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ABSTRACT

Natural flood regimes provide a wide array of important ecological functions. Our goal is to assess the hydrologic impact of dams on
flood flows throughout the United States. Regional regression models of the median annual 1-day maximum flow were developed as a
function of natural watershed characteristics, dam storage, and population density. Most of the regressions have adjusted R2 values in
excess of 0.80, and overall the models covered 78% of the area of the continental U.S. Alteration of flood flows is present in every
region of the country, and is more severe west of the Mississippi and especially in the southern Great Plains, desert Southwest, and
northern California. The percent of U.S. rivers with greater than a 25% reduction in the median annual flood is 55% for large rivers,
25% for medium rivers, and 10% for small rivers. The majority of freshwater ecoregions in the country have at least 10% of their rivers
with 25% or greater alteration in all three river size classes. A simple model based on the ratio of dam storage to mean annual runoff
was developed for assessing alteration in ungauged rivers, and was found to be generally useful for classifying rivers into categories of
potential alteration. Overall, we document the alteration of natural flood flows across the U.S. in more detail than has been previously
accomplished, and demonstrate the efficacy of multivariate regional regression models and other indicators for assessing hydrologic

alteration. Copyright © 2010 John Wiley & Sons, Ltd.
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INTRODUCTION AND BACKGROUND
Introduction

Natural flood regimes provide a wide array of ecological
functions that are essential for the health of river, floodplain,
riparian and estuarine ecosystems, as has been detailed in the
literature (Junk et al., 1989; Bayley, 1995; Poff et al., 1997,
Alber, 2002; Lytle and Poff, 2004; Mathews and Richter,
2007; Piazza and La Peyre, 2007). Ecological benefits of
floods include providing fish and other organisms with
access to floodplain habitats that can be used for feeding,
spawning and rearing; maintaining and rejuvenating plant
habitats in the riparian zone and floodplain; influencing the
geomorphology of the streambed; importing woody debris
and organic material into the river channel; refreshing water
quality conditions and helping transfer nutrients and
maintain salinity conditions in estuaries. High flows just
below flood stage (i.e. below bankfull stage) move sediment
through the channel, provide respite for organisms from
stressful low-flow conditions and improve connectivity to
upstream and downstream habitats.

Conversely, alteration of natural flood events can have
serious consequences for ecosystem health. The typical impact
of dams is to reduce the magnitude of peak flood flow
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magnitudes, quite often dramatically (Richter et al., 1998;
Magilligan and Nislow, 2005; Graf, 2006), which degrades or
eliminates many of the important functions described
above. Reduction of flood flows in river systems can alter
ecological communities and facilitate invasions by non-native
species (Poff et al., 1997), and lead to a variety of negative
geomorphological consequences (Magilligan et al., 2003).
Given the importance of floodplain and estuarine ecosystems
from the perspective of species richness, productivity and
provisioning of ecosystem services (Costanza et al., 1997,
Tockner and Stanford, 2002), assessing the degree and
extent of alteration of flood flows in the United States and
elsewhere is an important research question that has bearing
on a range of environmental and water management issues.

The goal of this paper is to assess the impact that existing
dams have had on peak flood flows throughout the United
States, in as comprehensive a fashion as is possible given
available data. Previous sub-national studies have reported
on the impact of dams on natural flow regimes (including
flood flows) in the Colorado River basin (Richter et al.,
1998), the Connecticut River basin (Magilligan and Nislow,
2001), the state of Texas (Asquith, 2001) and the Wabash
River basin in Indiana (Pyron and Neumann, 2008). Magilli-
gan and Nislow (2005), Graf (2006) and Poff er al. (2006)
analysed the impacts of dams on flows for a subset of rivers
across the country (21, 36 and 43, respectively). Till date, the
most comprehensive study of hydrologic alteration by dams
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was by Poff et al. (2007), who analysed the impacts of dams
on intermediate size (3rd—7th order) rivers across the United
States, using streamflow data for 186 stations below dams
and 317 stations on undammed rivers. Similarly, Gao et al.
(2009) examined several indicators for their ability to reflect
changes in overall hydrologic alteration for 189 rivers with
dams across the United States. These two studies covered the
majority of the United States, using more streamflow data
than in previous national evaluations, but still did not use all
available streamflow data, for reasons described below.

