estimate of the regression coefficient 0 and Var (~), the standard 
estimate of the estimator's variance if the residuals were independent and 
homoscedastic random errors, are also displayed in Table 3. Because the 
t-ratios in Table 3 are always in excess of 14, all the estimated regression 
coefficients would be statistically significant. 

The coefficient of determination, R ~, the square root of the residual mean 
square, st, the number of model parameters, p, Mallow's Cp statistic and Filli- 
ben's PPCC for the residuals ~, are summarized in Table 4. In all cases, estima- 
tes of  Cp are relatively close to p hence the models would be termed "adequate" 
by Draper and Smith (1981). Models with fewer parameters than shown in Table 
4 led to dramatic increases in the C~ statistic indicating "biased" equations. 
Comparing the computed values of Filliben's ~ in Table 4 with the percentage 
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points of ~ in Vogel (1986) we must reject the hypothesis that  the residuals are 
normal at the 1% level; still the values of ~ always exceeded 0.985, so one can 
conclude that  the residuals are approximately normal. 

Model prediction errors 

The regression eqns. (8)-(10) are complex non-linear functions and the statis- 
tics in Tables 3 and 4 provide little insight into the behavior of these models. 
For this purpose, graphical comparisons are made among the standardized 
storage capacity Sp/a computed using three different techniques: 

(1) In the Monte-Carlo experiments, k = 50,000 values of S/a were 
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generated for each combination of N, m, Q1 and Cv. A reasonable nonparametric 
estimate of the p th  quantile of S/a is given by S(kp)/a which is the kpth largest 
observation. 

(2) Efficient estimates of#l, a~ and v8 in eqn. (7) can be obtained by employing 
the log-space/quantile-lower bound estimators suggested by Stedinger (1980). 
Those estimators may be substituted into eqn. (7) to obtain Sp/a as a quantile 
of an LN3 distribution. The only difference between Sp/a and S(~o)]a is the 
distributional assumption. 

(3) Of particular interest are estimates of S'p/a derived from the use of the 
regression equations. The estimator S~/a is derived from substitution of/1,', 4 ,  
3' in eqns. (8)-(10) into eqn. (7). 
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Figure 2 displays S(kp)la, S'p/a and Sp/a as a function of m for N = 20, 60; 
Q1 = 0.0, 0.3, 0.5; p = 0.50, 0.75, 0.95; and Cv = 0.2, 0.4. Unfor tunate ly  space 
only permits a few selected combinations of the independent variables N, m, Q~ 
and Cv. These combinations are chosen to depict regions in the middle and on 
the edges of the sample space. 

As expected from Table 1 the differences between S(~)/a and Sp/a are gener- 
ally very small; the LN3 distribution provides a reasonable approximation to 
the distribution of S. As to the regression equations, S'p/a provides an excellent 
approximation to Sp/a for all values of N, m, #1 and Cv in Fig. 2. except when 
p = 0.5, N = 20, Q1 ~> 0.3 and rn ~< 0.3 or rn >/ 0.7. These instances raise ques- 
tions as to the precision of S'p/a when one is estimating the median of S with 
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planning periods of length 20. To evaluate the errors in the estimation of Sp/a 
in a more comprehensive fashion, Tables 5 and 6 display the bias in estimates 
of Sp defined as (S'p - Sp) /Sp.  In general, the regression errors tend to increase 
as p decreases because S'p/a depends heavily upon %' for small p and prediction 
errors associated with T, are large, as evidenced by the relatively low R 2 value 
listed in Table 4. 

It is evident from Tables 5 and 6 that  S~ provides a reasonable approximation 
to Sp in the region 0.25 ~< p ~ 0.95, 0.0 ~< m ~ 1.0 and 0.2 ~< Cv ~< 0.4. In fact 
within this region, errors in estimation of Sp using S~ are less than + 8% of the 
value of Sp and usually less than _+ 3%. If an estimate of Sp were required for 
a planning period N = 20, then S~ provides a reasonable estimate of Sp as long 
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B i a s  a s s o c i a t e d  w i t h  r e g r e s s i o n  e s t i m a t e s  o f  Sp w h e n  C ,  = 0 . 2  

