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Abstract. Observed data sets containing values above or below the analytical threshold of
measuring equipment are referred to as censored. Such data are frequently encountered in
quality and quantity monitoring applications of water, soil, and air samples. Most of the
previous literature on the statistical analysis of censored data relates to the problems of
moment, parameter, and quantile estimation methods. Such estimation methods usually
assume an underlying probability distribution. Few goodness-of-fit methods exist for
censored data. We introduce L moment diagrams for the evaluation of the goodness of fit
of alternative distributional hypotheses for left-censored data. Experiments with artificial
censored data sets document the conditions under which L moment diagrams should be
useful. Our approach, like Hosking’s [1995] approach for right censoring, derived L
moment diagrams for left-censored observations from partial probability-weighted
moments.

1. Introduction

In the area of environmental quality and quantity monitor-
ing it is not uncommon to obtain censored sample readings
such as data points that are below the detection limit of the
available sensing equipment. In the fields of air, soil, and water
quality analyses, left-censored data sets arise when contami-
nant concentrations less than the limit of measurement detec-
tion are reported as censored. In the field of hydrology, left-
censored data sets arise because river discharges below some
measurement threshold are often reported as zero. Such river
discharges may have actually been zero or they may have been
between zero and the measurement threshold, yet reported as
zero [Kroll and Stedinger, 1996]. Sometimes it is actually ad-
vantageous to intentionally censor (or eliminate) observations
in order to better understand the frequency and magnitude of
flood [Wang, 1990a, b, 1996a] and drought events [Durrans,
1996]. Right-censored data sets can arise in hydrology when
flood observations are reported as having occurred above some
threshold [Stedinger and Cohn, 1986].

Censored data are categorized as either type I censoring,
where the measurement threshold is fixed and the number of
censored data points varies, or as type II censoring, where the
number of censored data points is fixed and the implicit thresh-
old varies [David, 1981]. Left-censored environmental data
typically follow type I censoring because the censoring thresh-
old is fixed by the measurement technology. Values for data
below the measurement threshold are generally reported as
“less than the detection limit,” and data sets containing such
points are referred to as (type I) left singly censored data. This
study concentrates on type I left censoring.

Most of the previous research on censored environmental
data has introduced and compared various estimators of the
mean, standard deviation, median, interquartile range [Gilliom
and Helsel, 1986; Helsel and Gilliom, 1986; El-Shaarawi, 1989],
and other quantiles [Kroll and Stedinger, 1996] of such data
sets. Helsel and Hirsch [1992] and Berthouex and Brown [1994]
summarize numerous estimation methods for use with cen-
sored data. While such estimation methods provide practical
estimators for use with censored data, most methods are para-
metric, requiring an assumption of a specific probability distri-
bution. Typically, the normal and lognormal distributions have
been used to approximate the probability distribution of envi-
ronmental data sets. Berthouex and Brown [1994] argue that
traditional faith in these two models and the lack of a readily
available goodness-of-fit test for the most appropriate under-
lying distribution are among the primary reasons for this
choice.

The purpose of this study is to develop and test a method-
ology that enables the identification of a suitable probability
distribution for use with censored data. Our approach is anal-
ogous to that of Hosking [1995], who introduced the applica-
tion of L moment diagrams for use with right singly censored
data, which often arise in life-testing and reliability applica-
tions in the field of manufacturing. Here we extend Hosking’s
[1995] methodology for use with left singly censored data and
perform experiments to evaluate the effectiveness of L mo-
ment diagrams.

2. L Moments and L Moment Diagrams
Several recent studies document that L moment diagrams

are very useful for evaluating the goodness of fit of alternative
probability distributions to complete (uncensored) data sets
(Hosking [1990], Chowdhury et al. [1991], Vogel and Fennessey
[1993], Hosking and Wallis [1997], and many others). Since
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their introduction by Hosking [1990], L moment diagrams have
been used in nationwide assessments of the goodness of fit of
various probability distributions to uncensored temperature
[Guttman, 1996], precipitation [Guttman et al., 1993], and
streamflow [Vogel and Wilson 1995] data sets.

Like ordinary product moments, L moments summarize the
characteristics or shape of theoretical probability distributions
and observed samples. Both moment types offer measures of
distributional location (mean), scale (variance), skewness
(shape), and kurtosis. L moments offer significant advantages
over ordinary product moments, especially for environmental
data sets, because of the following:

1. L moment ratio estimators of location, scale, and shape
are nearly unbiased, regardless of the probability distribution
from which the observations arise [Hosking, 1990].

