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[1] This paper applies recent innovations in flood frequency analysis to regional series of
earthquake magnitudes in the global Centroid Moment Tensor (CMT) catalog from 1976
to 2005. Probability plot correlation coefficient hypothesis tests and L-moment
goodness-of-fit evaluations reveal that the Gumbel (GUM) distribution provides a good
approximation to the probability distribution function (pdf) of series of annual maximum
(AM) earthquake magnitudes. Homogeneity tests based on the theory of L-moments
further reveal that broad regions of the globe are homogeneous in the sense that the AM
observations of earthquake magnitudes are well approximated by a GUM pdf with fixed
upper moments. The homogeneity of global earthquake data across broad tectonic
environments enables us to pool data into a regional pdf of earthquake magnitudes, termed
an index earthquake distribution. Research in hydrology has shown that frequency
analysis based on pooling of data using an analogous index-flood method are much more
accurate than frequency analysis based on site or region specific data. The index
earthquake distribution is a dimensionless GUM distribution with fixed scale parameter so
only the mean earthquake magnitude must be estimated for a region to define the
frequency distribution of large earthquakes. We show how the degree of spatial
homogeneity of earthquake magnitudes across broad tectonic environments can be
exploited to yield improved estimates of the risk posed by extreme earthquake
magnitudes.
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1. Introduction

[2] The Gutenberg-Richter (GR) model [Gutenberg and
Richter, 1954] is widely used and has been shown to fit both
worldwide and regional earthquake catalogs. A review of
the seismic literature demonstrates that many researchers
have questioned the validity of the GR model [Cosentino et
al., 1977; Dargahi-Noubary, 1986; Pacheco et al., 1992;
Main, 1996; Stein and Newman, 2004]. Analogously, in the
field of flood frequency analysis, the Gumbel (GUM) model
[Gumbel, 1958] was once documented as the most widely
used model of flood frequency (see Cunnane [1989] or the
summary provided by Vogel and Wilson [1996]), until the
introduction of the theory of L-moments [Hosking, 1990]
and regional methods for pooling flood data [Hosking and
Wallis, 1997].
[3] The theory of L-moments [Hosking, 1990] and regional

methods for pooling flood data [Hosking and Wallis, 1987]
have transformed hydrologic flood frequency analysis over the
past few decades. L-moment diagrams enable an unbiased
evaluation of the goodness-of-fit of alternate probability
distribution functions (pdfs) to regional flood series and have

proven to be an important improvement over traditional
product moment diagrams in most instances [Vogel and
Fennessey, 1993]. Dozens and possibly hundreds of studies
around the world have now applied L-moment diagrams
(there are over 270 citations to Hosking [1990]) to assess
the goodness of fit of alternative distributions to flood series
and other natural phenomena. As a result, by the end of the
last century it has now become common practice to replace
the GUM model with its three-parameter generalization
known as the generalized extreme value (GEV) distribution
to problems in flood frequency analysis [Stedinger et al.,
1993]. Similarly, it is now common practice in hydrology to
pool information from many samples to improve the preci-
sion associated with estimates of flood frequency model
parameters [Hosking and Wallis, 1987]; such methods are
termed regional methods in hydrology. While these recent
innovations have been applied to other natural hazards such
as ocean wave heights [Ma et al., 2006], wind speeds [Cheng
and Yeung, 2002], and rainfall events [Onibon et al., 2004],
surprisingly few have been applied to earthquakes.
[4] Much of the discussion in the seismology literature

concerning the limitations of the GR relationship for large
events has focused on the characteristic earthquake model
as the alternative [Youngs and Coppersmith, 1985; Kagan,
1993; Stein and Newman, 2004]. In support of the GR
model, Howell [1985] demonstrated that the small sample
size of large earthquakes will cause scatter in the large
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magnitude range of the data, which can be inappropriately
used as evidence for the characteristic earthquake model.
Kagan [1993] attributed the observed ‘‘evidence’’ of the
characteristic earthquake to statistical bias and argued that
the formulation of the characteristic model is so vague that
it cannot be rigorously verified, and therefore supported
simpler models. Main [2000] found that multiple slope GR
models are not justified because the observed differences in
recurrence rates for small and large earthquakes in the same
region are not statistically different. Stein and Newman
[2004] demonstrated that sampling bias and inaccurate
paleoseismic estimates can result in data that mistakenly
have the appearance of the characteristic earthquake model.
The method of pooling data from different statistically
homogeneous regions, commonly used in hydrology, can
help overcome these problems by compensating for the
small sample size of large events within individual regions.
[5] The application of the GR model to the series of

earthquake magnitudes is equivalent to application of an
exponential (EXP) pdf [Kijko and Graham, 1998; Utsu,
1999; Lombardi, 2003]. A number of alternative pdfs have
been introduced for modeling earthquake magnitudes; in
this paper we consider the class of extreme value distribu-
tions that have found common use in other applications of
natural hazards such as the generalized Pareto (GP) and
GEV pdfs. These distributions are commonly applied to
floods, rainfall, wind speeds, wave heights, insurance pay
outs, and other extremes; see Beirlant et al. [2005] for a
review of different applications. The GEV distribution is a
generalization of the three possible limit distributions
known as the Extreme value type I (Gumbel), II (Frechet),
and III (Weibull) distributions. Makjanić [1980, 1982] first
introduced the GEV distribution to the field of seismology
as an alternative to the GR model, but termed it a general-
ized exponential model. The GP pdf was first introduced to
seismology by Dargahi-Noubary [1986] and was discussed
more recently by Pisarenko and Sornette [2003]. In the field
of flood frequency analysis, the GP and GEV pdfs have
nearly replaced the more parsimonious GR/EXP and GUM
pdfs over the past decade. One of the primary goals of this
study is to evaluate the potential of the GP and GEV pdfs to
model the frequency behavior of earthquakes.
[6] As in flood frequency analysis, we term the earth-

quake magnitude series above a threshold mo as the peak
over threshold (POT) series and the series of the largest
earthquake magnitude per year in a region as the annual
maximum (AM) series. Many researchers [Epstein and
Lomnitz,1966; Rosbjerg et al.,1992; Stedinger et al.,1993;
Lombardi, 2003; and others] have shown that a GR/EXP
model of the POT series is equivalent to a GUM model of
the AM series assuming a Poisson distribution of earth-
quake arrival times. The generalized form of the GR/EXP,
termed the GP distribution provides a more flexible model
of extremes above a threshold [Embrechts et al., 1997].
Similarly, research in other fields of natural hazard frequen-
cy analysis has shown that the GEV, a generalized form of
the GUM model, provides a much more flexible model of
AM records than the GUM model.
[7] In the past, the parameters of flood frequency prob-

ability models were estimated from only the data available
for a particular river. These ‘‘at-site’’ flood samples were
often too short to provide reliable estimates of large floods.

