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Abstract
Understanding the reliability and uncertainty associated with water supply yields derived from
surface water reservoirs is central for planning purposes. Using a global dataset of monthly river
discharge, we introduce a generalized model for estimating the mean and variance of water
supply yield, Y, expected from a reservoir for a prespecified reliability, R, and storage capacity, S
assuming a flow record of length n. The generalized storage–reliability–yield (SRY)
relationships reported here have numerous water resource applications ranging from preliminary
water supply investigations, to economic and climate change impact assessments. An example
indicates how our generalized SRY relationship can be combined with a hydroclimatic model to
determine the impact of climate change on surface reservoir water supply yields. We also
document that the variability of estimates of water supply yield are invariant to characteristics of
the reservoir system, including its storage capacity and reliability. Standardized metrics of the
variability of water supply yields are shown to depend only on the sample size of the inflows and
the statistical characteristics of the inflow series.
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1. Introduction

Without a surface water reservoir system, surface water
supplies must be drawn directly from the river. Such systems
have water supply yield reliabilities which depend solely on
the natural variability of the river and thus, such systems are
subject to long periods of drought when river discharges fall
below expected yields. Surface water reservoirs are designed
to increase both the water supply yield and its associated
reliability, while simultaneously providing downstream eco-
logical flow releases among other benefits. Surface water
reservoirs have been constructed all over the world for con-
trolling water supply variability and plans are still underway
to develop more reservoirs especially in developing countries.
Due to natural variability of streamflows which is expected to
increase due to climate change and variability, combined with

the often short streamflow records available for the design of
reservoirs, it remains unclear how well such reservoirs will be
able to ensure the delivery of prespecified water supply yields
with the desired reliabilities. Efforts to control the variability
of streamflow by constructing reservoirs will only be met with
success if engineers, planners and managers understand the
resulting variability of water supply yields and reliabilities,
which is the topic of this study.

In the design of water supply reservoirs, the storage–r-
eliability–yield (SRY) relationship is the tool that has tradi-
tionally been used to determine the size of the storage
reservoir required for delivery of a water supply yield with a
given reliability or the water supply yield that can be supplied
from an existing or proposed reservoir with known storage
capacity. Behavior analysis (BA) is the simulation method
that has been widely used to develop such an SRY relation-
ship (see McMahon and Adeloye 2005, p 86). Using BA, the
minimum reservoir storage capacity required for delivery of a
specified yield with a given reliability is determined by trial
and error. For a given water supply yield and reliability of the
reservoir, an initial estimate of the reservoir capacity, S, and
the initial water content of the reservoir is assumed. Routing
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of the complete historical streamflow record (or synthetically
generated streamflows) while accounting for all the necessary
outflows which may include: water supply, evaporation,
seepage losses, minimum downstream releases and other
operations is then accomplished using a reservoir simulation
model. The reliability of the yield delivered by that reservoir
is then estimated. If the reliability is unsatisfactory, S is
adjusted iteratively until the chosen S meets the required
reliability for a given yield. A variant of the BA approach that
has been widely used in the USA and elsewhere is the mass
curve (Rippl 1883) or its automated equivalent sequent peak
algorithm (SPA) introduced by Thomas and Burden (1963).
The SPA assumes failure free (100% reliable) reservoir
operations over a prespecified planning horizon which is often
based on a historical record of inflows. During future plan-
ning periods, inflows into the reservoir are likely to be wetter
or drier than the historical record indicates, thus the actual
reliability of reservoirs designed using the SPA approach
remain unknown.

Use of simulation procedures to derive the steady-state
SRY relationship is computationally intensive because a
stochastic streamflow model and a reservoir simulation model
must be combined and implemented repeatedly, using thou-
sands of Monte Carlo experiments. Attempts have been made
to develop generalized SRY relations that can be used to
mimic the results of such Monte Carlo experiments based on
the use of a stochastic streamflow models combined with a
simple reservoir simulation model. The generalized SRY
relationships introduced previously were designed to estimate
the reservoir storage capacity S. Such SRY relations are based
on the hydrologic characteristic of the inflows into the
reservoir, prespecified water supply yield and reliability of the
reservoir yields. This study introduces SRY relationships
suited for estimation of the water supply yield Y, given a
prespecified storage capacity and reliability.

Understanding the variability of reservoir water supply
yield estimates is fundamental for water resource planners in
evaluating the ability of reservoirs to protect against future
droughts. Here we introduce a generalized global SRY model
for estimating reservoir yields and we further employ that
model to document the variability of the water supply reser-
voir yield estimates for a wide class of reservoir systems. In
addition we illustrate how the resulting yield model can be
used to evaluate the sensitivity of water supply reservoir
yields to potential future climate change.

