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Abstract
Sizing storage for rainwater harvesting (RWH) systems is often a difficult design consideration,
as the system must be designed specifically for the local rainfall pattern. We introduce a
generally applicable method for estimating the required storage by using regional regression
equations to account for climatic differences in the behavior of RWH systems across the entire
continental United States. A series of simulations for 231 locations with continuous daily
precipitation records enable the development of storage–reliability–yield (SRY) relations at four
useful reliabilities, 0.8, 0.9, 0.95, and 0.98. Multivariate, log-linear regression results in storage
equations that include demand, collection area and local precipitation statistics. The continental
regression equations demonstrated excellent goodness-of-fit (R2 0.96–0.99) using only two
precipitation parameters, and fits improved when three geographic regions with more
homogeneous rainfall characteristics were considered. The SRY models can be used to obtain a
preliminary estimate of how large to build a storage tank almost anywhere in the United States
based on desired yield and reliability, collection area, and local rainfall statistics. Our
methodology could be extended to other regions of world, and the equations presented herein
could be used to investigate how RWH systems would respond to changes in climatic variability.
The resulting model may also prove useful in regional planning studies to evaluate the net
benefits which result from the broad use of RWH to meet water supply requirements. We outline
numerous other possible extensions to our work, which when taken together, illustrate the value
of our initial generalized SRY model for RWH systems.

Keywords: rainwater harvesting, storage, regional regression, water management, daily rainfall

1. Introduction

In recent years, rainwater harvesting (RWH) has attracted
increased attention for various reasons including its use as an
alternative water supply and for urban water management,
notably control of stormwater. RWH has maintained its
importance as a water source for small scale agricultural

needs and as a primary water source in remote locations in
rural areas and on islands. In the past few decades, RWH has
also become a popular supplemental (and generally non-
potable) water source in urban and suburban areas in a wide
range of climatic and socio-economic environments. The
history of RWH, and evolution of system types, forms, and
objectives has been well covered in the literature (see reviews
by Boers and Ben-Asher 1982, Pandey et al 2003, Basinger
et al 2010).

The elements of design of RWH systems vary according
to the designer’s goals for system performance. A designer
interested in supplying potable water will value reliability, a
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suburban gardener may value the water saving efficiency, and
a stormwater engineer may value capture efficiency. These
disparate objectives and interests have led to the use of dif-
ferent metrics and constraints upon which to assess RWH
system performance, though the physical components of the
system-collection area, conveyance, and storage—remain
largely consistent. In most cases, the most important and
difficult design decision is how much storage capacity to
build. Being unable to change the rainfall pattern in the
location of the planned RWH system, designers focus on the
system components and parameters they can control, namely,
the collection area, storage volume, and demand level. But
rainfall patterns have a strong relationship to the overall
functioning of the system, and a better understanding of the
effect of the rainfall pattern on system performance could
inform system design, notably in sizing storage. While there
is no substitute for a detailed engineering design study at a
given project location, there would be great utility in a sim-
pler and more generally applicable method of preliminary
RWH storage capacity estimation.

1.1. RWH cistern sizing and simulation

RWH sizing approaches vary considerably in approach,
methodology, the type of rainfall data used and the way in
which those rainfall data are used. The simplest sizing
methodologies are based on a simple water balance or a mass
curve analysis (Handia et al 2002). Early versions of these
analyses were performed with monthly rainfall records or
average monthly rainfall (Watt 1978, Keller 1982). Algo-
rithms for simulating the behavior of RWH systems using
monthly rainfall records quickly replaced these methods
(Schiller and Latham 1987). More recently, continuous
simulation methods using daily rainfall records have been
used to explore RWH system behavior (Fewkes 2000, Palla
et al 2011), optimize performance relative to system cost
(Liaw and Tsai 2004), or analyze potential potable water
savings (Ghisi and Ferreira 2007). More detailed models
investigating system performance under a complex demand
pattern (i.e. multiple end uses being used at different times)
have used hourly (Villarreal and Dixon 2005) or even 5 or
6 min rainfall data (Coombes and Barry 2007, Herrmann and
Schmida 2000). Other RWH sizing and simulation approa-
ches use semi-parametric (Cowden et al 2008) or nonpara-
metric (Basinger et al 2010) stochastic precipitation
generators to generate synthetic rainfall series to entirely
replace or fill gaps in rainfall records. Guo and Baetz (2007)
used an analytical approach from stormwater detention theory
using the statistical characteristics of a continuous rainfall
record (event totals, storm durations, and inter-event storm
arrival times) as inputs to generate a complex series of
equations enabling computation of necessary storage.