2. L moment ratio estimators such as L-Cv, L-skewness, and
L-kurtosis can exhibit lower bias than conventional product
moment ratios, especially for highly skewed samples.

3. The L moment ratio estimators of L-Cv and L-skew do
not have bounds which depend on sample size as do the ordi-
nary product moment ratio estimators of Cv and skewness
[Kirby, 1974].

4. L moment estimators are linear combinations of the ob-
servations and thus are less sensitive to the largest observations
in a sample than product moment estimators, which square or
cube the observations.

5. L moment ratio diagrams are particularly good at identi-
fying the distributional properties of highly skewed data,
whereas ordinary product moment diagrams are almost useless
for this task [Vogel and Fennessey, 1993].

Recent references summarize the theory of L moments and
the use of L moment diagrams for complete data sets, and the
reader is referred to those studies (Hosking [1990], Stedinger et
al. [1993], Hosking and Wallis [1997], and many others). The
theoretical development that follows assumes a familiarity with
the theory of L moments.

3. L Moments, Probability-Weighted Moments,
and L Moment Diagrams for Complete Samples

Probability-weighted moments (PWMs) introduced by
Greenwood et al. [1979] are linear functions of L moments.
PWMs are defined as

b r 5 E@ x$F~ x!% r# (1a)

which can be rewritten as

b r 5 E
0

1

x~F! Fr dF (1b)

where F 5 F( x) is the cumulative distribution function (CDF)
for x , x(F) is the inverse CDF of x evaluated at the probability
F , and r 5 0, 1, 2, z z z , is a nonnegative integer. When r 5
0, b0 is equal to the mean of the distribution m 5 E[ x].

For any distribution the rth L moment lr is related to the rth
PWM [Hosking, 1990] via

l r11 5 O
k50

r

bk~21! r2kS r
kD S r 1 k

k D (2)

For example, the first four L moments are related to the
PWMs using

l1 5 b0 (3a)

l2 5 2b1 2 b0 (3b)

l3 5 6b2 2 6b1 1 b0 (3c)

l4 5 20b3 2 30b2 1 12b1 2 b0 (3d)

Hosking [1990] defined the L moment ratios as follows:

L-Cv 5 t2 5 l2/l1 (4a)

L-skew 5 t3 5 l3/l2 (4b)

L-kurtosis 5 t4 5 l4/l2 (4c)

L moment ratio diagrams compare sample estimates of the
dimensionless L moment ratios in (4) with their theoretical
counterparts. In the following sections we derive L moment
diagrams for censored samples using the theory of PWMs.

4. Partial Probability-Weighted Moments
for Censored Samples

Wang [1990a, b, 1996a] introduced the concept of partial
probability-weighted moments (PPWMs) for the purpose of
estimating the upper quantiles of flood flows when one’s in-
terest is in the right tail of the distribution and there is some
benefit to censoring some of the smaller observations in the
left tail. The initial idea of PPWMs was to remove the smaller
observations from the process of fitting the distribution be-
cause such observations are of little interest in flood frequency
analysis and such observations can be a nuisance to the fitting
process. Wang [1990a, b] defined a left censoring PPWM as

b9r 5 E
c

1

X~F! Fr dF (5)

where the lower limit c 5 F(T) is the fraction of observations
which are censored and T is the censoring threshold. The
PPWM

b 0r 5
1

1 2 cr11 E
c

1

X~F! Fr dF (6)

was introduced by Wang [1996a] to remain consistent with
PWMs for complete samples and to simplify the mathematical
derivations associated with PPWM sample estimators of dis-
tributional parameters. Wang [1990a,b] and Kroll and Stedinger
[1996] used the PPWM in (5) and Wang [1996a] used the
PPWM in (6) to derive censored quantile estimators for the
generalized extreme value (GEV) and lognormal distributions.
The procedure used by Wang [1990a, b, 1996a] to derive the
PPWMs in (5) and (6) differs from the approach taken by
Hosking [1995]. The PPWMs introduced here and by Hosking
[1995] directly link the entire theory of L moments with
PPWMs. The PPWMs introduced by Wang [1990a, b, 1996a]
and Kroll and Stedinger [1996] are also easily related to L
moments; however, we chose to use Hosking’s [1995] definition
of PPWMs because he had already related them to L moments
for the analogous problem of right censoring. One could relate
the definition of PPWMs introduced here and by Hosking
[1995] with the definitions introduced by Wang [1990a, b,
1996a] in (5) and (6), so in some sense all definitions of
PPWMs are equivalent, except that the definition in (6)
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often leads to simplified mathematical derivations. Interest-
ingly, both the work of Hosking [1995] and this study could
have avoided the use of PPWMs by directly adapting L
moment estimators for censored observations, similar to the
approach taken by Wang [1996b].