2. Literature review

Several studies have developed generalized SRY relationship
for reservoirs fed by synthetic inflows generated from a sto-
chastic streamflow model combined with a routing method
(see Pegram 1980, Vogel and Stedinger 1987, Bayazit and
Bulu 1991, Phien 1993, Bayazit and Önöz 2000, among
others). Such ‘theoretical’ generalized SRY models are lim-
ited for use with systems where the stochastic nature of the
annual streamflows is well approximated by the particular
theoretical model assumed during the development of the

SRY model. Fewer studies have used actual streamflows to
develop such generalized SRY models as is the case here,
such as Adeloye et al (2003), McMahon et al (2007b),
Adeloye (2009a, 2009b), and Silva and Portela (2012).
However, a review of literature by Kuria (2014) revealed that
none of the existing generalized SRY relationship are suited
for estimating the yields expected from a water supply storage
reservoir. For example, solving the generalized SRY rela-
tionship introduced by McMahon et al (2007b) for water
supply yield, often results in yield ratios (yields divided by
the mean of the streamflows) that are greater than unity. Yield
ratios greater than unity are simply not feasible in practice.
One of our goals is to develop a generalized SRY relationship
that can be used to estimate water supply yields using the
global database of monthly streamflow observations
employed by McMahon et al (2007b).

In the design of surface water reservoirs using SRY
relationships, the yield is often assumed constant. However
actual water supply yields are random variables. This is due to
natural hydrologic variability combined with our limited
knowledge of that hydrologic variability (sampling varia-
bility) resulting from the limited lengths of streamflow
sequences available for applying SRY relationships in prac-
tice. In addition, future inflows into the reservoir are likely to
differ significantly (i.e. to be wetter or drier) from the his-
torical flows. Thus one can expect that estimates of storage,
yield and/or reliability are all random variables which are
subject to considerable variability due to limited knowledge
of future hydrologic conditions which govern the SRY rela-
tionship. Considering the importance of water supply plan-
ning in the context of surface water reservoirs, remarkably
few studies have attempted to document the sampling varia-
bility of storage, yield and reliability estimates of reservoirs.
We could only find a few such studies by Phatarford (1977),
Klemes (1979), Vogel and Hellstrom (1988) and Vogel and
Stedinger (1988), and and yet, none of those studies con-
sidered the uncertainty in estimates of water supply yield.
Instead those studies evaluated the instability of SRY rela-
tionship of specific systems focusing on the variability of
estimates of storage and reliability. What is missing from the
existing literature is a rigorous and general evaluation of
water supply yields for a wide range of reservoir systems
subject to the type of hydrologic variations and conditions
expected anywhere in the world. Our goal in this paper is to
document the variability of water supply yield estimates.

Generalized SRY relationships developed here and by
others are approximate, and are not intended to replace, the
more computationally intensive and complex sequential
simulation approaches used in reservoir feasibility, design and
operations studies. Instead, they are more suitable for a range
of preliminary water supply management and planning pur-
poses described below.

Generalized SRY relations provide water resource plan-
ners and managers with a useful tool for improving their
understanding of the general behavior of relationships among
storage capacity, reliability and the water supply yield of
reservoirs. Since generalized SRY relationships can represent
the behavior of an extremely wide range of reservoir systems
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they have been used for numerous other purposes which we
summarize here, and in addition we discuss some new
applications which have not yet been attempted. Vogel and
Stedinger (1988) used generalized SRY relations developed
by Vogel and Stedinger (1987) to illustrate the value of sto-
chastic streamflow models in the design of water supply
reservoirs and to document the variability of estimates of
reservoir storage capacity based on short streamflow records.
Vogel et al (1999b) use generalized SRY relationships to
explore the behavior of thousands of actual storage reservoir
systems across the continental United States. Vogel et al
(1997, 1999b, 2001), Lane et al (1999) and Brown et al
(2012) used generalized SRY relationships to explore the
impact of climate change on reservoir system performance.
Many other applications of generalized SRY relationships are
possible which have not yet been attempted. For example,
SRY relationships could be used to determine the optimal
storage capacity of a reservoir subject to particular constraints
on water supply yield, instream flow requirements and relia-
bility. Similarly, generalized SRY relationships could be used
for the regional economic assessment of adding reservoir
storage infrastructure to a region for the purposes of providing
a more secure and stable water supply yield under future
projections of water supply demands combined with addi-
tional uncertainties arising from potential climate change.