For this reason, hydrologists have incorporated alternative
sources of information, including the pooling of samples
over space to compensate for short record lengths. One such
regional pooling method, termed the index-floodmethod, has
been shown to be reasonably robust and more accurate than
at-site methods which estimate two or three parameters of a
pdf at a single site [Potter, 1987; Bobee and Rasmussen,
1995]. Another goal of this study is to document how recent
developments in the field of regional flood frequency
analysis [Stedinger et al., 1993; Hosking and Wallis,
1997] may offer valuable alternatives to the traditional use
of earthquake records from a single location.
[8] We begin by summarizing the various probability

distributions and associated parameter estimation algorithms
that we consider as potential models for earthquake magni-
tudes. For clarity, the probability distributions and parameter
estimation algorithms are given in Appendices A and B,
respectively. We then present the L-moment diagrams, which
provide a unique summary of the distributional properties of
the global earthquake catalog. These diagrams motivate the
application of numerous heterogeneity hypothesis tests in the
subsequent section. On the basis of the results of those
heterogeneity tests and the assumption of the GUM pdf, we
conclude by illustrating the advantages of fitting a global
index earthquake distribution.

2. Probability Distributions and Parameter
Estimation

[9] In hydrology, it is now standard practice to fit a
probability distribution to the AM series of floods rather than
the POTseries, which is the series of floods above a threshold
[Stedinger et al., 1993; and many others]. Although both the
POT and AM approaches have been used in hydrology,
common flood design practices employ the AM series.
Rosbjerg et al. [1992] and Stedinger et al. [1993, chapter
18.6.1] provide a discussion of the advantages and disadvan-
tages of each approach and describe the theoretical relation-
ships between both series.Whenworking with the POTseries
of earthquake magnitudes, one needs to combine the fitted
pdf of earthquake magnitudes (i.e., GR/EXP or GP models),
with a probabilistic model of earthquake arrivals. The
Poisson distribution is the simplest and most commonly
applied pdf, although earthquake arrival times exhibit
persistence. Rosbjerg et al. [1992] and Stedinger et al.
[1993] show that the use of the EXP/GR model for modeling
the POTseries combined with a Poisson model of earthquake
or flood arrivals is equivalent to modeling the AM series
using a GUM pdf. The advantage to working with the POT
series is that it includes a much larger number of observa-
tions; the disadvantage is that the assumption of indepen-
dence cannot be justified. Rosbjerg et al. [1992], Stedinger
et al. [1993], and others have shown that if one combines a
GP model of the POT series with a Poisson model of arrival
times, then the AM series is GEV. Thus an EXP/GRmodel of
earthquake POT series is equivalent to a GUM model of the
AM series of earthquake magnitudes and a GP model of
the earthquake POT series is equivalent to a GEV model
of the AM series. Relationships among the distributions fit
to the POT and AM series pdfs are given in Appendix A.
[10] A variety of methods are available for estimating the

parameters of the pdfs considered for the POTand AM series.
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The short length of individual flood and earthquake records
causes estimation of extreme events to be unreliable. For this
reason, hydrologists usually pool information from many
data sets, substituting space for time to compensate for the
short length of individual data sets. We use the term
‘‘index earthquake distribution’’ to describe this pooling
method, which has proven to be an efficient approach in
flood frequency analysis [Dalrymple, 1960; Potter, 1987;
Stedinger et al., 1993; Hosking and Wallis, 1997].
[11] In Appendix B, we describe the use of the method of

moments (MM) for estimating the parameters of the four
pdfs considered for modeling AM and POT series. We
employ MM estimators instead of maximum likelihood
(ML) estimators because a number of studies have shown
that MM estimators are more efficient and less biased than
either ML or L-moment [Hosking, 1990] estimators for the
small samples which are normally encountered in AM series
of earthquakes and floods. For example, Hosking and Wallis
[1987] show that unless the sample sizes are above 500, MM
and L-moment estimators are both more efficient than ML
estimators. Similarly,Madsen et al. [1997] show that theMM
estimators lead to more efficient quantile estimates for the
GEV pdf than either the method of L-moments or ML for
�0.25 � k � 0.3 and sample sizes n = 10–50. Christopeit
[1994] has shown that the MM provides reasonable GEV
parameter estimates for the distribution of earthquake mag-
nitudes. Stedinger et al. [1993] reviews the most efficient
parameter estimation procedures for each of the models
introduced above in the context of flood frequency analysis.
In this initial paper, we employ MM estimators because they
are efficient for the GP and GEV models for small samples,
and they provide the most straightforward approach for
introducing the index earthquake method. Appendix B intro-
duces MM estimators of the parameters of the GR, EXP and
GP models based on POT series and estimators of the
parameters of theGUMandGEVmodels based onAMseries.