4.1. PPWMs for Right Censoring

Hosking [1995] introduced two different PPWMs for use in
constructing L moment diagrams for right-censored observa-
tions, though he did not use the terminology PPWM. In right
censoring, the censored observations are greater than the mea-
surement threshold. Hosking’s [1995] type A PPWM, br

A, is
equivalent to the PWM of the uncensored observations. His
type B PPWM, br

B, is equal to the PWM of the “completed
sample,” where the censored observations above the censoring
threshold T are set equal to the censoring threshold. It is a well
established fact that replacing the censored observations with a
fixed value such as the measurement threshold leads to a sig-
nificant bias in the resulting statistics such as the mean, the
median, or a quantile. However, in this instance we are defin-
ing a theoretical statistic not a sample statistic; hence bias is
not an issue.

The type A PPWM of a right-censored distribution is the
ordinary PWM of a (complete) distribution with quantile func-
tion

yA~u! 5 x~uc! 0 , u , 1 (7)

where yA(u) denotes the quantile function of both the cen-
sored and uncensored observations and c 5 F(T) is the (ran-
dom) fraction of observations that are uncensored. Defining v
5 uc leads to

yA~u! 5 x~v! 0 , v , c (8)

For right censoring, the censoring threshold T 5 x(c) is
greater than the uncensored observations. Using v 5 cu and
dv 5 c(du), Hosking [1995] combines the definition of a
PWM in (1b) with (8) to obtain

b r
A 5 E

0

1

uryA~u! du 5 E
0

c Sv

c D
r

x~v!
dv

c 5
1

cr11 E
0

c

urx~u! du

(9)

Hosking [1995] combines (9) with (2) to derive L moment
diagrams for various distributions based on type A PPWMs for
right censoring. Using a similar approach, Hosking [1995] de-
rived type B PPWMs for right censoring by replacing the cen-
sored observations with T 5 x(c), the measurement thresh-
old. In that case the quantile function is given by

yB~u! 5 H x~u!
x~c!

0 , u , c
c # u , 1 (10)

and the type B PPWMs are given by

b r
B 5 E

0

c

urx~u! du 1
1 2 cr11

r 1 1 x~c! (11)

Hosking [1995] also derived a useful expression which related
br

A and br
B:

b r
B 5 cr11b r

A 1
1 2 cr11

r 1 1 x~c! (12)

4.2. PPWMs for Left Censoring

In this section we derive PPWMs for type I left censoring,
following the same approach taken by Hosking [1995] for right
censoring. We derive type A9 and type B9 PPWMs for left
censoring, analogous to Hosking’s [1995] type A and type B
PPWMs for right censoring.

The type A9 PPWM of a left-censored distribution is the
ordinary PWM of a (complete) distribution with quantile function

yA9~u! 5 x~w! 0 , u , 1 (13)

Multiplication of the inequality 0 , u , 1 by (1 2 c) and
adding c to each term leads to c , [(1 2 c)u 1 c] , 1.
Defining w 5 (1 2 c)u 1 c leads to (10) with c , w , 1,
u 5 (w 2 c)/(1 2 c), and dw/du 5 1 2 c . Substitution into
(1b) leads to the PPWM

b r
A9 5 E

0

1

uryA9~u! du 5 E
c

1 S w 2 c
1 2 cD

r

x~w!
dw

1 2 c (14a)

5
1

~1 2 c! r11 E
c

1

~u 2 c! rx~u! du (14b)

which is different from either of the PPWMs, b9r or b 0r, in (5)
and (6) introduced by Wang [1990a, b, 1996a] for left censoring.