3. A global SRY relationship for water supply
reservoirs

We used the same global dataset that was used by McMahon
et al (2007b) which consisted of monthly streamflow series
from 729 unregulated rivers all of which had at least 25 years
of monthly streamflow data (see their figure 1 for the spatial
coverage of the dataset). Of critical importance to the use of
any empirically derived SRY relationship are the ranges of
the variables used in the development of the model. Here, the
range of values of annual streamflow statistics were: mean
annual runoff μ [0.373, 5370] in mm; coefficient of variation
of streamflow Cq, [0.0619, 2.97], and coefficient of skewness
ɣ, [−2.22, 6.14]. For each of the 729 unregulated series of
monthly streamflows, required storage capacities for

hypothetical reservoirs were determined using the BA routing
method for delivery of standardized yields in the range
0.3–0.8 in increments of 0.1 and with monthly reliabilities of
0.9, 0.95 and 0.98. A total of 12 413 estimates of reservoir
storage estimates were generated and form the dataset
employed in the development of our global SRY model.
Iteratively reweighted least squares (IRLS) regression (see
Mosteller and Tukey 1977, and Helsel and Hirsch 2002 for a
description of IRLS) was then used to develop the SRY
model with yield as the dependent variable. IRLS was used to
minimize the impact of outliers thus producing a more robust
regression model.

Using the global dataset of monthly streamflows to
develop an SRY model with yield as the dependent variable
led to the model:

Y S Z0.651 , (1)R
0.203 0.306 1.135 0.342 0.017μ σ γ= − −

where Y is the yield, μ, σ and γ are the mean, standard
deviation and skewness coefficient of the annual inflows, all
of which have units in millions of m3 per year and S is storage
capacity with units of millions of cubic meters. Here ZR is the
standardized normal variate with R equal to the reliability.
(For example, a system with reliability R= 0.95 corresponds
to a value of ZR= 1.645). The values of all the model coef-
ficients are stable and their signs are consistent with our
theoretical expectations. All the model coefficients are sta-
tistically significant with the smallest value of the t-ratio being
17.01. Thus the model coefficients in (1) are extremely pre-
cise with all p-values<0.00001. The adjusted and predicted R
squared are 99.2 and 99.17 respectively. This indicates both
high explanatory and predictive power of the model with no
observations exerting unusual influence (see Helsel and
Hirsch 2002, for definition of influence). The variance infla-
tion factors (VIFs) for the explanatory variables mean μ, and
standard deviation σ, were greater than ten which indicates
multicollinearity between these two random variables. How-
ever given the extremely high goodness-of-fit associated with
this model, combined with the large sample size used to
create the model (sample size = 12 413), concerns over the
high values of VIF are not warranted here (see Kroll and
Song 2013). Figure 1 illustrates the goodness-of-fit of pre-
dictions of the yield model by comparing the actual yields to
the predicted yields showing little or no bias. See Kuria
(2014) for further cross validation analyses of this model.

There are numerous caveats associated with the gen-
eralized SRY relationships introduced here. Importantly, we
ignored reservoir evaporation and seepage in the development
of the SRY relationships, though in practice, estimates of such
losses can be integrated into the yield requirements. In
addition, seasonal variability in demand, flood control
operations, and other operational factors that affect real-world
reservoir yields were not considered. Finally, the relationships
are based on regression so that their application should be
limited to the range of values of the SRY and streamflow
discharge statistics considered in their development. Those
variable ranges are reported above. This is particularly
important within the context of studies which explore the

Figure 1.A comparison of actual water supply yields (m3 yr−1) to the
yields predicted from equation (1) for the 12 413 cases considered in
the development of the model.
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impact of future climate change on water resources. Users of
regression equations must always remain cognizant of danger
of extrapolation of such relationships outside the bounds of
the variables considered in their development.