3. L-Moment Diagrams for Distribution Selection

[12] An increasingly popular approach for assessing the
goodness-of-fit of a particular probability distribution to
observations of extreme events involves the construction of
L-moment ratio diagrams, introduced by Hosking [1990].
L-moments are analogous to conventional product moments,
but are estimated using linear combinations of the ordered
observations. The L-moment ratios L–Cv, L–Skewness, and
L–Kurtosis are analogues of the conventional moment ratios
coefficient of variation Cv, skewness g, and kurtosis K;
L-moment diagrams are now used routinely in hydrology and
meteorology, and increasingly in other fields. Moment ratio
diagrams are constructed by plotting estimatedmoment ratios
versus each other: for example,Cv versus g, orK versus g. On
the same plot, the theoretical relationships for various pdfs
are compared to the observations. Vogel and Fennessey
[1993] have shown that L-moment diagrams are nearly
always an improvement over ordinary product moment
diagrams because L-moment ratios are approximately unbi-
ased, whereas ordinary moment ratios can exhibit enormous
downward bias, particularly for skewed samples, even with
extremely large samples. Chowdhury et al. [1991], Stedinger
et al. [1993], Hosking and Wallis [1997], and many others
have summarized the theory of L-moments, so we do not

reproduce that theory here. Instead, we simply report the
resulting L-moment diagrams for a global data set of earth-
quake magnitudes in Figure 1. Here L-moments are com-
puted using the software package ‘‘lmomco’’ [Asquith,
2006] in the open-source statistical computing language R
[R Development Core Team, 2006].
[13] We calculate the POT and AM series L-moments of

the moment magnitude, Mw, from the moment tensor solu-
tions in the global CMT catalog [Ekström et al., 2005] from
1 January 1976 to 31 December 2005. The scalar seismic
moment (M0) is reported in units of dyne-centimeter to four
significant figures. From this value we calculate the moment
magnitudeMW = (2/3)*(log (M0)� 16.1) [Kanamori, 1977].
We adopt the magnitude of completeness of mo = 5.8 that
Kagan [1997] showed to be appropriate for this catalog. We
test the assumption that the AM series in each region are
independent in time, by performing a hypothesis test based
on the lag-one serial correlation coefficient, r(1), for the 16
regions that have uncensored AM series. Under the null
hypothesis of independence, one expects Var[r(1)] = n�1/2

where n is the AM series record length. Using a 5% level test,
the estimated values of r(1) were all statistically indistinguish-
able from zero.
[14] Each point in Figure 1 represents the L-moment

ratios for one of the 50 Flinn-Engdahl (FE) seismic geo-
graphic regions [Young et al., 1996] illustrated in Figure 2.
For the AM series we exclude 5 of the 50 FE regions from
our analysis because those regions contain less than five
earthquakes greater than or equal to magnitude 5.8.
Figure 1a plots the L-moment ratio diagrams for the POT
series. The L–Cv versus L–Skewness plot includes the
theoretical relationship for the EXP pdf and the plot of
L–Kurtosis versus L–Skewness includes the theoretical
relationship for both the EXP and GP pdfs. The record
length weighted global average value of the L-moment
ratios is also plotted in each figure for comparison with
the theoretical values. Figure 1b compares the L-moment
ratio diagrams for the AM series with theoretical relation-
ships for the GUM and GEV distributions. Figure 1 illus-
trates a notable global homogeneity among values of L–Cv

for both the AM and POT series. This homogeneity is
especially remarkable when compared to L-moment dia-
grams of floods and other natural phenomena summarized
elsewhere [Vogel and Wilson, 1996; Onibon et al., 2004;Ma
et al., 2006]. This remarkable homogeneity led us to the
hypothesis, tested in a subsequent section, that the entire
globe is homogeneous in terms of the upper moment ratios of
earthquake magnitudes.
[15] Figure 1 qualitatively demonstrates that the record

length weighted global mean L-moments are not signifi-
cantly different than the theoretical values for a GUM pdf.
This result led us to hypothesize that all of the earthquake
series may arise from a single regional GUM pdf with a
fixed global value of L–Cv. This hypothesis implies that the
GEV distribution may not be necessary to model the
frequency behavior of earthquake magnitudes.

4. Heterogeneity Tests and Identification of
Homogeneous Regions

[16] A homogeneous group of samples is defined as a group
whose frequency distribution (after appropriate scaling) is
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considered to be approximately the same. Showing that a
group of samples is approximately homogeneous is sufficient
to ensure that pooling of the samples will lead to a regional
frequency analysis which is more accurate than using individ-
ual samples [Hosking and Wallis, 1997]. In hydrology, homo-
geneity is often judged by assessing the variability among the

coefficient of variation, Cv, and/or skewness, g (or their L-
moment counterparts), of individual flood series records. The
analog here would be to assess the variability of those same
statistics among regional samples of earthquake series. In this
section we evaluate homogeneity of earthquake samples using
Monte Carlo simulation experiments and using analytical

Figure 2. Map showing the boundaries of the Flinn-Engdahl Seismic Regions [Young et al., 1996].

Figure 1. L-moment diagrams for the observed POT and AM series of earthquake magnitudes.
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hypothesis tests introduced by Hosking and Wallis [1997] and
others.
[17] Hosking and Wallis [1997] introduced a heterogene-

ity test statistic, H, based on the theory of L-moments.
Computation of H, involves the use of Monte Carlo experi-
ments which enable a comparison of the variability of
individual sample estimates of L–Cv with estimates based
on the null hypothesis that earthquake magnitudes originate
from a single homogeneous global index earthquake distri-
bution with fixed regional L–Cv. Hosking and Wallis [1997]
suggest that regions can be classified as ‘‘acceptably homo-
geneous’’ if H < 1, ‘‘possibly heterogeneous’’ if 1 < H < 2,
and ‘‘definitely heterogeneous’’ if H > 2. We used the
implementation of this method within the R-project [R
Development Core Team, 2006] by the package ‘‘RFA’’
[Ribatet, 2005].
[18] Table 1 summarizes the values of the homogeneity

test statistic H for various combinations of seismic regions.
We remove five intracontinental regions from the analysis
because they lack sufficient data. The resulting global
catalog of 45 regions yields a value of H = 3.02 indicating
that the entire globe is ‘‘definitely heterogeneous’’ in the
sense of the GUM hypothesis with fixed global L–Cv.
[19] We next explore whether smaller earthquake regions