Ultimately, all of these approaches rely on local pre-
cipitation records, either as a hydrologic input or for com-
puting parameters needed as an input to a stochastic
precipitation model. The studies cited above have investigated
how design parameters (storage volume, collection area,
demand, etc) affect various measures of system performance

(reliability, water saving efficiency, overflow volume), but
relatively little effort has been devoted to determining how
characteristics of a rainfall record, other than mean rainfall,
affect overall RWH system performance. Furthermore, pre-
vious modeling efforts have focused on individual systems in
a particular location, but little effort has been given to the
generalization of approaches for sizing RWH systems across
broad geographic regions that experience significant varia-
tions in climatology.

1.2. Using hydrologic statistics to study system behavior

The first step in being able to determine how characteristics of
the rainfall pattern affect system performance is to describe
the RWH system performance mathematically. Repeated
simulations can generate empirical relationships between the
design parameters and performance metrics to define local
performance curves (Fewkes 1999). Regression approaches
have been used to generate equations relating some system
parameters. Liaw and Tsai (2004) used regressions to define
isoreliability economic tradeoff curves between collection
area and storage volume costs.

Lee et al (2000) developed a regression equation to relate
the major system parameters (irrigation demand, collection
area, storage) and performance (reliability) for a single agri-
cultural RWH site in China. Since only a single site is con-
sidered, the character of the hydrologic input (rainfall) is
effectively built into the regression model. Commenting on
this study, Guo and Baetz (2007) remark, ‘One series of such
simulation modeling and regression analysis would have to be
conducted for each geographical location of interest. The
resulting regression equations would be applicable for only
the locations studied.’ Ironically, Guo and Baetz (2007)
demonstrated analytically that differences in RWH system
performance between locations can be explained by differ-
ences in the statistical parameters of the rainfall sequence.

Our primary hypothesis is that a multivariate regression
framework similar to Lee et al’s might lead to RWH rela-
tionships with greater geographic generality by also including
certain rainfall statistics in the regression. Multivariate
regression has been used to generalize the behavior of
reservoirs based on the statistical parameters of their inflow
sequence. For example, McMahon et al (2007) use regional
regression to estimate theoretical reservoir storage require-
ments for a particular streamflow station by using reservoir
yield, reliability and various annual streamflow statistics as
predictive variables (on a global geographic scale). Regional
regression approaches have also proven useful in estimating
other hydrologic parameters over broad geographic areas,
most notably, streamflow (Vogel et al 1999).

The RWH system is conceptually similar to a surface
water reservoir system fed by a stream, though there are
important differences. Both have a fixed storage capacity, a
characteristic volumetric demand, and a volumetric inflow
determined by natural hydrologic processes. A surface water
reservoir’s inflow is determined by the volumetric flow of its
influent streams that collect rainfall over the contributing
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watershed, which is analogous but more complex than pre-
cipitation falling on a RWH system’s collection area.

The storage–reliability–yield (SRY) framework from
reservoir analysis (Vogel and Stedinger 1987, Vogel and
McMahon 1996, McMahon and Adeloye 2005) may be useful
for RWH studies because it can handle a range water supply
yield and reliability cases. The relationships of the storage
capacity, reliability and demand (yield) variables have been
explored for RWH systems (Schiller and Latham 1987,
Fewkes 2000, Villarreal and Dixon 2005), though not spe-
cifically in a SRY context. Given a daily rainfall record, a
series of behavioural simulations can determine an empirical
SRY relationship, which would provide a starting point for
regression analysis.

Though some similar methodology is used, this study is
significantly different from past regional hydrologic regres-
sion studies for a variety of reasons. Importantly, to our
knowledge this is the first study which seeks to develop
generalized SRY relationships for RWH systems that could
be applied across an entire continent. Our approach, while
analogous to the approach used by others for developing
generalized SRY relationships for surface water supplies fed
by rivers, differs in nearly every aspect. Unlike the early
studies by Vogel and Stedinger (1987) and Vogel and
McMahon (1996) and many subsequent studies summarized
by McMahon and Adeloye (2005), which developed gen-
eralized SRY relationships based on hypothetical, theoretical
inflow series, our approach employs actual rainfall series for
231 locations as inflows to the RWH systems. Similarly,
many previous SRY relationships for surface water reservoirs
incorporate critical assumptions regarding the probabilistic
structure of both reservoir inflows and resulting storage
capacities. Our study of RWH systems does not make any
such probabilistic assumptions. Additionally, while the
watershed area draining to a reservoir or stream gage location
is essentially fixed, the collection area for a RWH system is
an important design parameter, and any regression models
developed should be normalized to collection area such that
collection area can be easily changed.