4. Variability of reservoir water supply yield
estimates

In this section, Monte Carlo experiments were performed to
document the variability of water supply yield estimates
derived from equation (1). Synthetic streamflows generated
from a gamma (GAM) distribution were used to capture an
extremely broad range of possible hydrologic conditions. The
GAM distribution has broadly been recommended for
approximating the probability distribution of annual stream-
flows in previous studies (see Markovic 1965, Vogel and
Wilson 1996, McMahon et al 2007a, 2007b and others
reported therein). Reservoir inflows were characterized by
their first two moments of mean, μ= 1 and coefficient of
variation, Cq = 0.5,1, and 2. A total of 200 000 synthetic
streamflows traces each of length, n= 10, 20, 30 … 100 were
generated. The values of Cq were selected so as to be in the
range of streamflows considered in the development of the
yield model as well as to capture the streamflow variability
observed globally (see McMahon et al 2007b). To mimic
what a hydrologist would do in practice, sample estimates of
the mean, standard deviation and skewness of annual
streamflows were then obtained from each of the 200 000
synthetic streamflow traces. The sample statistics were then
used in the yield model (equation (1)) to produce 200 000
yield estimates corresponding to standardized storages in the
range S/μ= 1, 1.5, …5 (where μ is the mean of the annual
streamflows) and reliabilities R= 0.8 and 0.95. Again S and R
were selected so as to be in the range of variables used in the
development of the yield model.

We use the coefficient of variation of yield estimates
which we term Cy to characterize the variability of water
supply yield estimates, computed as the standard deviation of
the yield estimates, divided by the true yield. The results of
this analysis are summarized in figure 2. Interestingly, when
Cy is used to characterize the variability of the yield esti-
mates, the storage ratios (storage capacity divided by mean of
the streamflows) and reliability of the yield estimates do not
appear to influence the variability of the yield estimates. The
length of the streamflow record and the coefficient of varia-
tion of the inflows, Cq are the only two factors that appear to
influence the variability of yield estimates as described by Cy.
The variability of the yield estimates increases as the varia-
bility of the flows increases and decreases as the length of
record increases. Apparently the variability of yield estimates
gradually decreases as the length of record increases from 10
to about 40 years then it reduces gradually. These results
reported in figure 2 document the impact of the increased
information which results from using a longer period of
record for designing reservoirs.

The results in figure 2 can be extended for use in deter-
mining the likely range of yields that can be expected for a

given reservoir site on a river located in any part of the world.
Determination of likely intervals associated with any random
variable requires knowledge of the frequency distribution of
that variable. A detailed analysis of the approximate fre-
quency distribution of reservoir yield is presented in Kuria
(2014) who documented that a three parameter GAM dis-
tribution, also known as the Pearson type III distribution (P3),
provides the best overall goodness of fit to the distribution of
yield estimates. However, Kuria (2014) also showed that the
two parameter LN2 and GAM models also suffice for
approximating the distribution of estimated water supply
yield, regardless of the inflow model or record length con-
sidered since all of the values of the probability plot corre-
lation coefficients for these models were extremely high in all
cases. Considering LN2 as the distribution of the yield esti-
mates, the pth quantile of the yield estimate is given by

( )Y Zexp , (2)p y y pμ σ= ±

where Zp is the standardized normal variate for a given

quantile p, ( )y Cyln / 1y
2μ = + and Cyln(1 )y

2σ = + . Y

is estimated using equation (1) and Cy is obtained from
figure 2 corresponding to a particular value of the coefficient
of variation of the inflows to the reservoir and assumed
sample size n, in years.

A simple illustration is given here for the San Saba River
at San Saba located in Texas USA (US Geological Survey
gauging station 081 460 00). Using annual streamflow data
for 1963–2013 (n= 50 years), the annual statistics of the
streamflow data are calculated as mean, μ = 149, standard
deviation, σ = 98.5, skewness, γ= 1.15. All units are in million
cubic meters per year. Assuming hypothetical reservoirs with
storage ratios S/μ of 1, 2 and 5, and R = 0.9 and 0.95, the
likely ranges of yields that can be expected for this river are
shown in table 1. Here we assume that the likely range
encompasses 95% of the variability in estimated yields so that
p= 0.025 and 0.975 in equation (2).

5. Sensitivity of water supply reservoir yield
estimates to changes in climate

Of critical interest to water resource managers is how future
water supply yields will be modified under different future
hydroclimatic conditions. In this section, analogous to Vogel
et al (1997, 1999b) and Brown et al (2012) we show how the
generalized SRY relationship in equation (1) can be combined
with a simple hydroclimatic model to explore the impacts of
changes in climatic variables on the SRY relationship.

Sankarasubramanian et al (2001) and many others have
performed generalized sensitivity analysis of water resource
models using the concept of elasticity. Vogel et al (1999a)
show that each of the exponents of a power law model such as
the one given in equation (1) correspond to elasticities for the
corresponding independent variable, showing its non-dimen-
sional impact on the dependent variable of interest. For
example, since equation (1) is a power law model for
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estimating water supply yield, the exponent 0.20 on the
independent variable storage capacity S can be interpreted as
the storage elasticity of yield and it indicates that a 1%
increase in storage capacity will increase the water supply
yield by only 0.2%.