The hydrologic impacts of dams are typically analysed by
comparing various streamflow statistics from periods before
and after the dam was constructed. An important constraint
on applying this method for a national assessment of the
alteration of flood flows is the availability of reference data
on natural flows before dam construction. Typically 20 years
of pre- and post-dam data are recommended in order to be
able to reliably detect shifts in high flow statistics (Richter
et al., 1997; Huh et al., 2005). These requirements make the
number of stations available for use with such a standard pre-
versus post- analysis necessarily limited. For example, of
the 4859 gaging stations for which data were used in this
study, only 564 had 20 years of data both before and after
construction of a dam or dams. But an additional 1808
stations had at least 20 years of data after construction of
upstream dams, without sufficient pre-dam data. Another
concern with the pre- and post-method of analysis is the
possibility that climate is shifting in the United States in
ways that affect flood flows, as has been suggested by
Hodgkins et al. (2003) and Stewart et al. (2005). Thus,
instead of assuming stationarity of the flow records, we
employ a method that explicitly takes into account temporal
changes in both climatic and land-use factors.

We employ regional multivariate regression methods to
assess impacts of dams and other factors on the behaviour of
flood flows. The idea is to construct regional multivariate
regression models that predict flood flows as a function of
climatic, physiographic and anthropogenic characteristics of
the watershed contributing to each gaging station. The US
Geological Survey (USGS) has a long and rich history of
developing such multivariate regression models for predicting
both peak flow and low flow statistics at ungauged sites across
the United States and a computer program is even available for
the application of the resulting models at ungauged sites
(Turnipseed and Ries, 2007). Such regional statistical models
have also been developed for predicting annual average
streamflows (Vogel et al., 1999),and low flow statistics (Kroll
et al., 2004) across the United States, and for a variety of
streamflow statistics in Washington, Colorado and Oregon
(Sanborn and Bledsoe, 2006). Thus the method employed here
has been well tested and vetted in the literature and in practice,
and can be applied to large regions by generating data on
watershed characteristics using standard GIS methods.

Copyright © 2010 John Wiley & Sons, Ltd.

The streamflow statistic that will be analysed here is the
median annual 1-day maximum flow for each decade in the
1900s, which we term as the median annual flood (MAF). We
employ a nonparametric estimator of the MAF, which does not
depend on the assumption of a frequency distribution. Since
the MAF has a 50% chance of being exceeded in any year, it
has an average return period of 2-years. This statistic is
attractive from a geomorphological perspective, because in
natural stream channels, the discharge necessary to reach
bankfull flow occurs, on average, with a 2 year recurrence
probability (Leopold et al., 1964; Magilligan et al., 2003).
Magilligan et al. (2003) states that ‘the bankfull discharge has
also been shown to be the dominant discharge for sediment
transport and channel maintenance’, and it ‘also sets other
geomorphic and ecological thresholds, because floods that
exceed this discharge are capable of inundating the adjacent
river floodplain’. Hence, the flow statistic considered here is
closely related to bankfull discharge and has a number of
critical geomorphological and ecological functions.

Our primary goal is to develop regression models for
hydrologic units across the United States that relate the
decadal MAF to watershed characteristics. The regression
models are then used to discern the impacts of dams on flood
flows across the country. Statistically significant impacts are
summarized by river size and according to the freshwater
ecoregions developed by Abell et al. (2008). The models and
analysis presented here should provide the most compre-
hensive picture to date of the wide extent of dam impacts on
flood flows in the United States, and will also highlight the
potential for restoration of flood flows that exists in many
parts of the country. This study will also test the efficacy of
multivariate regression modelling for assessing the signifi-
cance and degree of hydrologic alteration, an approach that
to our knowledge has received little attention.

Use of regional regression models to evaluate influence
of dam storage on flood flows

While the regression approach used here is standard in
many ways, there are also some important differences from
previous studies. Typically regional regression models are
developed using period of record flow statistics which
assume a stationary historical period. Since our goal is to
model changes in flood flows due to the impact of dams
during the 20th century, we examine flood data by decade.
Decades are used because on the one hand they allow for
assessment of trends over time, yet they also average out
stochastic year-to-year variability that would otherwise be
difficult to account for. Watershed characteristics that chan-
ge over time, such as climate, land use and dam storage,
are also calculated by decade, enabling the regressions to
quantify the impacts of these different factors on the MAF.

Another important difference from earlier regional reg-
ression studies is that most previous studies focused on
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reference streamflow gaging stations, i.e. those stations that
are mostly free of anthropogenic influences, so that streamflow
measured at these sites is primarily influenced by natural
factors. Instead we use all available streamflow gaging
stations, whether impacted or not. To account for anthro-
pogenic influences on flood flows, we included dam storage
and watershed population density as potential independent
variables in the regression, also computed by decade.
Population density provides a surrogate measure of the
influence of land development and is often highly correlated
with residential impervious area. Other than dam storage and
population density, there were no other variables in the
regressions to represent anthropogenic impacts. While we
recognize that there are other potential anthropogenic impacts
on flood flows, such as land-cover changes other than
impervious surfaces, and water withdrawals, it was not
possible to consider the impacts of these variables in the
regressions since there are no datasets representing the
historical evolution of these variables during the 20th century.