Our primary goal is to establish a generally applicable,
technically rigorous, and easily applied method for estimating
the required storage for a planned RWH system with user-
specified collection area, and a desired demand and reliability.
Our approach is to use multivariate regression to generate
regional equations relating storage capacity to demand level
at given reliabilities, as well as certain parameters of the
observed daily rainfall sequences to account for climatic
differences across the entire geographic region of the con-
tinental United States.

2. Methods

We simulate RWH systems that collect rainfall from a rooftop
collection area with storage in a closed cistern and constant
daily demand (yield), which may reasonably approximate a
system designed to meet daily toilet flushing and/or other
constant (likely indoor) daily needs. Long records of daily

precipitation data for the 231 locations shown in figure 1
across the continental United States were used to simulate
RWH systems and to generate SRY relationships. Simula-
tions generated sets of points defining a fixed reliability
storage–yield (SY) curve for several useful design reliabilities
(80%, 90%, 95%, and 98%). Then, the SY data were used in a
regional regression approach to obtain generalized equations
for estimating storage for RWH systems using system para-
meters and daily rainfall statistics.

2.1. Simulation of RWH systems

A set of 231 first-order precipitation gages shown in figure 1
from the National Weather Service’s Cooperative Station
Network with high-quality daily records were selected as
hydrologic inputs for simulation. The stations are well dis-
tributed across the continental United States and have a
median record length of 59 years. The Yield-After-Spillage
algorithm, widely used in the RWH literature (Jenkins
et al 1978, Schiller and Latham 1987, Fewkes 1999, Mitch-
ell 2007, Palla et al 2011), is selected for the simulations. We
assume the runoff coefficient of the collection area to be one,
and no first flush is modeled. The precipitation gages report
snow as liquid equivalent, so simulations are continuous even
in sub-freezing conditions impractical for actual RWH
operation.

Each simulation, run for a single combination of yield
and storage, tracks daily storage and whether the daily yield is
met each day. The number of days with failure is recorded,
and used to compute reliability, qt given by

= −q
d

n
1 , (1)t

f

where qt is reliability, df is the number of days with failure to
meet full demand in the simulation, and n is the number of
days simulated. All simulations are run for a unit rainfall
collection area Ac of 1 m2. Additionally, the yield is nor-
malized by the mean daily rainfall of each station to generate
the nondimensional yield ratio α, which describes the average

Figure 1. Map of regional divisions and locations of 231 first-order
precipitation gages used in this study.
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fraction of available water used and is given by

α
μ

= D

A
, (2)

c

where D is the constant volumetric daily demand (L d−1), μ is
mean daily precipitation (mm d−1), and Ac is collection
area (m2).

An algorithm iterated through values of storage until the
desired reliability, qt (e.g. 0.9), was reached for the given
yield ratio α. A set of 20 simulations with α ranging from 0.05
to 0.99 defines a constant reliability curve. The reported
storage volume is normalized to collection area to generate
the physical storage ratio, Sr (3). Though Sr may have any
unit of length (e.g. meter), Sr is expressed here in units of
centimeters, but is more meaningfully understood as m3 of
storage per 100 m2 of collection area.

= ×S K A100 (cm), (3)r c

where Sr is the physical storage ratio, K is total storage
capacity (m3). Storage is expressed in this manner instead of
the dimensionless storage ratio common to reservoir literature
(McMahon and Adeloye 2005), which in this case would
require further dividing by the mean annual rainfall, μ. This
choice was made because collection area is an important
system parameter, and further embedding μ into the definition
of the storage variable would make calculating storage
capacity more cumbersome. Furthermore, this form allows
regressions to be fit to a variable (Sr) free of rainfall para-
meters, meaning rainfall parameters will only be on the right
hand side of the regression, thus avoiding potential spurious
correlation due to rainfall variables common to both sides of
the equation.

The constant reliability curves can effectively describe
the full SRY relationship when plotted. Figure 2 shows a set
of simulated reliability contours generated using precipitation

data from Los Angeles, CA. Figure 3 displays the 0.9 relia-
bility contour from several locations to illustrate the wide
variation in the shape and position of the SY curve between
stations.

2.2. Regression modeling approach

We use multivariate ordinary least squares (OLS) regression
as the method of generalizing the SY relationships across the
entire US. The two goals of the regression modeling are (1) to
determine which precipitation summary statistics most
strongly influence differences in the SRY relationship
between sites, and (2) to develop a generalized predictive
model for estimating required system storage.

