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L Moment Diagrams Should Replace Product Moment Diagrams

RICHARD M. VOGEL AND NEIL M. FENNESSEY

Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts

It is well known that product moment ratio estimators of the coefficient of variation C,,, skewness
v, and kurtosis x exhibit substantial bias and variance for the small (n = 100) samples normally
encountered in hydrologic applications. Consequently, L moment ratio estimators, termed L coeffi-
cient of variation 75, L skewness 73, and L kurtosis 74 are now advocated because they are nearly
unbiased for all underlying distributions. The advantages of L moment ratio estimators over product
moment ratio estimators are not limited to small samples. Monte Carlo experiments reveal that
product moment estimators of C,, and vy are also remarkably biased for extremely large samples (n =
1000) from highly skewed distributions. A case study using large samples (n = 5000) of average daily
streamflow in Massachusetts reveals that conventional moment diagrams based on estimates of
product moments C,, ¥, and « reveal almost no information about the distributional properties of daily
streamflow, whereas L moment diagrams based on estimators of 7, 73, and 74 enabled us to
discriminate among alternate distributional hypotheses.

INTRODUCTION

The oldest and most widely understood technique for
fitting frequency distributions to observed data is known as
the method of moments. Method of moments estimates of a
distribution’s parameters are obtained by equating the sam-
ple moments with theoretical moments, resulting in a system
of nonlinear equations which are often easily solved. The
primary advantages of method of moments estimators in-
clude the ease with which they are computed, their concep-
tual simplicity, and the hope that they reproduce the theo-
retical moments. Traditionally, the method of moments is
applied by equating the theoretical product moments
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where p, al, v, and « denote the theoretical mean, variance,
skewness, and kurtosis, respectively, and m, 52, G, and k
denote the sample mean, variance, skewness, and kurtosis,
respectively. It is well known that small sample (n < 100)
estimates of s and G exhibit remarkable bias and variance
{Fischer, 1929; Hazen, 1930; Wallis et al., 1974]. Walliis et al.
[1974] showed that the sampling properties (bias and vari-
ance) of these product moment estimators are distribution
dependent; hence subsequent efforts to develop unbiased
estimators of G, for example, have met with limited success.
Efforts to unbias G usually lead to skew estimators with
increased variance because such unbiased estimators usually
take the form oG and Var (aG) = a? Var (G) with a > 1,
because G is always downward biased. For a recent review
of methods for unbiasing sample skewness see Vogel and
McMartin {1991].

The remarkable small-sample bias associated with the
estimator G, documented by Wallis et al. [1974], is only the
tip of the iceberg. Monte Carlo experiments reported here
reveal that both & and the coefficient of variation C, = s/m
exhibit even more remarkable bias for highly skewed popu-
lations (¥ > 2) and both small and large sample sizes (n <
5000). These experiments are performed in an effort to
understand the distributional properties of daily streamflow
sequences which often contain thousands of daily flows and
exhibit extraordinary skewness. We found product moments
to be of little value for discriminating among potential
candidate distributions of daily streamflows. Another limita-
tion of product moment estimators is that they are bounded.
For example, Kirby [1974] shows that these bounds depend
only upon sample size so that C, is bounded by the interval
©,(n - D"y and |G| = (n — 2)/(n — DV

Yet still, product moment estimators are in widespread
use, in part due to their availability on most calculators and
in statistical software packages and textbooks, and in part
due to their familiarity and commonly understood interpre-
tation. The situation today is quite different from the situa-
tion in 1974 when Wallis et al. [1974] questioned the value of
product moment estimators. Today a simple and attractive
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alternative exists: the method of L moments introduced by
Hosking (1990]. The method of L moments is an exact
analogue to the method of moments. However, L moment
estimators are nearly unbiased for all sample sizes and all
distributions; hence they should always be preferred in
situations when unbiased moments are required, such as in
the construction of moment-ratio diagrams. Hosking [1992]
also shows that L moments are preferred to product mo-
ments in the context of evaluating the power of alternative
hypothesis tests for the normal distribution. Since the theory
of L moments is relatively new [Hosking, 1990] we outline it
briefly in the following section. The remainder of the paper is
devoted to comparisons between L moment and product
moment ratio diagrams and to Monte Carlo experiments
which reveal the remarkable bias associated with product
moment ratio estimators.