The use of multivariate regional regression methods
provides a number of important advantages over alternative
approaches for testing hypotheses. Most importantly, the
analysis ‘replaces time with space’. That is, by incorporating
many flow gaging stations in space, we effectively increase
the sample size of the regression equations. Alternatively,
each hypothesis test would only be on a single flow record,
over perhaps two different periods of time (i.e. altered and
unaltered). By integrating all stations within a region, the
analysis effectively increases the sample size available by
replacing limitations on the temporal extent of data at a
single site with the fact that many sites are considered, in
space, thus ‘replacing time with space’.

A second advantage of the multivariate statistical
approach is that it does not require that one specify
beforehand that a particular station is or is not impacted by
human activities, since the multivariate analysis adjusts for
differences in flow that are related to anthropogenic factors.
A third advantage is that a typical pre- and post-data analysis
is difficult to implement in cases where dam storage has
increased gradually on a river, due to construction of
multiple dams over time, yet the regression method is well
equipped to handle such situations. Lastly, because climatic
data are in the regressions, the regressions will adjust for
temporal climatic change across decades so that such
climatic trends can be taken into account when assessing the
impacts of dam storage on flood flows.

Limitations of approach

There are numerous concerns and caveats regarding the
resulting regression equations. Regressions yield average
impacts of dams on the MAF across a given region, thus they
may be less precise in computing impacts at a particular
location than the standard pre- and post-data analysis

Copyright © 2010 John Wiley & Sons, Ltd.

methods. While our use of regional regressions yields a more
comprehensive picture of the impacts of dams on flood flows
than alternate methods, it comes at the expense of losing
some specificity about the impacts at a particular location.
Partly for this reason, the regression results are only
presented as averages for the hydrologic units for which the
regressions were produced. As with all regression methods,
it would be dangerous to extrapolate the results of our
models, thus they should only be used within the regions and
for the sites considered in our analyses.

DATA AND METHODOLOGY

Due to space limitations the data and methods used in this
study are briefly summarized here, further details can be
found in a separate report (FitzHugh and Vogel, 2010)
available on the internet.

Databases

Decadal values for the MAF were obtained from daily
streamflow data for 4859 USGS streamflow stations across
the United States, using the Indicators of Hydrologic
Alteration (IHA) software (Richter et al., 1996; Mathews
and Richter, 2007). The stations used here had to satisfy one
of two criteria: (1) they had data for the most recent available
decade (the 1990s) and at least one earlier decade; or (2) they
were reference stations that had data for two decades or
more from the 1900s to the 1980s. Reference stations used in
this study are those stations identified in Slack and
Landwehr (1992), Poff (1996) and Carlisle er al. (2009).
The data for these stations yielded 23 228 individual decadal
values of the MAF.

GIS analysis was used to compute a series of watershed
characteristics to use as potential independent variables in
the regressions (see Table I). These characteristics were
selected from a much larger initial group of possible
characteristics, and variables were only used if it was
possible to generate a plausible qualitative hypothesis
regarding the relationship between that variable and 1-day
maximum flows (see Table I). Two other sources of
information compiled to aid in this research are (1) codes
from the annual instantaneous peak flow database in USGS
National Water Information System (USGS NWIS, 2009),
which indicate whether the peak flow for each year is altered
by either regulation or diversion; (2) remarks that acco-
mpany each USGS streamflow station which describe,
among other things, sources of alteration of natural stream-
flows, such as dams, irrigation withdrawals, etc.

Methods

We employ ordinary least squares multivariate regression
procedures which are discussed elsewhere (Helsel and
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Table 1. Watershed characteristics used as potential independent variables

Variable name Definition Log- Units Hypothesized Source
transformed relationship with
1-day max
DrArea Drainage area Yes Sq. km. + USGS NWIS (2009)
Slope Basin average slope Yes Per cent + 1 km DEM from USGS
Flat Per cent flat area (with Yes Per cent — 1km DEM from USGS
<1% slope)
Precip Median annual precipitation Yes Mm year ! + PRISM data (Daly
for each decade et al., 2002)
Novobpre, Average of median monthly Yes Mm year™' =+ PRISM data (Daly
Feb3pre, precipitation for each decade, et al., 2002)
May2pre, etc.  for months of high flow
Jan3pre, Average of median monthly Yes Mm year ™" + (snowmelt PRISM data (Daly

Dec4pre, etc.

precipitation for each decade,

for months with most snowfall

Average of median monthly Yes
temperatures for each decade,

for months of high flow

May2tmp,
Mar5tmp, etc.