The regression equation is of the general form

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅S e X X X Y Y Y... ... , (4)b
2r

a b
m

b c c
n

c
1 1 2

m n1 2 1 2

where Sr denotes the physical storage ratio, Xi, i= 1…m,
describe physical system parameters such as the yield ratio α,
defined in (2) and Yj, j= 1…n, describe local climate statistics.

The model in (4) is log-linear because taking the natural
logarithm of (4) results in

= + + +

+ + +
( ) ( ) ( ) ( )

( ) ( ) ( )
S a b X b X b X

c Y c Y c Y

ln ln ln ... ln

ln ln ... ln . (5)

r m m

n n

1 1 2 2

1 1 2 2

The simulation of the RWH systems kept fixed all of the
major system parameters except storage and demand on the
system. Since storage is the dependent variable of the
regression, the only system parameter (Xi) that needs to be
included in the regression is a representation of demand.
Several expressions of average demand or yield of the system
were investigated, but the yield ratio, α, from (2) was selected
as simplest and most general, and has the benefit of having a
constant domain across stations.

Figure 2. Storage–yield relationship for four reliability contours for a
single station (Los Angeles, CA).

Figure 3. Variability of the Sr–α relationship across stations for the
qt = 0.9 reliability curve.
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One difficulty with using yield ratio, α, is that the iso-
reliability SY curves on which the regressions are based are
highly nonlinear, especially as reliability approaches 1. We
sought to investigate if the Sr–α relationship could be line-
arized to enable application of OLS regression methods. Even
when both variables were logarithmically (base e) trans-
formed, nonlinearity persisted. A single site regression ana-
lysis was performed for all stations to obtain the form of the
regression model describing the relationship between Sr and α
for a constant reliability curve. The model in (6) resulted in a
fit with R2-adjusted above 0.99 for all stations and reliabilities

α= + −( )S b bln [ ln( )] . (6)r
d

0 1

While the model in (6) is no longer log-linear, the
transformation caused by the d parameter can still be incor-
porated into a log-linear model. Replacing ln(X1) in (5) with
[−ln(α)]d, and exponentiation of both sides leads to

= ⋅ ⋅ ⋅ ⋅α⋅ −S e e Y Y Y... . (7)r
a b c c

n
c( ln( ) )

1 2
d n1 1 2

Equation (7) relates Sr, α, and some precipitation para-
meters that will be determined via regression analysis. The
precipitation statistics investigated in the regressions include
standard statistics calculated from the full record of daily
precipitation depths, and also from the wet-day series (left
censored to remove zero and trace values). Also included is
the lag-1 serial correlation (autocorrelation) coefficient, ρ,

along with a transformation (1 + ρ)/(1− ρ) familiar to reser-
voir analysis (see Phatarfod 1986, and Vogel and McMa-
hon 1996 for two independent derivations of this
transformation).

These parameters were added to the regressions using a
staged regression analysis to determine how the addition of
each parameter improved the overall goodness-of-fit.
Regression models were developed for each reliability case
using all stations in the study region. Then, the stations were
broken down into three regions (divided along major river
basin boundaries) shown in figure 1 to see how regressions
might improve. Table 1 displays the average precipitation
characteristics of the regions, and all stations.

3. Results

An effort was made to make the resulting models as simple as
possible, by adding relatively few precipitation parameters.
An initial search was performed on the precipitation variables
to determine which had the most explanatory power in a
single parameter regression. Using the data from all stations
for the 90% reliability case, the transformation in (6) was
applied, with d= 0.667 resulting in the highest goodness-of-
fit. In each case shown in table 2, the following model con-
taining the transformed α and a single precipitation

Table 1. Average precipitation characteristics of the three regions, and all US stations.

Region
Stations

(n)
μy Mean
(mm yr−1)

10th percent.
(mm yr−1)

90th percent.
(mm yr−1) Cv ρ P(x= 0)

μw
(mm d−1)

σw
(mm) Cvw

East 97 1094 835 1382 0.229 0.114 0.648 8.71 12.2 1.50
Midwest 82 757 381 1327 0.280 0.145 0.740 7.91 11.9 1.36
West 52 417 159 984 0.268 0.225 0.780 4.94 6.7 1.42
All US 231 820 292 1329 0.256 0.150 0.710 7.58 10.8 1.40

Notes: μy denotes the mean annual rainfall of the stations, shown with the 10th and 90th percentiles of the stations in each region. Cv denotes the coefficient of
variation, ρ denotes lag-1 correlation of daily rainfall depth, and P(x =0) denotes the daily probability of zero rainfall. μw, σw, and Cvw denote the mean, standard
deviation and coefficient of variation, respectively, of the daily wet-day rainfall series.