THE THEORY OF L MOMENTS

L moments and probability weighted moments (PWMs)
are analogous to ordinary moments in that their purpose is to
summarize theoretical probability distributions and ob-
served samples. Similar to ordinary product moments, L
moments can be also be used for parameter estimation,
interval estimation, and hypothesis testing. Although the
theory and application of L moments parallel those for
conventional moments, L moments have several important
advantages. Since sample estimators of L moments are
always linear combinations of the ranked observations, they
are subject to less bias than ordinary product moments. This
is because ordinary product moment estimators such as s>
and G require squaring and cubing the observations, respec-
tively, which causes them to give greater weight to the
observations far from the mean, resulting in substantial bias
and variance. Hosking [1990] and Stedinger et al. [1993]
provide a summary of the theory and application of L
moments. Greenwood et al. [1979] summarize the theory of
PWMs.

Perhaps the simplest approach to describing L moments is
by first defining probability weighted moments because L
moments are linear functions of PWMs [Greenwood et al.,
1979; Hosking, 1990). PWMs may be defined by

B = E{X[Fx(x)]"} 3)

where Fy(x) is the cumulative distribution function of X.
When r = 0, By is the mean streamflow u defined earlier in
(1a). Hence a sample estimate of the first PWM, which we
term by, is given by m in (2a). All higher-order PWMs are
simply linear combinations of the order statistics X, < --
=X 1)-

Landwehr et al. [1979] recommends the use of biased
estimates of PWMs and L moments, since such estimators
often produce quantile estimates with lower root-mean-
square error than unbiased alternatives. Nevertheless, unbi-
ased estimators are often preferred in goodness of fit evalu-
ations such as L moment diagrams. Unbiased estimators are
preferred because they have less bias for estimating 73 and
74, and they are invariant if the data are multiplied by a
constant, which is not the case for the biased estimators.
Unbiased sample estimates of the PWMs, for any distribu-
tion can be computed from
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where x(;, represents the ordered streamflows with x(;,
being the largest observation and x,, the smallest. The
PWM estimators in (4) can be more generally described

using
Q
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For any distribution, the first four L moments are easily
computed from the PWMs using

AL =By (6a)
A2=2B1— Bo (6b)
A3=68,-6B,+ By (6¢c)
Ay=208,-308,+ 128, - By (6d)

The first four unbiased L moment sample estimators are
obtained by substituting the PWM sample estimators b,
from (4) into the L moment equations in (6). Equations
(6a)-(6d) are special cases of the general recursion

4 r\{r+k
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A computer program is available for implementing the
method of L moments [Hosking, 1991b]. In the following
sections we briefly define L moment ratios, discuss their
relationship to conventional moments, and introduce L
moment diagrams.

L MOMENT RATIOS AND THE
INTERPRETATION OF L. MOMENTS

Analogous to the product moment ratios, coefficient of
variation C, = o/u, skewness vy, and kurtosis x, Hosking
[1990] defines the L. moment ratios

)
Ty = i = L coefficient of variation (8a)
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Fig. 1. An L moment diagram which describes the theoretical

relationships between L Kurtosis and L skewness for the exponen-
tial, uniform, normal, Gumbel, Pearson type 3 (P3), three-parameter
lognormal (LN3), generalized Pareto (GPA), Generalized Extreme
Value (GEV), and the lower bound of the five-parameter Wakeby
(WADS) distributions.

Ty = 2 L skewness (8b)
2
4 .
T4 = — = L kurtosis (8¢)
2
where A,, r = 1, - -+ | 4 are the first four L moments and ,,

73, and 74 are the L coefficient of variation (L-C,), L
skewness, and L kurtosis, respectively. The first L moment
Ap is equal to the mean streamflow u, hence it is a measure
of location. Hosking [1990] shows that A,, 75, and 74 can be
thought of as measures of a distributions scale, skewness,
and kurtosis, respectively, analogous to the ordinary mo-
ments o, y, and «, respectively.