Snow Snowfall, long-term average Yes
Runoff Runoff, long-term average Yes
Agperm Aquifer permeability Yes
Sand Per cent sand Yes
Soilthi Soil thickness Yes
Soilawc Soil available water capacity Yes
Soildep Soil depth to water table Yes
Storatio Total maximum storage capacity No

of all upstream dams, divided by

average annual runoff (Runoff),

for each decade
Popdens Population density, by decade No

systems only) et al., 2002)

+ (snowmelt
systems only)

Degrees Kelvin PRISM data (Daly

et al., 2002)

1

Mm year™ + (snowmelt National Climatic
systems only) Data Center (2009)
Mm year_l + Gebert et al. (1987)
Classes 1-7 - Wolock (2003)
(lowest—highest)
Per cent — Wolock (2003)
Mm — STATSGO (Wolock, 1997)
Fraction - STATSGO (Wolock, 1997)
Mm — STATSGO (Wolock, 1997)
Years of runoff - Army Corps of Engineers
in storage National Inventory of Dams
database from BASINS
2.0 (1999)
Persons per + US Census Bureau (2009)
sq. km.

Hirsch, 2002). Regression models were developed for each
of 209 hydrologic units (HUs) that cover the bulk of the
United States (except for a few areas without streamflow
stations). Maps of the HU’s are given later in Section 3 and
in Figure Al in Appendix 1. The dependent variable was
log-transformed prior to creating the regressions, as were all
independent variables except Storatio (maximum dam
storage capacity/mean annual runoff) and Popdens (popu-
lation density), because use of those two variables in real
space led to more precise regression coefficients. The
climatic variables used as potential independent variables
varied by HU, depending on the timing of flood flows and
precipitation during the year and whether the flood response
of the HU was dominated by rainfall or snowmelt processes.

Due to the computational complexity associated with the
model selection procedure, the best regression in each HU
was identified automatically using an algorithm written in the
R statistical package (R Development Core Team, 2006). This
algorithm is described in detail in FitzHugh and Vogel (2010),
so it is only briefly summarized here. The algorithm evaluates
independent variables in a stepwise manner, evaluating each

Copyright © 2010 John Wiley & Sons, Ltd.

variable according to its p-value (must be <0.05), its
Variance Inflation Factor (VIF, must be <5), whether its
model coefficient matches the hypothesis in Table I, and
whether addition of the variable both increases the adjusted R-
squared and decreases the prediction sum of squares PRESS
statistic. From this procedure a series of candidate regressions
are identified, and then the final regression for each HU is
selected based on a comparison of values of the PRESS
statistic. Residuals were evaluated using the correlation
coefficient of a normal probability plot of the model residuals,
and if necessary, outliers were removed either by visual
assessment of this plot or using the DFITS criterion.

RESULTS AND DISCUSSION
Screening and evaluation of regression models

Implementation of the regression selection algorithm
yielded 201 HUs with a final regression that was acceptable
based on the above criteria, i.e. only eight HUs ended up
without a regression. Table Al in Appendix 1 lists the final
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Figure 1. Boxplots of adjusted R?, PRESS and the coefficients of the five most common independent variables in regressions

regression models for each HU. Figure 1 shows some key
results for the regressions. In general, the regressions per-
formed well, with generally high adjusted R*s and low
PRESS statistics.

The regression models were then used to quantify the
degree to which dams are currently reducing the MAF in
each HU. This was done by setting the maximum storage/
mean annual runoff variable, Storatio, to 0, and then
recalculating the MAF for all stations that had data in the
1990s. The per cent difference was then computed between
this value and the fitted value of MAF from the original
regression, and this per cent difference was used as an
estimate of the reduction in the MAF during the 1990s due to
dam storage. For a few HUs where there were no sites with
Storatio = 0, we set the Storatio to the minimum value in that
HU, because it is dangerous to use the regressions outside
the range of the data used in their development.

Next we used ancillary information available from USGS
to screen and evaluate the regressions. We calculated the
percentage of years in the 1990s when the peak flows at each
streamflow station were coded as altered by regulation or
diversion. Then we computed the proportion of total esti-
mated alteration in each HU that was assigned to stations
that have no such codes in the peak flow data. One could
think of this as an estimate of the proportion of alteration
estimated in an HU that is likely to be erroneous.