In this section we combine the yield model in (1) with a
simple hydroclimatic model developed for all regions of the

US. Simple hydroclimatic regression models for estimating
the mean μ and standard deviation σ of annual streamflows
have been developed for the 18 water resources regions by
Vogel et al (1999a). Considering USA water resource region
1, the resulting model for the mean and standard deviation of
annual streamflows is given by

e A , (3)P T
9.431 1.012 1.214 0.5118μ μ μ= − −

e A , (4)P T
2 26.39 1.978 1.448 0.945σ μ μ= −

where A is the drainage area (km2), μp is the mean annual
precipitation (mm yr−1) and μT is the mean annual tempera-
ture (Fahrenheit ×10). Substituting for the mean and standard
deviation of the streamflows into equation (1) leads to

Y e S Z A . (5)R P T
35.39 0.203 0.306 2.990 2.662 0.433 0.017μ μ γ= − −

Since equation (5) is a power law model, its exponents
may be interpreted as elasticities. For example, equation (5)
implies that a 1% decrease in mean annual precipitation will
result in a 2.66% decrease in water supply yields from water
supply reservoirs (holding all other variables constant). We
conclude that reservoir water supply yields are extremely
sensitive to future changes in mean annual precipitation.
Since temperature is a nonhomogeneous variable with units

Figure 2. Coefficient of variation of yield, Cy, estimates for S/μ = 0.5 and 5, R = 0.8 and 0.95, Cq = 0.5, 1, and 2 and n= 10–100 for
Gamma flows.

Table 1. The Lower Intervals (LI) and Upper Interval (UI) of
reservoir water supply yield estimated from equation (1) for
reliabilities R= 0.9 and 0.95 and storage ratios, S/μ = 1, 2 and 5 San
Saba River at San Saba located in Texas.

Yield, Y
(m3 yr−1)
(from

equation (1)) LI (m3 yr−1) UI (m3 yr−1)

R= 0.9, S/μ = 1 101 83 123
— 2 116 96 141
— 5 140 114 169
R= 0.95, S/μ = 1 94 77 113
— 2 108 88 131
— 5 129 106 157
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which depend upon both a constant and scale term, it is
misleading to interpret the coefficient for temperature in (3),
(4) or (5) as an elasticity (see Sankarasubramanian et al 2001,
section 3, for further discussion).

6. Conclusions

The goal of this study was to develop a generalized approach
for estimating the yield of surface water reservoir systems and
to document the uncertainty inherent in water supply yield
estimates for a wide range of reservoir systems subject to the
hydrologic variations and conditions which can be expected
in many parts of the world. We began by developing a gen-
eralized SRY relationship for estimating water supply reser-
voir yield based on a global dataset of 729 rivers with a
minimum of 25 years of monthly streamflows introduced
previously by McMahon et al (2007b). The global SRY
regression summarized in equation (1) exhibited an extremely
high level of goodness of fit, as depicted in figure 1. The
reservoir yield model in (1) was further used to document the
variability of the estimates of water supply yield based on
actual streamflow observations. Using the coefficient of var-
iation of the yield estimates, Cy, to denote the variability of
yield estimates, it was found that the storage ratios (storage
capacity divided by mean of the streamflows) and reliability
of the yield estimates do not influence the variability of the
yield estimates. This is an extremely important result which
enabled us to report the relationships in figure 2 which could
be useful for describing the variability of reservoir yield
estimates under extremely general conditions. Our findings
indicate that the length of the streamflow record n, and the
coefficient of variation of the inflows, Cq, are the only two
factors that appear to influence Cy. The variability of the yield
estimates increases as the variability of the flows increases
and decreases as the length of record increases. One of the
major challenges facing developing countries is to provide
meaningful and stable projections of water supply yield under
conditions of limited availability of streamflow data. We
documented how our findings can be used to quantify the
value of additional streamflow information in water supply
planning and management investigations.

We also described a variety of further applications of
generalized SRY relationships which have been previously
reported the literature as well as some new extensions. For
example in section 5, we combined a regional hydro-
climatological model with the generalized SRY relations for
the purpose of evaluating the impacts of climate change on
the water supply yields from water supply reservoirs. As
changes in hydroclimatology continue due to changes in land
use, climate and other anthropogenic influences, there will be
a continued need to evaluate the impacts of such changes on
water supply yields. Storage reservoirs provide one very
important societal adjustment or intervention, because they
enable increases in the reliability of future water supply yield.
Our results provide a framework for evaluating the impacts of
such future adjustments.
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