Recall that the type B PPWM in (11) replaced the censored
observations with the fixed threshold x(c), above which mea-
surements are unavailable. For left censoring, type B9 PPWMs
may be derived by replacing the censored observations with the
fixed threshold x(c), below which measurements are unavail-
able. The corresponding quantile function is as follows:

yB9~u! 5 H x~c!

x~u!

0 , u # c

c , u , 1
(15)

The type B9 PPWM is obtained from substitution of (15) into
(1b) leading to

b r
B9 5 E

0

c

urx~c! du 1 E
c

1

ur x~u! du (16a)

5 x~c! E
0

c

ur du 1 E
c

1

urx~u! du (16b)

5 x~c! F ur11

r 1 1G
0

c

1 E
c

1

ur x~u! du (16c)

5 x~c!
cr11

r 1 1 1 E
c

1

urx~u! du (16d)

Note that the integral in (16d) is identical to Wang’s [1990a,
b] PPWM given in (5). Therefore our type B9 PPWM in (16d)
only differs from Wang’s PPWM by a constant term, so the two
PPWM definitions are easily related to one another.

5. L Moment Ratio Diagrams
for Censored Observations

Hosking [1990] and Hosking and Wallis [1997] introduce L
moment ratio diagrams for the graphical evaluation of the
goodness of fit of complete samples to various probability
density functions (pdf’s). Hosking [1995] extends the applica-
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bility of L moment ratio diagrams to right-censored samples.
In this section we summarize the utility of L moment ratio
diagrams for summarizing left-censored observations.

5.1. Theoretical Relationships

In the background, an L moment ratio diagram contains the
theoretical relationships between L-Cv and L-skew for one-
and two-parameter pdf’s or between L-kurtosis and L-skew for
three-parameter pdf’s. This section describes relations among
theoretical L moment ratios for left-censored observations.

The theoretical relationships among L-Cv , L-skew, L-
kurtosis, and censoring percentage c , using type A9 and B9
PPWMs for left censoring, can now be obtained from (3), (4),
(14), and (16). Similarly, one could use (3), (4), (9), and (11) to
obtain such relationships among L moment ratios and censor-
ing levels using type A and B PPWMs for right censoring, as
shown by Hosking [1995]. One need’s only to substitute into
those expressions the quantile function x( p), corresponding to
a particular theoretical pdf, to obtain such relationships. Fig-
ures 1 and 2 illustrate the theoretical relationships among
L-Cv, L-skew, L-kurtosis, and censoring percentage c , using
type A9 and B9 PPWMs for left censoring for the lognormal,
gamma, and generalized Pareto (GPA) distributions. Figures 1
and 2 were obtained using numerical integration in (14) and
(16). Quantile functions for these three distributions are given
by Stedinger et al. [1993] and Hosking and Wallis [1997]. The

two-parameter versions of these three pdf’s were used to con-
struct Figure 1 (lower bounds set to zero), and the three-
parameter version of these pdf’s was used to construct Figure
2.

Figure 1 illustrates that for the L-Cv versus L-skew relation-
ships, regardless of the level of censoring, one is able to dis-
criminate quite readily among the three populations consid-
ered. As expected for left censoring, increasing the level of
censoring tends to increase the L-skewness. This effect is par-
ticularly pronounced using the type B9 PPWMs because the
censored observations are replaced by the censoring threshold,
tending to increase the leverage associated with the few re-
maining large observations. Still, for either type A9 or B9 PP-
WMs the various theoretical L moment ratio relationships
tend to retain their relative positions among each other. There-
fore our ability to discriminate among the two-parameter ver-
sions of these three pdf’s using sample L-Cv versus L-skew
diagrams is not expected to differ significantly between type A9
and B9 PPWMs, unless the sampling variability associated with
L moment estimates differs significantly between A9 and B9
PPWMs.

Habermeier [1996] provides polynomial numerical approxi-
mations to the relationships among L-Cv, L-skew, and censor-
ing level c , based on type A9 and B9 PPWMs for left censoring
for the GPA distribution. Generalized mathematical software

Figure 1. Theoretical relationships between L-Cv and L-skew for the two-parameter generalized Pareto
(GPA), lognormal, and gamma distributions using type A9 and B9 partial probability-weighted moments
(PPWMs) for left censoring for censoring levels of c 5 0.2 and 0.8.
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is now readily available to make implementation of numerical
integration methods simple enough to dispense with the need
to create such polynomial numerical approximations. In some
instances, such as for unbounded distributions, it is possible
that numerical integration will not yield theoretical relation-
ships among the L moment ratios for censored data. In such
cases one could compute theoretical L moments by generating
a very long series of data and subsequently computing L mo-
ments of the generated data. As long as the data series is long
enough, this approach may be more accurate and efficient than
numerical integration for some unusual distributions. Experi-
ments were also performed to confirm that all the theoretical
relationships illustrated in Figures 1 and 2 for both A9 and B9
L moments are invariant to the choice of a location parameter.