We used this proportion to examine the degree to which
regressions that identified statistically significant relation-
ships between Storatio and MAF were estimating an average
alteration in the 1990s that was generally representative of
conditions in that HU. All HUs where this percentage was
greater than 33% were judged to have significant errors, so
these 18 HUs were dropped from further analysis. The one
exception was the HU for the Susquehanna mainstem, where
although this percentage was 51%, there were USGS rema-
rks for all streamflow stations of slight regulation of flows by
flood control reservoirs, including those with no alteration
indicated in the peak flow codes.

We also eliminated eight regressions for HUs that have a
high percentage of peak flows coded as altered and gage

Copyright © 2010 John Wiley & Sons, Ltd.

remarks of impacts of regulation, but where the coefficient
for Storatio was not statistically significantly different from
zero in the regression. Finally, four more regressions were
eliminated because their adjusted R* was below 0.5 indicat-
ing that the statistical relationship was very weak. Overall,
this left 171 regressions where the estimated per cent
alterations were considered to be representative enough to
continue with further analysis (shown in Figure 2). These
models cover 78% of the area of the continental United
States.

Analysis of the impact of dams on flood flows in the
United States

Figure 2 is striking because it shows the wide extent of
alteration of natural flood flows by dams in the continental
United States. The HUs where a statistically significant
relationship was found between reduction of flood flows and
dam storage cover about 64% of the country, but they cover
84% of the area of the HUs where good regressions were
created (those shown in Figure 2). Alteration of flood flows
is present in every region of the country, though less so in the
mid-Atlantic, Southeast and upper Midwest. Alteration is
generally more severe west of the Mississippi and especially
in the southern Great Plains, desert Southwest and northern
California. Using the estimated alterations for individual
gauges, we further summarize these results by freshwater
ecoregion (Abell et al., 2008) and river size (see Figure 3).
Overall, 3453 stations are available for this analysis.

Table IT and Figure 4 summarize our results. One obvious
and expected conclusion is that the degree of alteration of
flood flows increases as the size of the river increases. In the
majority of ecoregions, alteration is greater in large rivers
than in medium rivers, and greater in medium rivers than
small rivers. Across the country, estimated reduction of
MATF for large rivers averages 29%, for medium rivers 15%
and for small rivers 7%. These data indicate that a large
number of rivers in the United States have had significant
reduction in flood flows due to dams. To put these numbers
in perspective, we compare them to some research results on
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Figure 2. Estimated per cent alteration (reduction) of MAF by dam storage, for 1990s. This percentage is the average of the estimated per cent alterations for
stations in each hydrologic unit that have data in the 1990s

natural variability of flood flows due to long-term climate
trends and also on the relationships of flood flow reduction to
ecological impacts.

Long-term variation in bankfull discharges during the
Holocene has been quantified in streams in southwestern

[] Freshwater ecoregions :
Rivers by watershed size (sq km)

0-1,000
1,000 - 20,000

/\/ 20,000 +

Wisconsin (Knox, 2000) and northeastern Utah (Carson
et al.,2007), and in both cases compared to modern bankfull
discharges. In Wisconsin the maximum variability of Holo-
cene bankfull discharge was £ 30% from modern dischar-
ges, and in Utah it was 4= 20%. Thus, the maximum decrease

Figure 3. Freshwater ecoregions from Abell et al. (2008), and river and streams, by size. Numbers are ecoregion ids, referenced in Table II

Copyright © 2010 John Wiley & Sons, Ltd.
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Table II. Average per cent decrease in MAF in 1990s due to dam storage. Numbers are the average of the estimated alterations for all
streamflow stations in each ecoregion and river size category. River size classes are 0—1000km? watershed (small), 1000-20 000 km?
(medium) and 20 000+ km? (large). Numbers in bold are size classes where there were fewer than two stations per 1000 km of river length in
the size class. This could occur because a portion of the ecoregion did not have a good regression, or because of a lack of stations in general.
Table also shows the per cent of area in the US part of the ecoregion that is covered by hydrologic units with valid regressions