Table 2. Goodness-of-Fit of regressions (adjusted R2), and T-ratio for a single precipitation parameter model (8) with regression coefficients
for the 90% reliability case.

Coefficients

Parameter, Y Description R2 adj. T-ratio for Y a b c

σw Standard deviation, wet-day 91.3 57.42 0.4056 −2.307 0.7867
μw Mean, wet-day 91.1 55.47 0.6987 −2.307 0.7801
x0.5, w Median, wet-day 89.8 46.15 1.434 −2.307 0.6706
σ Standard deviation 89.0 40.46 2.581 −2.306 0.5395
(1 + ρ)/(1− ρ) Transformation of ρ 87.7 31.33 1.693 −2.306 1.713
ρ Serial correlation coeff., lag-1 87.2 27.14 3.312 −2.306 0.5599
μ Mean 87.0 25.56 2.021 −2.305 0.2936
Cv Coefficient of variation 85.5 10.76 1.763 −2.305 0.3898
P(x= 0) Dry day probability 85.5 10.56 2.447 −2.305 0.6727
γ Skewness 85.3 6.65 1.818 −2.305 0.2171
Cvw Coeff. of variation, wet-day 85.3 7.07 1.986 −2.305 0.6356
κ Kurtosis 85.2 5.6 1.869 −2.305 0.0840
γw Skewness, wet-day 85.2 −3.92 2.415 −2.305 −0.1653
κw Kurtosis, wet-day 85.1 −3.15 2.367 −2.305 −0.0521
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parameter, Y, was fit to the data:

= ⋅ ⋅α⋅ −S e e Y . (8)r
a b c( ln( ) )0.667

The resulting regression coefficients and adjusted R2

values are also reported in table 2, along with the T-ratio for
the precipitation parameter Y. The parameters described with
a subscript ‘w’ indicate the parameter is calculated from the
wet-day record. All others are calculated from the full record
daily rainfall series (depth expressed in mm).

Table 2 orders precipitation parameters from highest
adjusted R2 to lowest, indicating that of the precipitation
statistics considered, σw and μw have the most explanatory
power. We note that μ is embedded in the definition of α (see
equation (2)), so using it in regression models might introduce
concerns over multicollinearity. However, the recent experi-
ments performed by Kroll and Song (2013) document that
in situations when the model form is unknown, as is the case
here, it is reasonable to employ the multivariate OLS
regression methods used here, even in the presence of mul-
ticollinearity, and especially considering the large samples
used to develop these models. In any case, several parameters
outperform μ.

Table 3 illustrates the best regressions with two pre-
cipitation statistics included, for all four reliability cases,
when all stations are included. All of the regressions in table 3
take the form of (9), with σw and (1 + ρ)/(1− ρ) as the two
precipitation parameters

σ= ⋅ ⋅ ⋅α⋅ − ρ
ρ

+
−( )S e e . (9)w

c
r

a b
c

( ln( ) )d1 1 1
1

2

Regression models using three precipitation parameters
were investigated, but the small improvement in goodness-of-
fit did not justify the added complexity. Additionally, the
model coefficient for the third precipitation variable was often
less significant than the regression constant, a, as measured by
its T-ratio. Figure 4 compares the predicted versus simulated
values of Sr for the four models summarized in table 3.

Table 4 summarizes the regression coefficients and fits
for the three regions for each reliability case. The East,
Midwest, and West regions use regression equations (9)–(11),

respectively

σ= ⋅ ⋅ ⋅α⋅ −S e e C , (10)r
a b

w
c

v
c( ln( ) )d1 1 2

μ= ⋅ ⋅ ⋅α⋅ − ρ
ρ

+
−( )S e e . (11)w

c
r

a b
c

( ln( ) )d1 1 1
1

2

In general, the three regional regression models sum-
marized in equations (9)–(11) and table 4 perform somewhat
better than the regressions based on all 231 stations, espe-
cially the East and Midwest.

4. Discussion

4.1. Significance of parameter selection

The high R2 values (0.96–0.99) associated with these
regression equations show that including a few relatively
simple daily rainfall statistics can generate surprisingly
accurate equations for estimating required storage for RWH
systems across broad geographic and climatic regions. Even
though the precipitation data set includes a wide range of
climate types, the regression equations explain much of the
difference in the Sr–α relationships between sites with only a
few rainfall statistics added to the model.