Q~ N m (S;  - Sp)/Sp 

p = 0 . 0 5  p = 0 . 2 5  p = 0 . 5 0  p = 0 . 7 5  p = 0 . 9 5  

0 . 0  2 0  0 . 1 0  0 . 0 3 8  0 . 0 3 1  0 . 0 2 3  0 . 0 1 3  - 0 . 0 0 4  

0 . 0  2 0  0 . 5 0  - 0 . 0 1 5  0 . 0 0 4  0 . 0 0 1  - 0 . 0 1 0  - 0 . 0 3 5  

0 . 0  2 0  1 . 0 0  - 0 . 1 9 5  - 0 . 0 4 6  - 0 . 0 0 4  0 . 0 2 7  0 . 0 6 4  

0 . 0  4 0  0 . 1 0  0 . 0 2 3  0 . 0 0 4  - 0 . 0 0 2  - 0 . 0 0 2  0 . 0 0 3  

0 . 0  4 0  0 . 5 0  - 0 . 0 0 5  - 0 . 0 0 9  - 0 . 0 1 1  - 0 . 0 1 2  - 0 . 0 1 2  

0 . 0  4 0  1 . 0 0  - 0 . 0 3 8  0 . 0 3 8  0 . 0 5 2  0 . 0 5 3  0 . 0 3 9  

0 . 0  6 0  0 . 1 0  - 0 . 0 0 4  - 0 . 0 1 1  - 0 . 0 1 3  - 0 . 0 1 2  - 0 . 0 0 8  

0 . 0  6 0  0 . 5 0  0 . 0 0 1  - 0 . 0 0 8  - 0 . 0 1 1  - 0 . 0 1 1  - 0 . 0 0 9  

0 . 0  6 0  1 . 0 0  - 0 . 0 8 0  - 0 . 0 0 6  0 . 0 1 9  0 . 0 3 3  0 . 0 4 1  

0 . 0  8 0  0 . 1 0  - 0 . 0 3 6  - 0 . 0 3 0  - 0 . 0 2 5  - 0 . 0 2 0  - 0 . 0 1 1  

0 . 0  8 0  0 . 5 0  - 0 . 0 0 4  - 0 . 0 0 5  - 0 . 0 0 5  - 0 . 0 0 3  - 0 . 0 0 1  

0 . 0  8 0  1 . 0 0  - 0 . 0 9 7  - 0 . 0 3 9  - 0 . 0 0 9  0 . 0 1 6  0 . 0 4 5  

0 . 0  1 0 0  0 . 1 0  - 0 . 0 6 2  - 0 . 0 4 8  - 0 . 0 3 7  - 0 . 0 2 6  - 0 . 0 0 9  

0 . 0  1 0 0  0 . 5 0  0 . 0 1 5  0 . 0 1 2  0 . 0 1 1  0 . 0 1 0  0 . 0 0 9  

0 . 0  1 0 0  1 . 0 0  - 0 . 1 1 3  - 0 . 0 5 7  - 0 . 0 2 5  0 . 0 0 4  0 . 0 3 9  

0 . 3  2 0  0 . 1 0  0 . 0 7 2  0 . 0 5 9  0 . 0 4 0  0 . 0 1 7  - 0 . 0 2 3  

0 . 3  2 0  0 . 5 0  - 0 . 1 0 6  - 0 . 0 5 1  - 0 . 0 3 8  - 0 . 0 3 3  - 0 . 0 3 5  

0 . 3  2 0  1 . 0 0  0 . 1 0 8  - 0 . 0 4 0  - 0 , 0 3 8  - 0 . 0 2 0  0 . 0 1 7  

0 . 3  4 0  0 . 1 0  0 . 0 2 3  0 . 0 1 8  0 , 0 1 7  0 . 0 1 6  0 . 0 1 7  

0 . 3  4 0  0 . 5 0  - 0 . 0 9 1  - 0 . 0 6 4  - 0 . 0 4 4  - 0 . 0 2 3  0 . 0 0 8  

0 . 3  4 0  1 . 0 0  0 . 0 4 0  0 . 0 3 8  0 . 0 2 9  0 . 0 1 8  - 0 . 0 0 2  

0 . 3  6 0  0 . 1 0  0 . 0 0 5  0 . 0 0 2  0 . 0 0 2  0 . 0 0 4  0 . 0 0 9  

0 . 3  6 0  0 . 5 0  - 0 . 0 6 9  - 0 . 0 4 5  - 0 . 0 3 1  - 0 . 0 1 8  - 0 . 0 0 1  