Freshwater ecoregion ID Per cent Average per cent alteration
of area in
United States Small Medium Large All rivers and
covered by rivers and rivers (%) rivers (%) streams (%)
hydrologic streams (%)
units (%)
Alaska & Canada Pacific Coastal 103 100 -10 —12 — —10
Apalachicola 155 100 -1 —24 22 —-14
Appalachian Piedmont 157 100 —4 -9 —15 —6
Bonneville 127 61 —10 —31 — —17
Central Prairie 146 100 —18 —18 -30 -19
Chesapeake Bay 158 100 =5 —4 -9 -5
Colorado 130 92 -5 —15 —44 -12
Columbia Glaciated 120 92 0 -10 -30 —-12
Columbia Unglaciated 121 100 -10 —12 -27 —-12
Cumberland 151 100 -10 -3 —66 —-14
Death Valley 128 9 — — — —
East Texas Gulf 140 58 -17 —31 —42 =27
English—Winnipeg Lakes 109 66 -1 —16 -19 -13
Florida Peninsula 156 65 0 0 0 0
Gila 131 100 0 -10 —40 —11
Lahontan 126 97 -7 -20 —34 —14
Laurentian Great Lakes 116 69 -5 =7 — —6
Lower Mississippi 149 76 0 -1 —41 -1
Lower Rio Grande—Bravo 135 11 — — — —
Middle Missouri 143 80 -7 —19 —38 -21
Mobile Bay 153 61 -1 —-10 0 -6
Northeast US & Southeast 118 94 -7 -19 —15 -10
Canada Atlantic Drainages
Oregon & Northern 123 100 -5 —17 —17 —10
California Coastal
Oregon Lakes 124 92 — — — —
Ouachita Highlands 145 100 -1 —-19 —40 —15
Ozark Highlands 147 100 0 —15 -53 —17
Pecos 133 0 — — — —
Sabine—Galveston 141 85 —10 —42 —37 -25
Sacramento—San Joaquin 125 76 —14 -29 —44 -21
Southern California 159 62 -9 -27 — -13
Coastal—Baja California
St.Lawrence 117 98 -12 —16 — —14
Teays—Old Ohio 150 92 -7 —14 —14 —11
Tennessee 152 55 -3 -10 —48 —6
Upper Mississippi 148 53 0 —10 -13 =5
Upper Missouri 142 82 —6 -9 -19 -10
Upper Rio Grande—Bravo 132 13 =31 —17 — —24
Upper Snake 122 75 —4 —14 -10 —11
US Southern Plains 144 73 -17 -23 —28 -23
Vegas— Virgin 129 100 —18 -35 — —27
West Florida Gulf 154 100 0 0 — 0
West Texas Gulf 139 97 -1 -10 —48 —11
Total 78 -7 —15 -29 -12
Copyright © 2010 John Wiley & Sons, Ltd. River Res. Applic. (2010)
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Percent alteration, by river size

ﬂ I I -100%

Small  Medium Large

0%

Figure 4. Average per cent decrease in MAF for 1990s due to dam storage, for small, medium and large rivers. Data are from Table II. Light grey shading shows
areas not covered by regression models

from current natural conditions that has occurred in the last
12000 years from natural climate variability is approxi-
mately 25%. For comparison, when Arora and Boer (2001)
modelled impacts of global climate change (by 2100) on
floods with an average 2-year return period in 10 major
rivers, the average reduction was also similar (—21% for the

Small Rivers and Streams

—a— East

—a— Central
—h— West
-+ USA |-

Percent of stations

0% -10% -20% -30% -40% -50% -60% -70% -BD% -90%
With more than this level of alteration

Medium Rivers

100%

+— East
70% -+ —&— Central |-
—i— West

- USA |-

50%
40%

Percent of stations

10%

0% -10% -20% -30% -40% -50% -60% -70% -80% -90%
With more than this level of alteration

Percent of stations

seven rivers that experienced a reduction). Figures 5-8 are
used here to assess the extent of reductions in MAF due to
dam storage beyond a threshold of —25%, for small,
medium and large rivers.

Figure 5 shows the per cent of stations that have
reductions in MAF of greater than a series of thresholds from

Large Rivers

—— East
—&— Central |-
—i— West

- USA

0% T T T T T — y —
0% -10% -20% -30% -40% -50% -60% -70% -80% -50%
With more than this level of alteration

Figure 5. Per cent of stations on small, medium and large rivers with different levels of reduction in MAF, for the Eastern, Central and Western United States
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0 to 90%, for the entire United States and for three large
regions of the country. Here it can be seen that depending on
river size class and US region, from 10 to 70% of rivers have
seen reductions in MAF of greater than 25%. For the country
as a whole, the per cent of rivers with greater than a 25%
reduction in MAF is 55% for large rivers, 25% for medium
rivers and 10% for small rivers. Alteration is most severe in
the central and western United States: 70% of large rivers in
the central United States and 55% of large rivers in the West
are beyond the 25% threshold. Small and medium rivers also
have greater levels of alteration in the central and western
United States. Figures 68 show the per cent of stations with
greater than a 25% reduction in MAF by freshwater eco-
region. Though alteration is consistently lower for the east-
ern United States as a whole, from Figure 6 it can be seen
that high levels of alteration do occur for medium and large
rivers in a few eastern ecoregions. Figures 7 and 8 show that
most ecoregions are experiencing at least some degree of
reduction in MAF, even if it is not widespread enough for
the ecoregion to appear in Figure 6. In the majority of
ecoregions at least 10% of rivers have a 25% or greater
reduction in MAF in all three river size classes.