The most useful rainfall parameter appears to be the
standard deviation of the wet-day series of daily rainfall
depth. The coefficients for σw are positive in all of the
regression equations presented, so required storage increases
as σw increases. These results are in accordance with an
intuitive understanding of how RWH systems respond to
rainfall parameters. Given an average rainfall depth for a site,
the minimum storage volume for a RWH system would be
achieved if local rainfall delivered exactly the average rainfall
depth on every day. As rain does not fall every day, the
minimum storage would be achieved if the rainy days were
evenly spaced, and all rainy days had equal rainfall depth.
Increasing variability in either the wet-day precipitation depth
(i.e. σw or perhaps more precisely Cvw), or the relative length
of dry and wet spells (i.e. increasing autocorrelation) increa-
ses the storage volume. Vogel and McMahon (1996) show
that (1 + ρ)/(1− ρ) is effectively a factor which accounts for
the inflation in the variance of a sample mean due to serial

Table 3. Regression coefficients for equation (9) for the four reliabilities, and measures of regression performance including: variance
inflation factor (VIF), standard error (SE), adjusted R2 (R2 adj.), as well as T-ratios for the parameters.

Regression coefficients

Reliability a b c1 c2 d Max VIF SE R2 adj.

0.80 coeff. −0.778 −2.309 0.971 2.514 0.667 1.064 0.247 0.966
T −31.1 −340.5 109.7 85.1 — — — —

0.90 coeff. 0 −2.566 0.958 2.599 0.642 1.064 0.254 0.977
T — −360.5 238.1 102.2 — — — —

0.95 coeff. 0.762 −2.934 0.952 2.433 0.577 1.064 0.247 0.971
T 30.1 −371.2 105.6 80.7 — — — —

0.98 coeff. 1.768 −3.552 0.938 2.177 0.483 1.063 0.266 0.969
T 64.1 −361.1 97.3 66.8 — — — —
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correlation of a series. Thus, this factor is closely related to
the variance of the wet-day series, which may indicate why it
was a helpful addition to the regional regressions.

When considering three sub-regions of the United States,
the regression fits improved, presumably due to greater
homogeneity in overall hydroclimatic characteristics, espe-
cially mean precipitation depth (see table 1), but parameter
selection did vary between regions. The most powerful pre-
cipitation parameters in a regression will be those that best
explain differences in the behavior of RWH systems between
locations. For example, the West regression models showed a
preference for μw over σw, which indicates that the wet-day
mean rainfall was being used to explain differences in system
behavior. This finding may be indicative of the wide climatic
variation in the sample of West stations.

4.2. Use of regression equations and caveats

Some significant caveats should be considered when using
these equations to estimate storage size of RWH system.
Notably, the simulation methodology assumed constant daily
demand, perfect collection efficiency, and no first flush
device. Furthermore, the expression of time-based reliability
indicated only the percentage of failure days within the entire
record, but not the distribution of those failure days within the
simulation period, or a particular period or season of interest.
On the other hand, the time-based reliability is more con-
servative than volume-based reliability given constant daily
demand. Extra caution should be exercised in using the results
of the regression as α approaches 1 due to the extreme cur-
vature of the SY curves.

100
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Figure 4. Predicted RWH Storage capacity (Sr,pred) versus simulated (Sr,sim) values for the four reliability models summarized by equation (9)
and table 3 based on all 231 precipitation stations.
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Although the resulting equations were developed over
very broad climatic and geographic regions of the United
States, we do not recommend use of these equations outside
the range of climatic characteristics summarized in table 1, or
areas with climates considered extreme for the region (e.g.
microclimates). It is always dangerous to extrapolate statis-
tical models outside the range of variables used for their
calibration. In that case, simulation methods to generate a set
of local performance curves would be preferred. The regres-
sion equations presented may be potentially applicable in
other geographic regions with similar latitudes or climates if
climate characteristics are similar to those in table 1. Devel-
oping new regressions for other areas would be preferable, of
course. Site selection for any future regional regressions
should likewise take care not to include sites with micro-
climates or climates aberrant from the general character of the
region.

In most cases, many of these limitations and caveats
raised here may be remedied or at least addressed by choosing
an appropriate factor of safety in selecting the storage volume.