MOMENT RATIO DIAGRAMS

Conventional product moment ratio diagrams compare the
sample estimates of the product moment ratios C,, = s/m,
G, and k& with their theoretical counterparts o/, v, and « for
arange of assumed distributions. McCuen [1985] provides an
introduction to product moment ratio diagrams. Similarly, L
moment ratio diagrams introduced by Hosking [1990] com-
pare sample estimates of the dimensionless ratios 75, 73, and
74 with their population counterparts for a range of assumed
distributions. A significant advantage of moment ratio dia-
grams is that one can compare the fit of several distributions
using a single graphical instrument. For example, Figure 1
displays the theoretical relationships between L kurtosis 7,
and L skewness 1; for the normal, Gumbel, exponential,
uniform, three-parameter lognormal (LN3), Pearson type 3
(P3), generalized Pareto (GPA), generalized extreme value
(GEV), and the lower bound of the five-parameter Wakeby
(WAS) distributions. Here one observes the tremendous
flexibility of the three-parameter distributions (LN3, P3,
GPA, and GEV) in comparison to the two-parameter alter-
natives. The five-parameter Wakeby distribution is the most
flexible distribution considered since it defines a two-
dimensional region in Figure 1 rather than a curve or a point
as is the case for the three- and two-parameter distributions,
respectively (see Korz and Johnson [1988] for a summary of
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the Wakeby distribution). The theoretical relationships be-
tween 7, and 73 depicted in Figure 1 were obtained from the
polynomial approximations developed by Hosking [1991al
and summarized in the work by Stedinger et al. [1993].
Stedinger et al. [1993] also describe the theoretical proper-
ties of these distributions.

Hosking [1990] introduced I. moment diagrams for the
purpose of selecting a suitable pdf for modeling hydrologic
variables at many sites. Examples of L moment diagrams
can be found in the works by Wallis [1988, 1989], Hosking
[1990], Hosking and Wallis [1987a, 1991], and Vogel et al.
[1993a, b]. For example, Hosking and Wallis [1987a]
found L moment diagrams useful for selecting the GEV
distribution over the gamma distribution for modeling annual
maximum hourly rainfall data. Similarly, Wallis [1988, Fig-
ure 3] found an L moment diagram useful for rejecting Jain
and Singhs [1987] conclusion that annual maximum flood-
flows at 44 sites were well approximated by a Gumbel
distribution and for suggesting a GEV distribution instead.
Vogel et al. [1993a] used L moment diagrams to show that
floodflows at 383 sites in southwestern United States were
equally well approximated by the LP3, LLN3, and GEV
distributions. Vogel et al. [1993b] used L moment diagrams
to show that floodflows were well approximated by a GEV
distribution in the regions of Australia which receive most
rainfall during winter months and by a GPA distribution in
the regions of Australia which receive most rainfall during
summer months.

L moment diagrams are clearly useful for evaluating which
distribution(s), among a suite of possible models, provides a
satisfactory approximation to the distribution of a particular
hydrologic variable in a region.

A COMPARISON OF L MOMENT AND
PropucT MOMENT RATIO DIAGRAMS

In this section we evaluate the use of product-moment
ratio diagrams for selecting a suitable probability density
function (pdf) for modeling the frequency and magnitude of
average daily streamflow in Massachusetts. Selection of a
suitable pdf for average daily streamflow is important in
studies which seek to develop regional hydrologic models for
describing daily streamflow duration curves (see Fennessey
and Vogel [1990] for a recent review of the literature on
regional flow duration curves). Daily streamflow duration
curves are used routinely for solving a wide range of water
resource engineering problems including, but not limited to,
hydropower feasibility analyses, wasteload allocation, river
and reservoir sedimentation, water quality management, and
the determination of instream flow requirements. Stream-
flow duration curves for ungaged basins are often obtained
using regional hydrologic procedures which require an as-
sumption regarding the distributional properties of daily
streamflow in a region. The following experiments document
that in spite of the complexity of the physical processes
which generate daily streamflow, it may be reasonable to
approximate the distributional behavior of daily streamflow
using a simple three-parameter probability distribution, in
Massachusetts.

L moment ratio and product-moment ratio diagrams are
constructed using average daily streamflows for 23 of the
U.S. Geological Survey’s streamflow-gaging stations in Mas-
sachusetts with the following attributes.