It is important to note that such changes have occurred
over a vastly shorter period of time than occurred naturally
during the Holocene, giving the geomorphology and ecology
of rivers and streams far less time to adjust. Magilligan ez al.
(2003) have enumerated some of the likely consequences of
reductions in bankfull discharge, including significant
adjustments in channel morphology and substratum com-
position, channel armouring, disconnection of some or all of
the floodplain and riparian area from the channel and
alteration of both riparian and in-channel biological com-
munity structure.

Small Rivers

A - Freshwater ecoregions
i with 50% or more of
stations with estimated
reduction of > 25%

AL Areas not covered by
\ regression models.

Large Rivers

Figure 6. Freshwater ecoregions with 50% or more of stations having
estimated reduction in MAF of > 25%, by river size

Copyright © 2010 John Wiley & Sons, Ltd.
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% Wy ol - Freshwater ecoregions
g W LATLP with 25% or more of
/ {i stations with estimated
'r A reduction of > 25%
Areas not covered by
Uy regression models.

Large Rivers

Figure 7. Freshwater ecoregions with 25% or more of stations having
estimated reduction in MAF of > 25%, by river size

A few previous studies have reported the ecological
impacts of flood flow reductions on biota. For example,
Wilding and Poff (2008) have developed some quantitative
relationships for streams in Colorado that give some
perspective on possible impacts. For riparian vegetation,
their quantified relationship was that each 10% reduction in
peak flows led to a maximum per cent change in riparian
vegetation community composition of approximately 12%.
This being a maximum response, actual response could vary
from 0-12%, depending on other biotic and hydrologic
factors. For macroinvertebrates, the relationship was exp-
onential, with maximum response of invertebrate metrics to
reductions of peak flows of 10, 50 and 80% calculated at
approximately 20, 90 and 250%, respectively. Though these

Small Rivers

- Freshwater ecoregions
with 10% or more of
stations with estimated
reduction of > 25%

Areas not covered by
regression models.

Large Rivers

Figure 8. Freshwater ecoregions with 10% or more of stations having
estimated reduction in MAF of > 25%, by river size
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relationships are for streams in just one part of country, this
gives us at least a general idea of how the reductions of flood
flows displayed in Figures 5-8 could affect biota.

Evaluation of a dam storage metric for predicting flow
alteration

Metrics such as dam storage per unit stream length or
watershed area have been used as indicators of downstream
freshwater ecosystem condition in regional biodiversity
conservation planning projects such as The Nature Con-
servancy’s ecoregional assessments (Groves et al., 2002;
FitzHugh, 2005). Here we evaluate the variable Storatio
(ratio of upstream dam storage to mean annual runoff) for
its ability to characterize one component of hydrologic
alteration, alteration of flood flows. Figure 9 shows the
relationship between regression estimates of flow alteration
and Storatio, for individual stations and as averages for HUs.
The boxes on the figure characterize approximate thresholds
of Storatio as it relates to different levels of flood flow
alteration. The box on the right, above a Storatio value of
0.5, contains watersheds and stations with a large range of
levels of alteration, from none to very high alteration, but
with the majority of the points above 10% alteration. The
middle box, between 0.05 and 0.5, contains HUs with
moderate to no alteration, and the left box contains units
with either low or no alteration.

Figure 9 documents that the variable Storatio is related to
the level of alteration of flood flows, but that within each of
the three categories (boxes) there is a wide range of levels of
alteration. Graphing stations and HUs by region of the
country was not found to improve the relationship shown in
this figure. It appears that the appropriate use of such a
metric would be as an indicator of the maximum potential
level of alteration of flood flows (and by inference ecological
condition), and also the range of possible levels of alteration.

Storatio

0.00001 0.0001 0.001 0.01 0.1 1 10 100

0%
-10%
-20%
-30%
-40% -
-50%
-60% -
-70%
-80%
-90%
-100%

Percent alteration

Figure 9. Storatio versus estimated per cent alteration of MAF. Black points

in foreground are averages for each hydrologic unit. Light points in back-

ground are points for individual stations in these hydrologic units. The values
of Storatio at the boundaries between the three boxes are 0.05 and 0.5

Copyright © 2010 John Wiley & Sons, Ltd.

However, it would be inappropriate to assume that any given
river actually reaches this maximum level of alteration, at
least without more detailed analysis. With those caveats, the
Storatio thresholds presented here may be useful in regional
planning exercises in regions where it is not possible to
better quantify the degree of alteration in flood flows.