may be approximated as homogeneous. We hypothesize
that the most physically plausible homogeneous regions
for earthquakes should be defined by tectonic environ-
ment, since other researchers have found that the GR ‘‘b
value’’ varies systematically for different styles of faulting
[Schorlemmer et al., 2005]. We combine FE regions to
form larger regions based on tectonic environment as
defined by Kagan [1997]. Table 1 indicates that collision
zones (CZ) and intracontinental regions (IC) are homoge-
neous, while mid-ocean ridges (MOR) and others are
possibly heterogeneous and subduction zones (SZ) are
clearly heterogeneous.
[20] Because SZ contain a large portion of the catalog and

produce the largest recorded earthquakes, we further inves-
tigate the heterogeneity of these regions by subdividing SZ

into three regions based on geographic location. The eastern
(E) and northwest (NW) SZ regions are homogeneous, yet
the southwest (SW) SZ regions are heterogeneous. The SW
SZ contain the recent MW 9.0 Sumatra-Andaman earth-
quake which is the largest event in the catalog. This result
either implies the region is heterogeneous or that perhaps a
more flexible model such as the GEV model is needed to
model earthquakes in the Andaman Island-Sumatra region.
[21] We further combine regions to explore the possibility

that broad regions of the globe are homogeneous in the
sense of the GUM hypothesis of earthquake magnitudes.
We find that the super region that includes SZ, CZ, and IC
regions is possibly heterogeneous. If we restrict the SZ to
only the E and NW SZ regions that we previously showed
to be homogeneous then the combined regions behave as a
homogeneous super region.
[22] The heterogeneity of the FE regions described as

‘‘other’’ in Table 1 is inconclusively described as possibly
heterogeneous. We add those FE regions to the E and NW
SZ, CZ, and IC regions, and test the resulting super region;
this super region is homogeneous, and contains 31 of the
original 45 FE regions. The FE regions not included in this
super region, the most inclusive of the conglomerated
regions, are the SW SZ and the MOR regions.
[23] In addition to the aboveMonte Carlo simulation based

tests of homogeneity we use the analytic homogeneity tests
introduced by Chowdhury et al. [1991] and others. These
tests evaluate the hypothesis that the dispersion of the
L-moment statistics arise only from the variability produced
by estimating the statistics from finite samples of a theoretical
GUM pdf with a constant global average L–Cv = 0.0402
(illustrated in Figure 1). Note that a GUMpdf always exhibits
a fixed L–Skewness and L–Kurtosis. Under the null hypoth-
esis of a global GUM pdf with fixed global L–Cv, the only
parameter that can vary from region to region is the mean of
the AM series.
[24] Dalrymple [1960] first introduced a homogeneity test

for the GUM pdf with more recent improvements intro-
duced by Chowdhury et al. [1991], Fill and Stedinger
[1995], and Hosking and Wallis [1997]. Hosking [1990]
showed by simulation that a normal approximation for the
distribution of sample estimates of L–Skew is excellent
when samples are drawn from a GUM pdf. Chowdhury et al.
[1991] use the normal approximation of L–Skew estimates
to develop both an L–Cv and L–Skew test for the GUM
pdf. The two test statistics Z = [t̂2 � t2]/st̂2 and Z = [t̂3 �
t3]/st̂3 follow a standard normal distribution, denoted
N(0,1). Here t2 is the global mean value of L–Cv, t3 =
0.1699 for a GUM pdf, t̂2 t̂3 are the estimated values of
L–Cv and L–Skew for a particular region and st̂2 and st̂3 are
the standard deviations of t̂2 and t̂3 reported in equations
(16) and (17) of Chowdhury et al. [1991]. Since Chowdhury
et al [1991] only reports values of st̂2 for values of t2 � 0.1,

we prefer the equation st̂2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0883ðt2=0:4Þ2=n

q
for 0 �

t2 � 0.4 (J.R. Stedinger, personal communication, 2007).
[25] Figure 3 compares the test statistic Z corresponding

to both the L–CV and L–Skew tests to a standard normal
distribution. Here Z is computed for the original 45 FE
regions as well as the super region containing only 31 of the
original FE regions. Figure 3 demonstrates that both test
statistics are well approximated by the N(0,1) distribution.

Table 1. Regional Heterogeneity Measure

Seismic Region Name
Number of FE

Regions Included H

Global Catalog 45 3.02

Subduction Zonesa 18 3.16
Collision Zonesa 10 �1.06
Intracontinental Regionsa 3 (8) 0.96
Mid-Ocean Ridgesa 7 1.19
Othera 7 1.66

E Subduction Zones 4 0.85
NW Subduction Zones 7 0.99
SW Subduction Zones 7 3.60

Subduction Zones, Collision Zones, and
Intracontinental Regions

31 1.86

E and NW Subduction Zones, Collision Zones,
and Intracontinental Regions

24 �0.02

E and NW Subduction Zones, Collision Zones,
Intracontinental Regions, and Other

31 0.59

aRegions defined by Kagan [1997].
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As expected from our previous results using the H statistic,
the test statistic Z computed for the super region based on
31 FE regions, more closely resembles a N(0,1) distribution
than the test statistic Z computed for the original 45 FE
regions. Chowdhury et al. [1991] found the L–Cv test for
the GUM pdf to be more powerful than the Kolmogorov-
Smirnov test at detecting L–Cv inconsistencies. Several
other attractive tests of homogeneity are provided by
Chowdhury et al. [1991] which we hope will be considered
in future studies.
[26] We conclude that although the entire globe is not

homogeneous in the sense of the GUM hypothesis with a
fixed global value of L–Cv, Table 1 and Figure 3 document
that broad regions of the globe are homogenous and that the
approximation of homogeneity for the entire globe may be
an adequate approximation. In flood frequency analysis, it is
rare to find even a small geographic region that is homo-
geneous (for example, the size of a small state such as
Rhode Island) so the degree of spatial homogeneity reported
in Table 1 and Figure 3 for earthquake magnitudes across
broad regions of the globe is striking and warrants further
research.