5. Validation and sample calculation

In order to validate the regression models, an example com-
pares predicted SY curves to simulated SY curves for a sta-
tion not included in the development of the model. The
station selected is Spartanburg 3 SSE in Spartanburg, South
Carolina, which has a 30 yr daily precipitation record, and
mean rainfall of 3.37 mm d−1 (1232 mm yr−1). The simulated
RWH system has a collection area of 100 m2. Based
equation (2), with Ac= 100 m

2 and μ= 3.37 mm, the max-
imum supportable demand (α = 1) is 337.3 l d−1. Additionally,
ρ = 0.123, and σw= 15.5 mm. Figure 5 presents the simulated
SY curves for the four reliabilities for this particular station as

dashed lines for comparison with the results based on two
different regressions. Using the values of μ, σw, ρ, Ac, the
values of storage capacity, K, were computed from the full US
and East (Spartanburg’s region) regression models for a wide
range of α values for each reliability case.

In general, there is strong agreement between the simu-
lated and predicted SY curves, and the East regression model
outperforms the US model in most cases. In this particular
validation, the predicted values are often slightly higher than
the simulated values, but if another station were used in a
validation, this may not be the case.

Now, consider a specific design case. Suppose the pro-
posed system is used to meet toilet flushing needs with con-
stant daily demand, D = 150 l d−1. Using equation (2) with
mean daily rainfall of 3.37 mm d−1, the yield ratio is

α =
×

=150

100 3.37
0.44. (13)

With this value of α from (13) and the rainfall parameters
ρ and σw, equation (9) can be used to calculate Sr using the
coefficients in table 3 (US model) or 4 (East region model) for
any of the four reliability cases. The regression equation
output is expressed as Sr, which must be converted to storage
capacity, K (m3) using equation (3), though in this case with
Ac= 100, K = Sr. Alternatively, K can be calculated directly by
substituting (3) into (9), resulting in:

σ= ⋅ ⋅ ⋅ ⋅α⋅ − ρ
ρ

+
−( )K

A
e e

100
. (14)c a b

w
c

c
( ln( ) )d1 1 1

1

2

Suppose the designer desires a reliability between 90%
and 95%. Using the given rainfall statistics, collection area,
demand, and appropriate regression coefficients from tables 3
and 4, values K are shown in table 5 for both the simulation
and the two regression models.

Given the results in table 5, the designer can roughly
estimate required storage as between 2.6 and 4 m3. For final
system sizing, a more detailed engineering study is of course
recommended.

6. Summary: conclusions, recommendations and
extensions

6.1. Conclusions

Determination of the required storage for a RWH system
often presents a difficult design challenge. This study con-
sidered the problem of how to simplify the calculation of
storage capacity by incorporating the information about RWH
systems provided by a very wide range of simulation
experiments across a very broad range of climatic conditions.
Considering a RWH system as a storage reservoir, a daily
RWH simulation model was used to develop generalized
empirical SRY relationships at the 231 US locations shown in
figure 1. To our knowledge, this is the first example of such a
generalized RWH SRY relationship based on a continental
dataset of precipitation measurements.

Figure 5. Simulated and regression model predicted SY curves for
Spartanburg, SC, four reliabilities.
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We hypothesized that differences in SRY relationships
for RWH systems between stations could be explained by
daily rainfall statistics, which make possible a generalized
regression model capable of calculating required storage
anywhere in the study area (continental United States). We
show that by including daily rainfall statistics along with
RWH system parameters into a multivariate log-linear
regression framework can lead to a surprisingly powerful
generalized SY equation at several useful reliabilities. Addi-
tionally, the regression analysis can highlight which char-
acteristics of the rainfall distribution (other than the mean)
most strongly affect RWH performance. Notably, standard
statistics of the wet-day rainfall series had considerable
explanatory power in the regressions, including its mean and
standard deviation, μw and σw, respectively.

The regression models presented can be used to obtain a
preliminary estimate of how large to build a storage tank
based on desired yield and reliability, collection area, and
local rainfall statistics. Since the climatic variables selected
are relatively easily calculated with even incomplete daily
precipitation records, the equations may be useful to wide
range of users in estimating required storage. The rainfall
statistics may be obtained from maps in regions with sparse or
no rainfall data. Pooling of rainfall data from maps and
localized short records to obtain blended estimators of rainfall
statistics for use with our models may also prove useful.
Mapped rainfall parameters would also allow using the
equations to map storage requirements across a region.

Our framework could be extended to incorporate more
RWH system design parameters, or test a broader set of
precipitation statistics. One way would be to run many

simulations with different values for runoff coefficients, first
flush volume, and include those parameters in regression
models. Incorporation of a broader set of daily rainfall sta-
tistics into the analysis could lead to improved regressions,
but ease of calculation is an important consideration. Notably,
measures of the variance of rainfall and measures of timing
and/or seasonality may slightly improve regression fits, but
substantial improvements are unlikely. Some initial tests
indicate that the scale parameter of the Pearson-III distribu-
tion fitted to the full record series may slightly outperform σw
(with which it is highly correlated).