5.2. Impact of the Level of Censoring
on the Tail Behavior of a pdf

Figure 2 illustrates theoretical relationships between L-skew
and L-kurtosis for the three-parameter versions of the gamma,
GPA, and lognormal distributions. A three-parameter gamma
distribution is usually referred to as a Pearson type III distri-
bution. Figure 2 reveals that type A9 PPWMs lead to better
discrimination among these three pdfs than type B9 PPWMs
for high censoring levels. For high censoring levels, Figure 2
illustrates that the tail behavior of type B9 L moments for these
three pdf’s is roughly equivalent. Thus type B9 L moment ratio
diagrams are relatively useless for discriminating among these

pdf’s at high censoring levels. Hosking [1995] obtained similar
conclusions for type B L moment ratio diagrams for right
censoring; however, he only examined a censoring threshold of
c 5 0.5.

Figures 3 and 4 illustrate the effect of the level of censoring
on the tail behavior of a lognormal random variable. Figures 3
and 4 illustrate the relationships L-Cv versus L-skew and L-
kurtosis versus L-skew, respectively, based on both type A9 and
B9 PPWMs for left censoring, corresponding to the lognormal
distribution over a wide range of censoring levels. Figures 3
and 4 show clearly that the tail behavior corresponding to type
B9 L moments is much more sensitive to the level of censoring
than the tail behavior for type A9 L moments. We conclude
that type A and A9 L moment ratio diagrams are often equiv-
alent and sometimes preferred to type B and B9 diagrams for
the purpose of discriminating among the tail behavior of var-
ious pdf’s.

6. Sample Estimators of Partial
Probability-Weighted Moments and
L Moments for Censored Observations

Hosking [1995] derived sample estimators of type A and B
PPWMs for right-censored observations. Such estimators,
termed br

A and br
B, are unbiased estimators of their theoretical

counterparts, br
A and br

B, given in (9) and (11), respectively. In
this section these results are reviewed and additional estima-

Figure 2. Theoretical relationships between L-kurtosis and L-skew for the three-parameter GPA, lognormal,
and gamma distributions using type A9 and B9 PPWMs for left censoring for censoring levels of c 5 0.2 and
0.8.
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tors for type A9 and B9 PPWMs and L moments for left cen-
soring are derived. We introduce a standard notation for ma-
nipulation of the censored samples.

6.1. Ordered Observations

The order statistics of a complete sample of n observations
are denoted by the following:

X1:n # X2:n # z z z # Xn:n
(17)

observed
n

Type I right censoring occurs when m of these values are
observed (m # n) and the remaining n 2 m are censored
above a known threshold T:

X1:n # X2:n # z z z # Xm:n

censored
m

# T # Xm11:n # z z z # Xn21:n # Xn:n
(18)

censored
n2m

Since the censoring threshold T is fixed in type I censoring, m
is a random variable with a binomial distribution. Otherwise,
type II censoring results, and T becomes the random variable,
with m fixed.

Similarly, type I left censoring results when the observations
below a fixed threshold T are censored:

X1:n # X2:n # # Xm21:n

censored
n2k

# T # Xm:n # z z z # Xn21:n # Xn:n

(19)observed
k

where the number of the censored values (m 2 1 5n 2 k) is
a random variable.

6.2. PPWM Estimators for Right Censoring

The following results are taken from Hosking [1995]. Type A
PPWM and L moment estimators are simply PPWMs and L
moments of the uncensored sample of m observations so that

br
A 5

1
m O

j51

m
~ j 2 1!~ j 2 2! z z z ~ j 2 r!

~m 2 1!~m 2 2! z z z ~m 2 r! Xj:n (20)

Landwehr et al. [1979] showed that (20) is an unbiased estima-
tor of br

A. Hosking and Wallis [1995] show that unbiased esti-
mators of PWMs are generally preferred over their biased
alternatives. This is particularly true when constructing L mo-
ment diagrams.