5. Probability Plot Correlation Coefficient
Hypothesis Tests

[27] While numerous hypothesis tests are available for
testing alternative distributional hypotheses such as the
Kolmogorov-Smirnov test and the Chi-square test, research
has shown that the probability plot correlation coefficient
(PPCC) test is more powerful than either of these tests for
testing a number of extreme value distributional alternatives
[Stedinger et al., 1993; Chowdhury et al., 1991]. For
example, the PPCC test of normality compared favorably
with seven other tests of normality on the basis of empirical

power studies performed by Filliben [1975]. Since Filliben
[1975], the PPCC test has been extended to dozens of other
distributions. For example, Vogel [1986] and Chowdhury
et al. [1991] developed critical values of the PPCC test
statistic for the GUM and GEV distributions. The PPCC test
is an attractive hypothesis test because it is based on the
probability plot, which is a widely used graphical aid. The
PPCC is simply a measure of the linearity of the probability
plot. In this section we use the PPCC hypothesis test to
evaluate the overall goodness-of-fit of the GUM pdf to each
region in the global earthquake catalog.
[28] Values of the GUM PPCC for each of the 45 FE

earthquake regions were compared to the critical values
reported in Vogel [1986; Table 2] assuming a 5% significance
level. When a computed value of PPCC exceeds the critical
values reported, the GUM hypothesis is accepted at that
significance level. Using a 5% significance level test, under
theGUMnull hypothesis one expects 0.05(45) = 2.25 regions
to have PPCC values below the reported critical values.
While the power of individual hypothesis tests is low, the
power associated with 45 individual hypothesis tests in this
case is much higher. Repetitive implementation of the same
test 45 times would be termed a field significance level test
and such tests have been shown to be quite powerful [Livezey
and Chen, 1983]. In our case, of the 45 regions, the GUM
PPCC test was only rejected for three regions. Using a
binomial test there is a 19% chance of getting three or more
rejections out of 45 independent 5% level tests, thus the field
significance is 19%. On the basis of these results we are
unable to reject the GUM hypothesis for earthquake magni-
tudes for the entire global data set.
[29] We also computed the GUMPPCC test statistic for the

31 FE regions that were determined to be homogeneous in the
previous section. For the 31 FE regions one would expect to
reject the GUM null hypothesis for 0.05(31) = 1.55 regions

Figure 3. Comparison of the distribution of the Chowdhury et al. [1991] L–Cv and L–Skew Test
Statistics for the 31 and 45 FE regions with a standard normal distribution.
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yet only one of these FE regions had to be rejected. Using a
binomial test there is a 46% chance of at least one rejection at
the 5% significance level.

6. The Global Index Earthquake Distribution

[30] In hydrology, the pooling of samples, which is
termed ‘‘regional frequency analysis’’, has long been pre-
ferred to the use of a single data series, except in rare cases
when one has an extremely long record. It is now common
practice in hydrology to pool summary statistics from
different samples collected in a region to create a regional
frequency distribution, rather than using a single sample to
fit the frequency distribution. The most common method for
pooling flood data series is termed the ‘‘index flood’’
method [Dalrymple, 1960] though in principle the method
can be applied to other problems [e.g., Ma et al., 2006;
Onibon et al., 2004]. When applied to earthquake data, we
term the method an ‘‘index earthquake’’ method. Stedinger
et al. [1993] and Hosking and Wallis [1997] summarize the
most common regional approaches in hydrology with spe-
cial emphasis given to the index flood method because it
has proven to be one of the most robust and efficient
methods available.
[31] The key assumption of an index earthquake method

is that the r individual earthquake regions form an overall
homogeneous super region; that is, the frequency distribu-
tion of the regions are identical, apart from a region-specific

scaling factor termed the index earthquake. Thus

mkðpÞ ¼ mk � mSðpÞ ð1Þ

where mk is the index earthquake in region k, which is simply
the mean of the AM series of earthquake magnitudes in
region k, mk (p) is the pth quantile of earthquake magnitudes
in region k, and mS (p) is the super region quantile function,
which is a normalized frequency distribution for the entire
super region made up of individual regions. Here p is the
nonexceedance probability given by the cumulative density
function (cdf) p = P[M � m] where M is the random
variable earthquake magnitude and m is a realization of that
variable.
[32] Normally, the index flood method is implemented

using either probability weighted moments or L-moments,
however, since these methods are not common in the
seismic literature we introduce the ‘‘index earthquake’’
method using ordinary product moments. The resulting
index earthquake model is a single GUM model with fixed
parameters for the entire super region. Our approach,
described below, refers to the theoretical development of
the GUM pdf and method of moments estimators of its
parameters that are summarized in Appendices A and B,
respectively:
[33] 1. For each earthquake region k = 1,. . .,r, compute

the mean mk and standard deviation sk of the AM earth-
quake magnitudes from equation (B1) but with mi equal to
the AM earthquake magnitude in year i.
[34] 2. To obtain the normalized frequency distribution

for the super region based on r individual regions, estimate
a record length weighted value of the standard deviation of
earthquake magnitudes for the super region using

sS ¼

Xr

k¼1

nksk

mkXr

k¼1

nk

ð2Þ

[35] 3. Use the normalized moment estimates mS = 1 and
sS in place of m and s in equations (B4) and (B5) to obtain
super region estimates of the GUM model parameters,
which we term b̂S and x̂S. The normalized quantile function
for the super region consisting of r regions (also termed the
index earthquake distribution) can be found by combining
the quantile function of a GUM variable in equation (A22)
with the estimators of b̂S and x̂S in equation (B4) with the
fact that mS = 1 leading to the normalized GUM index
earthquake quantile function

mS pð Þ ¼ 1� ln � ln pð Þð Þ þ g½ 
sS
ffiffiffi
6

p

p
ð3Þ

where g = 0.5772. . . is the Euler-Mascheroni constant and
sS is defined in equation (2). We have changed the notation
mGUM (p) used in equation (A22) in Appendix A, in order to
emphasize here that the resulting GUM quantile function in
equation (3) applies to the entire super region.
[36] 4. Now an estimate of the 100p percentile of the

distribution of earthquake magnitudes for a particular

Table 2. The Index Earthquake Distribution

FE Region Number n mk m (0.99)