6.2. Recommendations and extensions

There are a number of useful extensions to the generalized
SRY relationships for RWH systems introduced here which
we describe below. When taken together, the following
extensions outline a research program with numerous benefits
which would be difficult without the model developed here.

Within the context of water resource systems design and
management, the derived RWH relationship could be used to
optimize the operation, management and design of RWH sys-
tems. The regression equations could be used in planning studies
which seek to examine cost-supply tradeoffs in urban settings, or
evaluate the benefits of additional household water supply in
rural areas or areas underserved by water infrastructure.

The expressions introduced here are useful for evaluating
the impact of climate change on the performance (the reliability
and/or yield) of existing or proposed RWH systems given
expected changes to daily rainfall pattern. To the extent that
downscaled climate models can predict changes in the daily
precipitation distribution, regional regressions of this form could
help predict changes in storage and/or RWH system yield under
changing climate conditions. In that case, simpler models using
only parameters that can be easily computed from climate model
outputs may be attractive and effective.

Another natural extension would be to use the resulting
SRY model to derive confidence intervals for estimates of the
storage capacity or yield of RWH systems, using the meth-
odology outlined in the analogous companion paper by Kuria

Table 4. Regressions and fits for the three regional regression models, each for four reliabilities.

Regression coefficients

Region Reliability a b1 c1 c2 d Max VIF SE R2 adj.

East 0.80 −1.106 −2.168 1.054 2.253 0.675 1.286 0.129 0.989
East 0.90 −0.289 −2.694 1.062 2.818 0.589 1.288 0.151 0.988
East 0.95 0.567 −3.221 1.047 2.934 0.516 1.290 0.165 0.987
East 0.98 1.640 −3.735 0.932 3.176 0.468 1.248 0.222 0.979
Midwest 0.80 −0.539 −2.499 0.771 0.967 0.655 1.016 0.183 0.982
Midwest 0.90 0.330 −2.618 0.714 0.931 0.669 1.006 0.189 0.983
Midwest 0.95 0.885 −2.831 0.744 0.896 0.630 1.010 0.179 0.985
Midwest 0.98 1.749 −3.332 0.779 0.779 0.537 1.016 0.202 0.982
West 0.80 −0.831 −2.208 1.570 1.185 0.696 2.583 0.272 0.965
West 0.90 −0.124 −2.288 1.431 1.481 0.695 2.608 0.240 0.974
West 0.95 0.812 −2.631 1.054 2.068 0.613 1.463 0.243 0.973
West 0.98 1.814 −3.211 1.033 1.783 0.505 1.489 0.248 0.974

Note: Use (9) for East, (10) for Midwest, and (11) for West.

Table 5. Simulated and calculated storage K (m3) for sample location
with Ac= 100 m

2, 90 and 95% reliability cases for demand of
150 l d−1.

Reliability qt K simulation K East model K US model

0.90 2.43 2.55 2.78
0.95 3.46 3.56 3.94
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and Vogel (2014, this issue). Kuria and Vogel (2014, this
issue) develop and apply generalized SRY relationships for
surface water supply reservoirs fed by rivers, based on a
global dataset of rivers, to derive the variance and confidence
intervals of estimates of water supply yield and to quantify the
length of streamflow record needed to secure a stable and
secure water supply yield. Such analyses applied to RWH
systems could prove useful for quantifying the value of
rainfall records in data sparse regions.

This was an initial effort to develop generalized SRY
relations for RWH systems, with many possible extensions.
Whereas this study focused on determining the most expla-
natory precipitation statistics, future simulation approaches
could model a RWH system with more realistic design
parameters such as lower runoff coefficients, first flush
devices, evaporative losses, delayed snowmelt, etc, to create
more useful regressions for design. Investigating the effect of
more complex demand patterns (e.g. for a RWH system
designed for irrigation or stormwater control) on system
performance could also be fruitful. Further work on gen-
erating a single regression equation capable of predicting
storage at any desired reliability would be the final step
toward a truly generalized SRY relationship, though there are
significant difficulties in handling the nonlinearities of the
SRY surface in a single regression model.

Perhaps the most natural and obvious extension to this
initial study would be to extend our approach to other regions
of the world, especially where RWH is an important source of
water, either primary or supplemental, for both potable and
non-potable uses. In summary, we highlight the singular
nature of this study measured by both the value of the RWH
model developed here combined with the numerous fruitful
areas of future research which we have outlined.
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