1748 VOGEL AND FENNESSEY: L MOMENT DIAGRAMS
TABLE 1. Characteristics of Streamflow Records of 23 Massachusetts Sites
Product Moment
L Moment Ratios Ratios
USGS Gage Years of Area, Meanm,

Number Sitt  Record  mi’ cfs T 73 w C, G k

1180500 1 51 52.70 107.8 0.616 0.543 0348 1.77 8.69 165.8
1096000 2 40 63.69 111.6 0.550 0.461 0.273 137 535 59.1
1106000 3 37 8.01 14.3 0.581 0417 0.248 135 3.83 27.0
1170100 4 22 41.39 91.2 0.579 0.522 0.329 1.52 5.21 49.4
1174000 S 34 3.39 6.1 0.583 0.446 0.266 1.42 478 46.9
1175670 6 29 8.68 14.7 0.554 0418 0.243 130 4.20 333
1198000 7 19 51.00 78.6 0.585 0.472 0.270 141 4.08 29.8
1171800 8 11 5.46 7.7 0.524 0.421 0228 1.15 279 13.9
1174900 9 28 2.85 4.9 0.593 0.503 0344 1.64 6.11 66.7
1101000 10 44 21.30 36.9 0.568 0.389 0.192 1.22 3.12 23.3
1187400 11 31 7.35 14.0 0.627 0.536 0.361 2.35 27.83 1429.2
1169000 12 50 89.00 185.5 0.605 0.548 0359 1.71 6.85 91.1
1111300 13 25 16.02 30.8 0.580 0.454 0.277 1.47 5.64 63.0
1169900 14 23 24.09 52.5 0.561 0.511 0.334 1.57 6.67 76.4
1181000 15 54 94,00 190.6 0.611 0.541 0.356 1.82 8.88 154.2
1332000 16 58 40.90 96.6 0.590 0.540 0.356 1.63 6.52 87.3
1097300 17 26 12.31 20.7 0.579 0.436 0.231 1.34 4.42 43.1
1333000 18 40 42.60 82.5 0.542 0.463 0.283 133 4.79 45.1
1165500 19 65 12.10 20.0 0.590 0.485 0.285 1.49 582 82.1
1171500 20 51 54.00 96.5 0.557 0.491 0304 1.47 6.41 84.0
1176000 21 77 150.00 244.9 0.487 0.367 0.187 1.07 547 97.6
1162500 22 S3 19.30 32.6 0.597 0.489 0.291 1.54 873 2520
1180000 23 28 1.73 2.6 0.620 0.512 0311 1.74 999 2314

Here, mi? denotes square miles; 1 miZ = 2.590 x 10% m?; cfs denotes cubic feet per second; 1 cfs

= 28.32 L/s.

1. All of the rivers are perennial.

2. No significant withdrawals, diversions, or artificial
recharge areas are contained in the basins; hence we con-
sider these streamflows to be essentially unregulated.

3. The streamflow records range in length from 11 to 77
years, typical of a wide range of regional samples encoun-
tered in practice.

The U.S. Geological Survey Station numbers, record
lengths, drainage areas, L moment ratio, and product-
moment ratio estimates are summarized in Table 1. Further
information regarding these 23 sites, including selected
streamflow statistics, other drainage basin characteristics
and a location map is included in studies by Vogel and Kroll
(1990, 1992] and Fennessey and Vogel [1990].

L Moment Ratio Diagrams for Daily
Streamflows in Massachusetts

Figure 2 (top) is an L moment diagram which uses solid
circles to illustrate the relation between sample estimates of
L kurtosis and sample estimates of L skewness, computed
from the complete records of daily streamflow at the 23
basins in Massachusetts. For comparison, the curves reveal
the theoretical relationships between L kurtosis and L
skewness for the LN3, GEV, P3, GPA, and the lower bound
for the WAS distribution. Sample estimates of L skewness
and L kurtosis are obtained using the unbiased L moment
estimators given in (4), (6), and (8). Even though estimates of
the L moments A,, r = 1, 2, 3, and 4 are unbiased, this does
not imply that the sample ratio estimators L-C,, L skew-
ness, and L kurtosis are unbiased.