CONCLUSIONS

This research has highlighted the wide extent of alteration of
flood flows by dams in the United States, particularly on
large rivers and in the western United States. While
reduction of flood flows has undoubtedly had widespread
and significant ecological consequences for the nation’s
river ecosystems, we also recognize the importance of dams
for managing the flood response of rivers and for providing
numerous other benefits ranging from irrigation and water
supply to recreation and navigation. Floods can cause major
damage to human lives and property, and flood damage has
devastated cities and towns in the United States. The Army
Corps of Engineers estimates that its flood control activities
have prevented $706 billion of flood damages, mostly in the
last 25 years (USACE-IWR, 2000). But at the same time,
Pielke et al. (2002) has shown that despite the billions of
dollars spent on dams and other structural flood control
measures, both total and per capita flood damages continue
to rise.

The interrelated issues of declining ecosystem health and
continuing increases in flood damages have spurred the
Association of State Floodplain Managers, a leading voice in
floodplain management practice and policy in the United
States, to call for reforms in floodplain management (for
example ASFPM, 2003, 2008). Among their proposals is an
urgent call for greater emphasis on maintaining natural and
beneficial functions of floodplains (ASFPM, 2008), a key
component of which would be restoration of more natural
flood flows in places where they can be accommodated
without causing economic damage. The results of our
national study re-emphasize not only this need but also the
opportunities that exist nationwide for such restoration.
ASFPM and other organizations have developed cogent
proposals for what needs to be done, which include relo-
cation of development from flood-prone areas and greater
accounting for natural floodplain functions (ASFPM, 2008).
With respect to re-operation of dams to restore flood flows,
there are good examples in the environmental flow science
literature of how to define ecosystem needs in terms of flow
and how to implement a dam re-operation plan for maximum
ecological benefit (Richter et al., 2006; Richter and Thomas,
2007; Vogel et al. 2007).

This paper has enumerated the reduction in flood flows
due to dams throughout the United States, while at the same
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time demonstrating the efficacy of regional regression
analysis for assessments of hydrologic alteration. In some
ways assessing the impacts of dams on flood flows was the
most straightforward analysis of alteration that could be
conducted comprehensively on a national scale, because it is
(1) generally easier to create regression models for peak
flows than for other flow statistics such as low flows, (2)
historical data on dam storage is better than data on other
types of impacts and (3) there are ancillary sources of
information on flood alteration (USGS codes for alteration
of instantaneous peak flows) that do not exist for other types
of flow impacts. However, clearly there is potential for using
similar methods for assessment of impacts of dams and other
factors on other flow statistics and components of the hy-
drologic regime.

Though USGS has been most successful in creating
regressions for peak flows, there are other studies that have
successfully modelled a variety other flow statistics (Vogel
et al., 1999; Kroll et al., 2004; Sanborn and Bledsoe, 2006;
Carlisle et al., 2009). While historical records of land-cover
(other than impervious surface) and water withdrawals are
not nearly as extensive as climatic and streamflow datasets
on a national basis, there are methodological and data
collection solutions that could resolve these issues. For land-
cover, space could be substituted for time in the regression
analysis, as has already been done by Poff ef al. (2006) for
some parts of the country. While the USGS national data on
water withdrawals (Hutson et al., 2004) has too coarse a
spatial scale and too limited a temporal scale for this sort of
analysis, some states that are compiling more detailed water
rights and withdrawal data that could be useable for this
purpose (see CWCB-CDWR, 2009; TCEQ, 2009).

With regard to further analysis of alteration of flood flows
in the United States, there are a number of additional
research questions that could be addressed using the data and
models introduced here. First, an analysis of the impacts of
population density on flood flows is possible because the
regressions include a population density variable. Second,
the National Inventory of Dams includes information on the
operating purposes of dams (i.e. flood control, water supply,
hydropower, irrigation, etc. . .), which may lead to improve-
ments in the explanatory power of the regressions. Third,
similar methods could be used to quantify the impacts that
dams operated by certain large agencies (such as the Army
Corps of Engineers) are having on flood flows.

Another potentially useful extension of this research
would be to analyse the estimated impacts of dams on flood
flows for specific river reaches. Since it is possible to
generate all the independent variables for each river reach
using GIS data, this could be done with some additional GIS
and database work Reach-scale estimates of alteration for at
least some parts of the country could be very useful. They
could be used to address additional questions, such as the

Copyright © 2010 John Wiley & Sons, Ltd.

distance downstream that dams have impacts on flood flows,
and also have practical applications, such as highlighting
important locations for environmental flow restoration.
They could also be combined with other datasets, such as
biological data, to assess other questions such as the impact
of altered flows on biological communities.
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Figure Al. Map of hydrologic units. Map ID numbers are referenced in Table Al
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