NW Subduction Zones
1 29 6.9 8.4
19 30 7.1 8.7
18 29 6.6 8.1
20 26 6.3a 7.7
21 27 6.5 7.9
22 30 7.0 8.5
23 30 6.8 8.3

E Subduction Zones
5 30 6.8 8.3
6 30 6.7 8.1
7 24 6.2a 7.5
8 30 7.3 8.8

Collision Zones
25 14 5.9a 7.2
26 25 6.2a 7.6
27 19 6.1a 7.4
28 7 5.5a 6.7
29 24 6.5a 7.9
30 26 6.4a 7.8
31 16 5.9a 7.2
41 24 6.3a 7.7
47 8 5.5a 6.7
48 28 6.4 7.8

Intracontinental Regions
34 7 5.6a 6.8
37 17 6.0a 7.3
42 5 5.8a 7.1

Other
2 15 5.9a 7.2
3 20 6.3a 7.7
9 16 5.9a 7.2
10 30 6.4 7.8
11 25 6.6a 8.0
17 15 5.9a 7.2
39 9 5.8a 7.0

aThese values are censored maximum likelihood estimates [Leese, 1973].
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region k (within the super region defined in equation (3)) is
given by

mkðpÞ ¼ mk � mSðpÞ ð4Þ

where mS (p) is given in equation (3) and mk is the mean
earthquake magnitude for region k.
[37] For the super region with 31 FE regions, the standard

deviation of earthquake magnitudes ss = 0.0694. Table 2
summarizes the index earthquake distribution for FE
regions within this super region by reporting the number
of observations, n, the mean magnitude, mk, of the AM
series for each region and the 100-year (p = 0.99) earth-
quake magnitude, mk(0.99) estimated from our GUM index
earthquake model in equation (4). There is a slight compli-
cation with use of standard MM or ML estimators for the
GUM parameters for some of the earthquake regions
considered, because some earthquake records are censored
samples. Although the record lengths are all 30 years, in
some regions there are years in which no earthquake larger
than the magnitude of completeness (m0 = 5.8) occurred,
thus those years are censored, reducing the sample size. We
address this issue by applying a ML estimate of GUM
parameters derived for censored observations [Leese, 1973]
for the 20 regions in which the censoring is greater than
10%. We could not find a MM estimator for censored
samples for the GUM distribution. Since this censoring
issue is so important for the frequency analysis of earth-
quakes, further research is needed to address this issue.
[38] Figure 4 plots the earthquake magnitude, ms (p), as a

function of its probability of exceedance. The bold curve is
the index earthquake magnitude for the super region, ms (p),
and the thin grey curves represent the equivalent earthquake

magnitude based on the parameter estimates for each of the
individual k = 31 FE regions. If data were not pooled across
the different FE regions as in the index earthquake model
(given by the bold curve in Figure 4), the quantiles of
earthquake magnitudes would be estimated by the various
thin grey curves in Figure 4. Estimates of the 100-year
earthquake based on the individual regional quantile func-
tions (shown by thin grey curves) would have much greater
sampling variability than estimates of 100-year earthquakes
based on the index earthquake model introduced here. This
has been proven for the analogous flood estimates by
dozens of previous regional studies available in the litera-
ture on regional flood frequency analyses (summarized by
Stedinger et al. [1993] and Hosking and Wallis [1997]).

7. Conclusion

[39] Many statistical methods introduced to the field of
hydrologic frequency analysis are now considered standard
practice in the field of mathematical statistics as evidenced by
their inclusion in the ‘‘Encyclopedia of Statistical Sciences’’
[e.g.,Hosking, 1998]. There has been an evolution in the field
of flood frequency analysis from use of the EXP and GUM
models of POT and AM series, respectively, several decades
ago, to their generalized equivalent GP and GEV pdfs more
recently.We had anticipated that the same evolution would be
appropriate for earthquake frequency analysis; however, our
results indicate that the more generalized form of the extreme
value pdfs do not provide the same advantages for modeling
earthquakes as they do for modeling floods. We show that
recent developments in regional flood frequency analysis,
including the theory of L-moments, hypothesis testing, and
parameter estimation [Hosking and Wallis, 1997; Stedinger
et al., 1993] are valuable statistical tools for modeling
earthquake frequency. Seismology and hydrology share
several statistical difficulties, most importantly, that the
behavior of the upper tail of the distribution is poorly
resolved due to the small number of large events. We
introduce an index earthquake method, analogous to the
index-flood method, for estimating the parameters of the
distribution of earthquake magnitudes by pooling data across
a set of regions found to behave as a homogeneous super
region. The method requires the assumption of a probability
distribution and the definition of a homogeneous super
region. We use L-moment diagrams and probability plot
correlation coefficient hypothesis tests to document that all
45 FE regions are well approximated by a GUM pdf. Using
homogeneity tests introduced by Chowdhury et al. [1991]
and Hosking and Wallis [1997], we could not reject the
hypothesis that a large portion of the globe (31 FE regions) is
homogeneous in terms of all the upper moments of the
distribution of earthquake magnitudes. Combining our find-
ings relating to homogeneity and the GUM pdf, we introduce
an index earthquake distribution which involves pooling the
series of earthquake magnitude from all the individual
regions which make up the super region. The resulting index
earthquake distribution is a single parameter model that only
depends on a region-specific scaling factor, which is the
mean earthquake magnitude. The mean earthquake magni-
tude can be estimated from recorded local seismicity or from
physical models.