Of all the three-parameter models tested in Figure 2 (top),
the generalized Pareto (GPA) model provides the best ap-
proximation to the observed daily streamflows. When one

compares the overall behavior of L moment diagrams for
these distributions in Figure 1 to the results in Figure 2 (top),
one observes the remarkable ability of L moment diagrams
for distinguishing among relatively similar distributional
hypotheses. We conclude from Figure 2 (top) that the GPA
distribution provides a better overall approximation to the
distribution of daily streamflows in Massachusetts than the
LN3, GEV, P3, Gumbel, normal, uniform, or exponential
models. Since the GPA distribution is a special case of the
WAS distribution, one would expect the WAS distribution to
provide the best fit among all models compared in Figure 2,
at the expense of having to estimate two additional param-
eters.

Figure 2 (bottom) is an L moment diagram which illus-
trates sample estimates of L-C, 7,, versus sample estimates
of L skewness 73, for the same sites as in Figure 2 (top). For
comparison, we plot the theoretical relationship (using a
solid line) between 7, and 7; corresponding to the two-
parameter GPA distribution. Hosking and Wallis [19875b],
Stedinger et al. [1993], and Vogel et al. [1993b] describe the
theoretical properties of the two- and three-parameter GPA
distribution. The two-parameter GPA distribution is equiv-
alent to the three-parameter version with the lower bound &,
set to zero. The two-parameter GPA distribution provides a
good approximation to the relationship between L-C, and L
skewness for this region.

Comparison of Product Moment Ratio and
L Moment Ratio Diagrams for Daily
Streamflows in Massachusetts

The immediate question which arises in the mind of
anyone who has not experienced the value of L moment
diagrams is, Would the use of conventional product moment
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ratio diagrams lead to the same conclusions as the use of L
moment ratio diagrams?. In Figures 3 and 4 we compare the
use of L moment ratio diagrams with conventional product
moment ratio diagrams, using the same Massachusetts sites
as in Table 1 and Figure 2. In all cases, the open circles
denote the use of the complete period of record, and the
solid circles denote the use of the complete period of record
without the largest observation. One would expect the
sample estimates of both L moment ratios and conventional
product moment ratios to be relatively insensitive to the
largest observation, since we are dealing with samples with
thousands, and at some sites, tens of thousands of daily
streamflow observations. As expected, the L moment ratio
diagrams depicted in Figures 3 (top) and 4 (top) are relatively
unaffected by dropping the largest observation. However,
the conventional product moment ratio diagrams illustrated
in Figures 3 (bottom) and 4 (bottom) are significantly im-
pacted by dropping the largest observation. Dropping the
largest observation should tend to reduce the estimated
kurtosis, skewness, C,, L kurtosis, L skewness, and L-C,,,
since it is the large observations which tend to cause
skewness (in a positively skewed population). This is exactly
the effect we observe in the L moment diagrams in Figures 3
(top) and 4 (top); all the points are shifted down and to the
left when the largest observation is removed. Yet the con-
ventional product moments behave much more unpredict-
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Fig. 2. L moment diagrams describing the sample and theoret-

ical relationships between (top) L kurtosis 74 and L skewness 73 and
(bottom) L coefficient of variation 7; and L skewness 7; for average
daily streamflows at the 23 sites in Massachusetts, summarized in
Table 1.
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Fig. 3. (Top) L moment ratio diagram comparing the sample

and GPA theoretical relationship between L-C,, 7, and L skewness
73 and (bottom) product moment ratio diagram comparing the
sample and GPA theoretical relationship between coefficient of
variation C, and skewness G, using average daily streamflows at the
23 sites in Massachusetts, summarized in Table 1.

ably. In some instances dropping the largest observation
leads to remarkable reductions in kurtosis and skewness
(note kurtosis is plotted using a logarithmic axis), yet in
other instances the sample estimates are not noticeably
affected. Hence it is not surprising that the sample product
moment ratios are in poor agreement with the theoretical
relationships for the GPA distribution illustrated in Figures 3
(bottom) and 4 (bottom). Apparently, estimated sample
values of C,, v, and « are highly biased even when one is
dealing with thousands of highly skewed observations. This
should not be too surprising given the results of simulation
experiments performed by Wallis er al. {1974] which indi-
cated that the variance of estimates of the skew coefficient
often increased with sample size for highly skewed popula-
tions. This is exactly the effect we are observing.