Type B PPWM and L moment estimators are computed
from the completed sample, where the n 2 m censored values
in (18) are replaced by the censoring threshold T , so

br
B 5

1
n H O

j51

m
~ j 2 1!~ j 2 2! z z z ~ j 2 r!
~n 2 1!~n 2 2! z z z ~n 2 r! Xj:n

1 S O
j5m11

n
~ j 2 1!~ j 2 2! z z z ~ j 2 r!
~n 2 1!~n 2 2! z z z ~n 2 r!D TJ (21)

Hosking [1995] used (12) to show that (20) and (21) are related
by

Figure 4. The effect of censoring level on the theoretical L-
kurtosis versus L-skew relationship for a three-parameter log-
normal variable.

Figure 3. The effect of censoring level on the theoretical L-Cv
versus L-skew relationship for a two-parameter lognormal vari-
able.
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br
B 5 Zbr

A 1
1 2 Z
r 1 1 T Z 5

m~m 2 1! z z z ~m 2 r!
n~n 2 1! z z z ~n 2 r! (22)

6.3. PPWM Estimators for Left Censoring

In this section we present unbiased estimators of type A9 and
B9 PPWMs for left censoring. One can show that an unbiased
estimator of type A9 PPWMs for left-censored observations is

br
A9 5

1
k O

j51

k
~ j 2 1!~ j 2 2! z z z ~ j 2 r!
~k 2 1!~k 2 2! z z z ~k 2 r! Xn2k1j:n k 5 n 2 m 1 1

(23)

Similarly, an unbiased estimator of type B9 PPWMs for left-
censored observations is

br
B9 5

1
n H S O

j51

n2k
~ j 2 1!~ j 2 2! z z z ~ j 2 r!
~n 2 1!~n 2 2! z z z ~n 2 r!D T

1 O
j5n2k11

n
~ j 2 1!~ j 2 2! z z z ~ j 2 r!
~n 2 1!~n 2 2! z z z ~n 2 r! Xj:nJ (24)

Unbiased type A9 and B9 L moments for left censoring are ob-
tained by substitution of br

A9 or br
B9 in place of br in (2) or (3).

6.4. Sampling Distribution of L Moment
Estimators for Censored Data

The sampling distributions of L moments for complete sam-
ples apply to both right and left type I censored samples [Hosk-
ing, 1995]. The sample PPWM and L moment estimators in-
troduced here are unbiased estimators of their corresponding
population statistics. Asymptotically, they are normally distrib-
uted with asymptotic covariance that can be computed from
theorem 3 introduced by Hosking [1990].

7. Experiments With L Moment Diagrams
for Censored Observations

The real value of L moment diagrams is that sample L moment
ratios can be directly compared with the theoretical curves de-
picted in Figures 1–4. L moment ratios are nearly unbiased;
therefore ;50% of the sample L moment ratios are expected to
lie above and 50% below the theoretical curves respectively.

7.1. Information Content of an L Moment Diagram

L moment diagrams compare the theoretical and observed
tail behavior of pdf’s. The larger the average sample size, the
more samples, and the lower the censoring level, the more
closely the sample L moments will follow the theoretical L
moment relationship. We define the information content in the
L moment diagram using

I 5 ns~1 2 c! (25)

where n is the average sample size, s is the number of samples,
and c is the censoring level. The information content I is equal to
the overall number of uncensored observations in the experiment.
In the experiments in sections 7.2 and 7.3 we explore the infor-
mation content of L moment diagrams for censored samples.

7.2. Experimental Design

Experiments were designed to evaluate the utility of L mo-
ment diagrams for assessing the goodness of fit of various
distributions to artificial censored data sets. One hundred (s 5
100) samples of synthetic gamma and generalized Pareto data
sets of length n 5 15 and 100 were generated with censoring
levels of c 5 0.2 and 0.8. Table 1 summarizes the information
content associated with each of these experiments ranging
from I 5 300 to I 5 8000. The conventional coefficient of
variation for each sample was generated as a uniformly distrib-
uted random variable between 0.5 and 4.5. Since type A and A9
L moment relationships are usually preferred over type B and
B9, we only evaluate type A9 L moment diagrams here. Haber-
meier [1996] and Craig [1997] summarize similar evaluations
based on type B9 L moment diagrams for left censoring, and
Hosking [1995] summarizes evaluations based on type A and B
L moment diagrams for right censoring.