0 . 3  6 0  1 . 0 0  - 0 . 0 4 0  0 . 0 0 1  0 . 0 1 2  0 . 0 1 6  0 . 0 1 5  

0 . 3  8 0  0 . 1 0  - 0 . 0 1 1  - 0 . 0 1 1  - 0 . 0 0 8  - 0 . 0 0 3  0 . 0 0 7  

0 . 3  8 0  0 . 5 0  - 0 . 0 3 9  - 0 . 0 2 2  - 0 . 0 1 5  - 0 . 0 1 0  - 0 . 0 0 6  

0 .3  8 0  1 . 0 0  - 0 . 0 8 8  - 0 . 0 3 6  - 0 . 0 1 3  0 . 0 0 5  0 . 0 2 4  

0 . 3  1 0 0  0 . 1 0  - 0 . 0 3 1  - 0 . 0 2 5  - 0 . 0 1 8  - 0 . 0 0 9  0 . 0 0 5  

0 . 3  1 0 0  0 . 5 0  0 . 0 0 1  0 . 0 0 5  0 . 0 0 4  0 . 0 0 1  - 0 . 0 0 6  

0 . 3  1 0 0  1 . 0 0  - 0 . 1 2 0  - 0 . 0 6 3  - 0 . 0 3 3  - 0 . 0 0 8  0 . 0 2 3  

0 . 5  2 0  0 . 1 0  0 . 3 1 0  0 . 1 4 1  0 . 0 7 2  0 . 0 1 4  - 0 . 0 6 7  

0 . 5  2 0  0 . 5 0  0 . 0 9 2  - 0 . 0 0 1  - 0 . 0 2 3  - 0 . 0 3 4  - 0 . 0 4 0  

0 . 5  2 0  1 . 0 0  1 . 2 7 0  0 . 0 2 9  - 0 . 0 1 4  0 . 0 0 9  0 . 0 7 7  

0 .5  4 0  0 . 1 0  - 0 . 0 0 7  0 . 0 0 6  0 . 0 0 9  0 . 0 0 9  0 . 0 0 7  

0 . 5  4 0  0 . 5 0  - 0 . 1 0 4  - 0 . 0 6 6  - 0 . 0 4 7  - 0 . 0 3 1  - 0 . 0 0 9  

0 . 5  4 0  1 . 0 0  0 . 2 0 7  0 . 0 7 4  0 . 0 3 6  0 . 0 1 1  - 0 . 0 1 5  

0 . 5  6 0  0 . 1 0  - 0 . 0 3 6  - 0 . 0 1 9  - 0 . 0 0 9  0 . 0 0 1  0 . 0 1 3  

0 . 5  6 0  0 . 5 0  - 0 . 0 6 7  - 0 . 0 4 9  - 0 . 0 3 7  - 0 . 0 2 4  - 0 . 0 0 6  

0 .5  6 0  1 . 0 0  0 . 0 6 8  0 . 0 5 4  0 . 0 3 8  0 . 0 1 9  - 0 . 0 1 3  
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~1 N m (S'p - Sp)/Sp 

p = 0.05 p = 0.25 p = 0.50 p = 0.75 p = 0.95 

0.5 80 O.lO - 0.049 - 0.033 - 0.020 - 0.007 0.013 
0.5 80 0.50 - 0.038 - 0.022 - 0.017 - 0.015 - 0.016 
0.5 80 1.00 - 0.011 0.016 0.018 0.015 0.003 

0.5 100 0.10 - 0.068 - 0.046 - 0.029 - 0.011 0.016 
0.5 100 0.50 0.028 0.018 0.007 - 0.006 - 0.027 
0.5 100 1.00 - 0.070 - 0.022 - 0.005 0.004 0.010 

as 0.3 ~ m ~< 0.7 and  0.25 ~< p ~< 0.95, as ev idenced  by Fig. 2 and  Tables  5 and  
6; o the rwi se  s u b s t a n t i a l  e s t ima t ion  e r ro r s  could occur .  