Overall, the conventional product moment ratio diagrams
in Figures 3 (bottom) and 4 (bottom) do not reveal any
agreement between the theoretical distributions and the
sample product moment ratios. Monte Carlo experiments,
performed in the next section reveal that sample estimates of
the product moment ratios C, and G are remarkably down-
ward biased for highly skewed samples, even for samples
sizes in the range n = 1000 to 5000. Hence the results of
Figures 3 and 4 are to be expected given knowledge of the
sampling properties of product moment ratio estimators for
highly skewed samples.
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Fig. 4. (Top) L moment diagram comparing the sample and

GPA theoretical relationship between L kurtosis 74 and L skewness
73 and (bottom) product moment diagram comparing the sample and
GPA theoretical relationship between kurtosis & and skewness G,
using average daily streamflows at the 23 sites in Massachusetts,
summarized in Table 1.

A Few Caveats

One might object to the previous analyses because it could
be argued that a sensible hydrologist would never attempt to
estimate product moments for highly skewed data. Instead,
a suitable logarithmic or Box-Cox transformation might be
applied to the highly skewed daily streamflows, removing
some of the excessive skew in the data, allowing the product
moments a chance to behave more reasonably. However, if
our goal is to evaluate the goodness of fit of alternative
distributions, transforming the data only assists us in deter-
mining the distribution of the transformed data, instead of
the original data.

We constructed L moment and product-moment diagrams
similar to Figures 2—4 by first taking logarithms of all the
daily streamflows. Since the conclusions derived from those
diagrams are not central to our paper, we did not include
them. We found that both L moment diagrams and product
moment diagrams based on the logarithms of the daily
streamflows revealed that the logarithms are neither well
approximated by a normal distribution or a P3 distribution.
Hence taking logarithms only allowed us to conclude that
daily streamflows in Massachusetts are poorly approximated
by a lognormal and a log Pearson type 3 (L.P3) distribution.
Taking logarithms would have never enabled us to determine
that daily streamflows are well approximated by a GPA
distribution in Massachusetts, as we found in Figures 2-4.
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THE SAMPLING PROPERTIES OF ESTIMATES
OF PrRODUCT MOMENT RATIOS

In the previous section we showed that product moment
ratio diagrams are remarkably sensitive to the largest
streamflow observations and such diagrams led to different
conclusions than L moment ratio diagrams. Thus far, our
attention focused on observed daily flow data for which the
underlying pdf is unknown, hence we were unable to provide
a definitive explanation for this discrepancy. In this section
we perform a Monte Carlo experiment which proves that
sample product moment estimators of C, and y exhibit
significant downward bias, even for extremely large sample
sizes. This bias tends to increase with both C,, and vy, which
explains the phenomenon we observed in Figures 3 (bottom)
and 4 (bottom).

MoNTE CARLO EXPERIMENTS

Experimental Design

All of the experiments follow the same general procedure.
First, 10,000 sets of streamflow traces are generated of
length n from a two-parameter lognormal (LN2) and a
two-parameter generalized Pareto (GPA) model. Streamflow
traces of length n = 10, 20, 50, 100, 200, 500, 1000, and
5000 are generated from LN2 and GPA populations with
C, =1, 2,5, and 10. This parameter space is intended to
capture the range of variability in both » and C, which is
typical of daily streamflow sequences. Note that even if one
has a sample of 10,000 daily streamflows, the effective
record length of those observations may be less than 1000
when one accounts for the loss in information due to the
serial correlation of the flow records. For each streamflow
trace, the sample estimators C, = s/m and G are obtained
using (2). Next we compute

Bias (C,) = o/u — E[C,),

Bias (G) = v ~ E[G],
rmse (C,) = {[Bias (C,)]* + Var (C,)}"? and
rmse (G) = {[Bias (G)]? + Var (G)}'2.

Note that we do not compute either the Bias(G) or rmse(G)
for the GPA distribution, since the skewness of the GPA
distribution is undefined for most values of C, considered
here (i.e., vy is undefined for C, > 1.73). Note that even
though the skewness of the GPA distribution is undefined for
most values of C, considered here, L moments are still
meaningful; another important advantage of L moments over
product moments. The results are reported in Figures 5 and
6.