Figure 4. The index earthquake magnitude plotted as a
function of the probability of exceedance. The bold line is
the index earthquake magnitude for the super-region, ms (p),
containing 31 FE seismic regions. The thin grey lines
represent the equivalent earthquake magnitude based on the
parameter estimates for each of the individual k = 31 FE
regions.
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[40] In flood frequency analysis, it is rare to be able to
accept the hypothesis of homogeneity even for a small
geographic region (for example, an entire state), so the degree
of spatial homogeneity reported in Table 1 and Figure 3 for
earthquake magnitudes across broad regions of the globe is
striking and warrants further research. Future research on
the series of annual maximum earthquakes should further
address the issue of censoring due to lack of observations
below the magnitude of completeness.

Appendix A: Probability Distribution for
Extreme Events

[41] This section provides a summary of some of the most
commonly used probability distributions in flood frequency
analysis which are shown here to be useful in earthquake
frequency analysis for both POT and AM series of earth-
quake magnitudes.

A1. Peaks Over Threshold Series

[42] The distribution of earthquake magnitudes m, have
long been assumed to follow the power law model given by
Gutenberg and Richter [1954] which we term the GR model

log10 ðNÞ ¼ a� bm ðA1Þ

where N is the number of earthquakes which have exceeded
magnitude m, and a and b are constants. The equivalent pdf
corresponding to the GR model in (A1) is the EXP pdf

fEXPðmÞ ¼ b exp �bðm� moÞ½ 
 for mo < m < 1 and b > 0

ðA2Þ

where b = b ln(10) and m is the observed earthquake
magnitude in excess of some minimum threshold level mo

[Kijko and Graham, 1998; Utsu, 1999]. The GR model in
equation (A1) is equivalent to the EXP pdf in equation (A2)
with mean, variance, skew, and kurtosis of earthquake
magnitudes given by

mEXP ¼ m0 þ 1=b½ 
 ðA3Þ

s2
EXP ¼ 1=b2 ðA4Þ

gEXP ¼ 2 ðA5Þ

KEXP ¼ 9 ðA6Þ

The quantile function for an EXP pdf is needed for
constructing probability plots and estimating earthquake
magnitudes corresponding to a recurrence interval and is
given by

mEXPðpÞ ¼
bmo � ln 1� pð Þ

b
ðA7Þ

where p is the nonexceedance probability given by the
cumulative density function (cdf) p ¼ FEXPðmÞ ¼ P M � m½ 
:

[43] The GP model [Pickands, 1975] is a generalization
of the EXP model for earthquake POT series, and is given by

fGPðmÞ ¼ b 1� kbðm� moÞ½ 

1
kð Þ�1

for mo < m < 1 b > 0 k 6¼ 0

ðA8Þ

where b and k are scale and shape parameters, respectively,
and b is the same as in the EXP pdf. The EXP pdf in
equation (A2) is a special case of the GP model because
equation (A8) reduces to equation (A2) when the shape
parameter k = 0. For the GP model in equation (A8) the
bounds on m are

mo � m � mo þ 1= bkð Þ½ 
 for k > 0 ðA9Þ

mo þ 1=ðbkÞ½ 
 � m � 1 for k < 0 ðA10Þ

hence an upperbound on the distribution of m implies that
k > 0. Due to sample variability, it is quite possible for
sample estimates of k, based on small samples, to be
negative. For the GP model in equation (A8), Hosking and
Wallis [1987] report the mean, variance, skew, and kurtosis:

mGP ¼ mo þ
1

bð1þ kÞ ðA11Þ

s2
GP ¼ 1

b2 1þ kð Þ2 1þ 2kð Þ
h i ðA12Þ

gGP ¼ 2 1� kð Þ 1þ 2kð Þ1=2

1þ 3kð Þ ðA13Þ

KGP ¼ 3 1þ 2kð Þ 3� kþ 2k2ð Þ
1þ 3kð Þ 1þ 4kð Þ � 3: ðA14Þ

Note that the rth moment of a GP pdf only exists for k >
(�1/r) whereas L-moments always exist. For example, the
skew coefficient only exists for k > �1/3. The quantile
function for the GP pdf is given by

mGPðpÞ ¼
1þ kbmo � 1� pð Þk

kb
ðA15Þ

where p is the nonexceedance probability. A complete
analysis of the properties and parameter estimation methods
for the GP distribution is provided by Hosking and Wallis
[1987], Rosbjerg et al. [1992], and Embrechts et al. [1997].
It has previously been applied in modeling large insurance
claims, as a failure-time distribution in reliability studies,
and in problems where the EXP pdf might be used but some
robustness is required against heavier tailed or lighter tailed
alternatives [Hosking and Wallis, 1987].
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A2. Annual Maximum Series

[44] When arrivals of earthquakes are assumed to follow
a Poisson process, the EXP model for the POT series is
equivalent to the GUM type I extreme value model for the
AM series. The cdf of a GUM variable is

FGUM mð Þ ¼ exp � exp �b m� xð Þð Þ½ 
 mo < m < 1 ðA16Þ

where x is now the lower bound of the AM series which
differs from the threshold mo of the POT series. Here the
scale parameter b in equation (A16) is identical to the scale
parameter b in the EXP model given in equation (A2).
Hence the scale parameter b of the GUM distribution can be
estimated from either the POT or the AM series. Stedinger
et al. [1993] derive the relationship between the GUM
model for the AM series and the EXP model of the POT
series. They show that if l is the average number of
exceedances per year of an earthquake of magnitude mo

then the lower bound x in the GUM model is related to the
lower bound mo in the EXP or GR model via

x ¼ mo þ
lnðlÞ
b

: ðA17Þ

The GUM distribution has mean, variance, skewness, and
kurtosis given by

mGUM ¼ x þ 0:5772=bð Þ ðA18Þ

s2
GUM ¼ p2

6b2
ðA19Þ

gGUM ¼ 1:1396 ðA20Þ

KGUM ¼ 5:4 ðA21Þ

Like the EXP/GR models for the POT series, the key
shortcomings of use of the GUM model for modeling
AM series are due to its fixed skew and kurtosis and
lack of an upperbound. The quantile function of a GUM
pdf is given by

mGUMðpÞ ¼ x � ln � ln pð Þ½ 

b

: ðA22Þ

Stedinger et al. [1993] summarize other properties of the
GUM distribution.
[45] The GEV distribution is a generalization of Gumbel’s

type I, II, and III distributions and was introduced by
Jenkinson [1969] to hydrology and by Makjanić [1980,
1982] to seismology and is summarized by Stedinger et al.
[1993]. The cdf of a GEV distribution is given by