SUMMARY 

This  s tudy  p resen t s  genera l  ove r -yea r  S t o r a g e - R e l i a b i l i t y - Y i e l d  (S -R-Y)  
r e l a t ionsh ips  in an  ana l y t i c  form. A p p r o x i m a t e  bu t  genera l  express ions  are  
p rov ided  for  e v a l u a t i n g  the  quan t i l e s  of  the  d i s t r ibu t ion  of  ove r -yea r  s to rage  
capac i t y  as a func t ion  of  the  inflow p a r a m e t e r s  #, a 2, Q1, the  demand  level  ~, and  
the  p l a n n i n g  per iod N for  log n o r m a l  inflows. Vogel  (1985) provides  s imi la r  
a p p r o x i m a t e  bu t  gene ra l  S - R - Y  re l a t ionsh ips  for the  case when  inflows are  
n o r m a l  and  bo th  single- and  double-cycl ing  sequen t  peak  a l g o r i t h m ' s  a re  em- 
p loyed  (K = 1 and  2 in eqn. (1)). 

The  S - R - Y  r e l a t i ons  deve loped  he re  a re  des igned to mimic  the  t a sk  of  a 
s tochas t i c  hydro logis t .  A l t hough  these  express ions  a p p e a r  complex,  t he i r  use  
is m u c h  simpler ,  q u i c k e r  and  c h e a p e r  t h a n  the  a l t e r n a t i v e  of  g e n e r a t i n g  syn- 
the t ic  s t reamf low t races ,  r ou t ing  those  sequences  t h r o u g h  the  sequen t  p e a k  
a l g o r i t h m  and  f inal ly f i t t ing the  d i s t r ibu t ion  of  r equ i red  r e se rvo i r  s to rage  
capac i ty .  

F ie r ing  (1963), Svanidze  (1964), Burges  and  Lins ley  (1971), Wal l i s  and  
M a t a l a s  (1972), P e r r e n s  and  Howel l  (1972), L e t t e n m a i e r  and  Burges  (1977a, b) 
Bayaz i t  (1982) and  Vogel  (1985) h a v e  all  examined  p roper t i e s  of  the  S - R - Y  
r e l a t i onsh ip  as a func t ion  of  c o m b i n a t i o n s  of  the  p a r a m e t e r s  N, ~, Cv and Q1. 
Those  s tudies  in add i t ion  to Fig. 2 d o c u m e n t  the  re la t ive  i m p o r t a n c e  of  the  
p a r a m e t e r s  N, m, Q, and  Cv in the  d e t e r m i n a t i o n  of  Sp. Vogel  (1985) and  Vogel  
and  S ted inger  (1986) d o c u m e n t  the  sampl ing  p roper t i es  of  e s t ima tes  of  Sp 
t r e a t i n g  ~, a 2, Q, and  ~ as r a n d o m  var iab les .  In  pa r t i cu la r ,  Vogel  (1985) and  
Vogel  and  S ted inger  (1986) use  the  S - R - Y  re la t ionsh ips  deve loped  he re  to show 
t h a t  e s t ima te s  of  the  des ign capac i t y  of  a r e se rvo i r  us ing  s tochas t i c  s t reamf low 
models  a re  more  prec ise  t h a n  those  ob ta ined  by cr i t ica l  per iod p l ann ing  which  
resu l t s  in a s ingle  e s t ima te  of  the  des ign  capac i ty  based  upon  the  s ingle  h i s tor ic  
s t r eamf low t race .  
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B i a s  a s s s o c i a t e d  w i t h  r e g r e s s i o n  e s t i m a t e s  o f  Sp w h e n  Cv = 0 . 4  

Q, N m (S'p - Sp)/Sp 

p = 0 . 0 5  p = 0 . 2 5  p = 0 . 5 0  p = 0 . 7 5  p = 0 . 9 5  

0 . 0  2 0  0 . 1 0  0 . 0 6 2  0 . 0 4 0  0 . 0 2 5  0 . 0 1 1  - 0 . 0 0 9  

0 . 0  2 0  0 . 5 0  0 . 0 2 5  0 . 0 1 9  0 . 0 0 9  - 0 . 0 0 5  - 0 . 0 2 8  

0 . 0  2 0  1 . 0 0  - 0 . 1 5 4  - 0 . 1 2 6  - 0 . 0 7 3  - 0 . 0 1 4  0 . 0 7 3  