7.3. Results and Discussion

Figures 5 and 6 illustrate the results of four experiments,
corresponding to information contents of I 5 300, 1200,
2000, and 8000. In Figure 5 the observations were generated
from a two-parameter generalized Pareto (GPA) distribution
(lower bound set to zero), and in Figure 6 the observations
were generated from a two-parameter gamma distribution. In
both Figures 5 and 6 an information content of 300 is not
nearly sufficient to distinguish the tail behavior of the obser-
vations. As expected, our ability to distinguish the tail behavior
of the distributions improves as the information content in-
creases. Habermeier [1996] and Craig [1997] performed numer-
ous other experiments using data from other distributions (log-
normal), type B9 PPWMs, and using L-kurtosis versus L-skew
diagrams. Those evaluations led to the similar conclusions
shown in Figures 5 and 6; hence they are not reported here.
Synthetic samples with record lengths in excess of 100,000 were
also generated to confirm that asymptotically, the L moment
ratio estimators introduced here are unbiased.

8. Conclusions
Previous research (Hosking [1990], Vogel and Fennessey

[1993], Chowdhury et al. [1991], and others) documents the
value of L moment diagrams for evaluating the goodness of fit
of alternative probability density functions to complete sam-
ples. Nationwide evaluations of temperature [Guttman, 1996],
precipitation [Guttman et al., 1993], and streamflow [Vogel and
Wilson, 1995] databases have revealed how powerful L moment

Table 1. Information Content Associated With L Moment Diagrams in Figures 5 and 6

Experiment
Sample Size

n
Number of Samples

s
Censoring Level

c
Information Content

I 5 ns (1 2 c)

1 15 100 0.8 300
2 15 100 0.2 1200
3 100 100 0.8 2000
4 100 100 0.2 8000

1247ZAFIRAKOU-KOULOURIS ET AL.: L MOMENT DIAGRAMS



Figure 5. L moment diagrams based on 100 samples of synthetic (two-parameter) generalized Pareto data,
using type A9PWMs for left censoring.

Figure 6. L moment diagrams based on 100 samples of synthetic gamma data, using type A9 PPWMs for left
censoring.



diagrams can be for discriminating among various distributional
alternatives. Hosking [1995] showed that complete-sample tech-
niques based on L moments can be extended for use with right-
censored observations. This study has extended those results to
include left-censored observations. It is hoped that the methods
introduced here provide a rigorous and useful approach for ex-
amining databases of left-censored observations such as water,
air, and soil quality and quantity measurements.

This study has focused on the application of L moment
diagrams as graphical aids in determining the visual goodness
of fit of alternative pdf’s to observed samples. We have shown
that such evaluations depend significantly on the information
content of the diagram I 5 ns (1 2 c), where n is the average
sample size, s is the number of samples, and c is the fraction of
the observations which are censored. Our evaluations support
those of recent nationwide empirical evaluations which indi-
cate that the information content of an L moment diagram
needs to be in the thousands to enable one to (confidently)
discern the tail behavior of similar distributional alternatives.

The equations introduced here for left censoring and by
Hosking [1995] for right censoring may also be used to estimate
parameters and quantiles of a distribution from observations.
Hosking [1995] has shown that L moment estimators of a dis-
tribution’s parameters under right censoring can be competi-
tive with computationally more complex methods such as max-
imum likelihood. Hosking [1995] documents that a partial
probability-weighted moment estimator of the parameters of a
reverse Gumbel distribution is only slightly less efficient than
maximum likelihood estimator (MLE) under type I right cen-
soring and that these estimators are almost equivalent for
censoring levels above c 5 0.5 and for larger samples. We
expect similar results under left censoring, using the PPWM
and L moment estimators introduced here. Kroll and Stedinger
[1996] document that a PPWM estimator based on (5) (in log
space) is competitive with both a log-probability plot estimator
[Gilliom and Helsel, 1986; Helsel and Gilliom, 1986] and an
MLE for estimating moments and quantiles of left-censored
lognormal observations, particularly for smaller sample sizes
and censoring levels.

The evaluations of L moment diagrams introduced here
assume that the censoring threshold c is known. In practice,
the censoring threshold c will need to be estimated and may
vary from sample to sample. Future research relating to the use
of L moment diagrams for censored observations should ad-
dress the fact that c is a random variable.
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