FGEV mð Þ ¼ exp � 1� kb* m� xð Þð Þ
1=k

h i
for k 6¼ 0 ðA23Þ

where here the shape parameter k is identical to the shape
parameter of the GP distribution given in equation (A8),

hence k can be estimated from either the POT or AM series.
Like the GP model in equation (A8), the GEV model has an
upperbound when k > 0 so that

x � m � x þ b1=ðb*kÞc for k > 0 ðA24Þ

x þ b1=ðb*kÞc � m � 1 for k < 0 ðA25Þ

Analogous to equation (A17) for the GUM distribution,
Stedinger et al. [1993] show that the lower bound x and
scale parameter b* in the GEV model is related to the lower
bound mo in the GP model via the following relations

x ¼ mo þ
1� l�k

kb
ðA26Þ

b* ¼ blk ðA27Þ

where again, l is the average number of exceedances per
year of an earthquake of magnitude mo. For k > �1/3 the
mean, variance and skew of a GEV variable are given by

mGEV ¼ x þ 1� Gð1þ kÞ½ 

kb*

ðA28Þ

s2
GEV ¼

G 1þ 2kð Þ � G 1þ kð Þf g2
h i

k2b*2
ðA29Þ

gGEV ¼ sgn kð Þ�G 1þ 3kð Þ þ 3G 1þ kð ÞG 1þ 2kð Þ � 2G3 1þ kð Þ

G 1þ 2kð Þ � G2 1þ kð Þ
� �3=2

ðA30Þ

where sgn( ) is the sign function, and G( ) is the gamma
function. The quantile function of a GEV variable is given
by

mGEV pð Þ ¼ x þ 1� � ln pð Þð Þk½ 

kb*

ðA31Þ

Appendix B: Parameter Estimation

B1. Peaks Over Threshold Series Estimators

[46] Assuming that a POT times series of earthquake
magnitudes mi for i = 1,. . .,n is available with mi � mo for
all i = 1,. . .,n where n is the sample size. Sample estimates
of the mean m and standard deviation s are given by

m ¼ 1

n

Xn
i¼1

mi and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

mi � mð Þ2
s

ðB1Þ

In all cases, for the POT series, the lower bound mo is
simply the threshold used in defining the POT series.
Solving the expression for the mean of an EXP variable in
equation (A3) for b leads to
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b̂ ¼ 1

m� mo

and b̂ ¼ 1

m� moð Þ ln 10ð Þ : ðB2Þ

Combining the moment equations for the mean and variance
of a GP variable in equations equations (A11) and (A12)
leads to the following MM sample estimators for k and b:

b̂ ¼ 1

m� moð Þ 1þ k̂ð Þ and k̂ ¼ 1

2

m� mo

s
� 1

	 

ðB3Þ

where mo is the assumed threshold which defines the POT
series. Note that the GR/EXP model is a special case of the
GP model when k = 0, so the estimators for b̂ in equations
(B2) and (B3) are equivalent when k = 0.
[47] The POT series can also be used to estimate param-

eters of either the GUM or GEV models. For the GUM pdf,
the scale parameter b is identical to b in the EXP pdf, hence
it can be estimated from equation (B2). The lower bound x
can be estimated from equation (A17) by using mo equal to
the chosen threshold of the POT series, and with an estimate
of l as simply the average number of events above the
threshold mo in the POT series. For the GEV pdf, the
estimator of k for the GP pdf given in equation (B3) can
also be used to estimate the value of k in the GEV pdf. The
other two parameters of the GEV pdf, x and b* can then be
estimated from equations (A26) and (A27), respectively, by
using mo equal to the chosen threshold of the POT series,
the value of b̂ from equation (B3) and again, with an
estimate of l as simply the average number of events above
the threshold mo in the POT series.

B2. Annual Maximum Series Estimators

[48] Assume that a complete AM series of earthquake
magnitudes mi i = 1,. . .,n is available where n is the record
length in years. Sample estimates of the mean and standard
deviation s are identical to those for the POT series in
equation (B1), but with mi now equal to the AM earthquake
magnitude in year i. Unlike the models for the POT series
which all had a lower bound of mo, the AM series have a
lower bound x which differs from mo.
[49] For the GUM model, method of moments estimates

of the scale and lower bound parameters are obtained from
equations (A18) and (A19) which leads to

b̂ ¼ p

s
ffiffiffi
6

p ðB4Þ

x̂ ¼ m� 0:5772

b̂
: ðB5Þ

For the GEV model, a MM estimate of the shape parameter
k is obtained by substitution of sample skewness ĝm
computed from

ĝm ¼

1
n

Xn
i¼1

mi � mð Þ3

s3
ðB6Þ

in place of the true skew gGEV in equation (A30) and then
solving equation (A30) for k̂ using a numerical search. Note

that in general, the values of gGEV are inversely proportional
to values of k and good initial values for starting the search
are given for the special case when the GEV pdf reduces to
the GUM pdf (i.e., gGEV = 1.14 and k = 0). The location and
scale parameters can be estimated from equations (A28) and
(A29) which leads to

b̂* ¼ sgnðk̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G 1þ 2k̂ð Þ � G 1þ k̂ð Þ2

q
k̂s

ðB7Þ

x̂ ¼ m� 1� Gð1þ k̂Þ
k̂b̂*

: ðB8Þ
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