0 . 0  4 0  0 . 1 0  0 . 0 3 1  0 . 0 0 8  0 . 0 0 1  - 0 . 0 0 1  0 . 0 0 3  

0 . 0  4 0  0 . 5 0  0 . 0 0 9  - 0 . 0 0 5  - 0 . 0 0 8  - 0 . 0 0 8  - 0 . 0 0 2  

0 . 0  4 0  1 . 0 0  - 0 . 0 3 8  0 . 0 1 2  0 . 0 2 3  0 . 0 2 7  0 . 0 2 5  

0 . 0  60  0 . I 0  - 0 .002  - 0 .008  - 0 .009  - 0 .009  - 0 .005  

0 . 0  6 0  0 . 5 0  0 . 0 0 3  - 0 . 0 0 9  - 0 . 0 1 1  - 0 . 0 0 8  0 . 0 0 0  

0 . 0  6 0  1 . 0 0  - 0 . 1 0 2  - 0 . 0 2 6  - 0 . 0 0 4  0 . 0 0 5  0 . 0 0 6  

0 . 0  8 0  0 . 1 0  - 0 . 0 3 8  - 0 . 0 3 0  - 0 . 0 2 4  - 0 . 0 1 7  - 0 . 0 0 7  

0 . 0  8 0  0 . 5 0  - 0 . 0 0 3  - 0 . 0 0 5  - 0 . 0 0 4  - 0 . 0 0 1  0 . 0 0 6  

0 . 0  8 0  1 . 0 0  - 0 . 1 1 7  - 0 . 0 5 7  - 0 . 0 3 1  - 0 . 0 1 2  0 . 0 0 7  

0 . 0  1 0 0  0 . 1 0  - 0 . 0 6 2  - 0 . 0 4 8  - 0 . 0 3 6  - 0 . 0 2 3  - 0 . 0 0 3  

0 . 0  1 0 0  0 . 5 0  0 . 0 0 7  0 . 0 1 0  0 . 0 1 1  0 . 0 1 2  0 . 0 1 1  

0 . 0  1 0 0  1 . 0 0  - 0 . 1 3 2  - 0 . 0 7 1  - 0 . 0 4 3  - 0 . 0 2 2  - 0 . 0 0 2  

0 . 3  2 0  0 . 1 0  0 . 1 1 5  0 . 0 8 1  0 . 0 5 2  0 . 0 2 0  - 0 . 0 3 1  

0 . 3  2 0  0 . 5 0  - 0 . 0 3 4  - 0 . 0 1 3  - 0 . 0 0 9  - 0 . 0 1 1  - 0 . 0 1 7  

0 . 3  2 0  1 . 0 0  1 . 2 3 9  - 0 . 1 1 3  - 0 . 1 4 3  - 0 . 0 9 5  0 . 0 1 6  

0 . 3  4 0  0 . 1 0  0 . 0 4 3  0 . 0 3 3  0 . 0 2 7  0 . 0 2 2  0 . 0 1 6  

0 . 3  4 0  0 . 5 0  - 0 . 0 6 0  - 0 . 0 4 0  - 0 . 0 2 2  - 0 . 0 0 1  0 . 0 3 0  

0 . 3  4 0  1 . 0 0  0 . 1 2 0  0 . 0 0 1  - 0 . 0 2 0  - 0 . 0 2 3  - 0 . 0 1 3  

0 . 3  6 0  0 . 1 0  0 . 0 2 0  0 . 0 1 4  0 . 0 1 2  0 . 0 1 1  0 . 0 1 2  

0 . 3  6 0  0 . 5 0  - 0 . 0 4 8  - 0 . 0 2 5  - 0 . 0 1 1  0 . 0 0 2  0 . 0 1 9  

0 . 3  6 0  1 . 0 0  0 . 0 0 5  - 0 . 0 1 2  - 0 . 0 1 6  - 0 . 0 1 7  - 0 . 0 1 7  

0 . 3  8 0  0 . 1 0  0 . 0 0 0  0 . 0 0 0  0 . 0 0 2  0 . 0 0 5  0 . 0 1 1  

0 . 3  8 0  0 . 5 0  - 0 . 0 2 3  - 0 . 0 0 6  0 . 0 0 2  0 . 0 0 8  0 . 0 1 3  

0 . 3  8 0  1 . 0 0  - 0 . 0 7 2  - 0 . 0 4 8  - 0 . 0 3 6  - 0 . 0 2 5  - 0 . 0 1 2  

0 . 3  1 0 0  0 . 1 0  - 0 . 0 2 2  - 0 . 0 1 6  - 0 . 0 0 9  - 0 . 0 0 1  0 . 0 1 1  

0 . 3  1 0 0  0 . 5 0  0 . 0 1 0  0 . 0 1 7  0 . 0 1 9  0 . 0 1 7  0 . 0 1 2  

0 .3  1 0 0  1 . 0 0  - 0 . 1 3 1  - 0 . 0 8 0  - 0 . 0 5 6  - 0 . 0 3 6  - 0 . 0 1 3  

0 .5  2 0  0 . 1 0  0 . 3 5 4  0 . 1 7 3  0 . 0 9 3  0 . 0 2 0  - 0 . 0 8 5  

0 . 5  2 0  0 . 5 0  0 . 1 9 9  0 . 0 5 1  0 . 0 1 3  - 0 . 0 0 6  - 0 . 0 1 9  

0 . 5  2 0  1 . 0 0  4 . 5 6 3  0 . 0 3 7  - 0 . 1 3 7  - 0 . 0 9 5  0 . 0 5 4  

0 .5  4 0  0 . 1 0  0 . 0 2 7  0 . 0 3 1  0 . 0 2 6  0 . 0 1 8  0 . 0 0 3  

0 . 5  4 0  0 . 5 0  - 0 . 0 5 0  - 0 . 0 3 2  - 0 . 0 1 8  - 0 . 0 0 3  0 . 0 2 0  

0 . 5  4 0  1 .00  0 . 4 8 7  0 . 0 2 7  - 0 . 0 3 9  - 0 . 0 4 8  - 0 . 0 2 1  

0 . 5  6 0  0 . 1 0  - 0 . 0 0 8  0 . 0 0 1  0 . 0 0 6  0 . 0 1 0  0 . 0 1 5  

0 . 5  6 0  0 . 5 0  - 0 . 0 3 4  - 0 . 0 2 0  - 0 . 0 0 9  0 . 0 0 3  0 . 0 2 0  

0 .5  6 0  1 . 0 0  0 . 1 7 5  0 . 0 2 4  - 0 . 0 1 3  - 0 . 0 2 9  - 0 . 0 3 6  
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Q, N m (S'p - S p ) I S  v 

p = 0.05 p = 0.25 p = 0.50 p = 0.75 p = 0.95 

0.5 80 0.10 - 0.025 - 0.015 - 0.007 0.003 0.018 
0.5 80 0.50 - 0.012 0.004 0.009 0.010 0.008 
0.5 80 1.00 0.033 - 0.004 - 0.016 - 0.025 - 0.033 

0.5 100 0.10 - 0.050 - 0.031 - 0.016 0.000 0.023 
0.5 100 0.50 0.050 0.041 0.031 0.018 - 0.003 
0.5 100 1.00 - 0.064 - 0.043 - 0.036 - 0.031 - 0.026 

A l t h o u g h  t h e  S - R - Y  r e l a t i o n s  d e v e l o p e d  h e r e  m a y  be  u s e f u l  t o o l s ,  u s e r s  

s h o u l d  b e w a r e  o f  t h e i r  l i m i t a t i o n s .  U s e  o f  t h e  S - R - Y  r e l a t i o n s h i p  is  o n l y  

r e a s o n a b l e  w h e n  e s t i m a t e s  o f  m Q1, Cv a n d  N r e m a i n  w i t h i n  t h e  s p e c i f i e d  

b o u n d s .  T a b l e  5 i l l u s t r a t e s  t h e  p o t e n t i a l  e r r o r s  w h i c h  m a y  a r i s e .  A s  l o n g  a s  

o n e ' s  e s t i m a t e  o f  m is  l e s s  t h a n  u n i t y ,  o n e  m a y  e x p e c t  t h a t  o v e r - y e a r  s t o r a g e  is  

a r e l e v a n t  p r o b l e m .  
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