Results

Figure 5 summarizes Bias(C,) and rmse(C,) as a fraction
of the true value C, versus sample size n and population C,,
for LN2 and GPA observations. Similarly, Figure 6 summa-
rizes Bias(G) and rmse(G) as a fraction of the true value v,
versus sample size n and population y, for LN2 observa-
tions. What is most revealing about these results is that the
bias of both C, and G is extraordinary for samples with
values of C, in excess of 5, even for sample sizes in excess
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Fig. 5. The bias and rmse of product moment estimates of C,, (as a fraction of the true value of C,) are illustrated
as a function of sample size n and the population value of C, for two-parameter lognormal (LN2) samples and
two-parameter generalized Pareto (GPA) samples. Each point in the figure is based on 10,000 replicate experiments.
of 1000. Apparently, as the population values of both C, and LO] A=A=——A—pg—A—a—a— a
v increase, even large sample estimates of product moment 098] e -A\A\
ratios contain almost no information about either the coeffi- 0.8 ’\. a
cient of variation or the skewness of the samples. Further- 0.7 0\ \o\
more, the root-mean-square error (rmse) of both estimators  7o'| 4] o 0\
C, and G are generally dominated by bias, and since this = 051 \ 0\.
bias disappears very slowly with sample size, the rmse of | & 0.4 0\ \
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samples. It is also clear from Figure 5 that the sampling le—e y=i4 o
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properties of estimates of C, are quite different for the LN2 0.4]0—0 7=4.08 oo
and GPA populations, hence efforts to derive unbiased "~ { LN2 Distribution o0
e§timators of C_'l, would require distributional assumption.& 0.0 5 10 100 1000
Since our earlier objective was to employ moment ratio .
diagrams for selecting a suitable distribution for daily flows, Sample Size, n
use of unbiased product moment estimators would be trou- o
blesome because a distributional assumption is required to s — :3\2:2 A
develop unbiased product moment estimators (a chicken and 0.8 ’\.\ T
egg problem). 081 o Y
The bias associated with both estimators C, and G results 0.7 ™~ ~e
A R — E [¢] \
from the fact that these product moment estimators require U, 08 N L SN
squaring and cubing of the differences between each obser- % > 951 0\0 \
vation and the sample mean. As was shown in Figures 3and & 0.4, 4 y=1030 \o\o .
4, the sum of the square, cube, and fourth power of the o 0.3{a—a y=140 ™o
difference between the observations and their sample mean 0.2ie—® =14 \
is dominated by the few extraordinarily large observations 0.1 0—9 7=:1.0§ o
typical of most highly skewed daily flow records. Hence one 0.0 { N2 Distribution .
expects the bias and rmse of G to be much greater than the 5 10 100 1000

bias and rmse of C,, as is observed in Figures 5 and 6.
Similarly, one expects the bias and rmse associated with
product moment estimates of kurtosis to be still greater;
however, we elected not to compute it since our results for
C, and vy provide sufficient evidence to discontinue the use
of product moment estimators for highly skewed samples.

Sample Size, n

Fig. 6. The bias and rmse of product moment estimates of
skewness G (as a fraction of the true value, y) are illustrated as a
function of sample size n and the population value y for two-
parameter lognormal (LN2) samples. Each point in the figure is
based on 10,000 replicate experiments.
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CONCLUSIONS

A comparison of conventional product moment ratio and
L moment ratio diagrams in Figures 3 and 4 illustrates how
remarkably sensitive sample estimates of the coefficient of
variation C,, skewness G, and kurtosis & are to the large
observations often associated with long records of daily
streamflow. A Monte Carlo experiment documented (see
Figures 5 and 6) the significant downward bias associated
with large-sample estimates of C, and G for lognormal and
generalized Pareto samples. Combining the results of our
large-sample Monte Carlo experiments in Figures 5 and 6,
with the extensive small-sample computer experiments per-
formed by Wallis et al. [1974], we conclude that product
moment estimates of C, and y should be replaced by L
moment estimators for most goodness of fit applications in
hydrology including both small-sample, low-C,, applications
[see Wallis et al., 1974] and both small- and large-sample,
high-C, applications.

There are two general situations in which relatively unbi-
ased product moment estimators are available. When one
transforms the observations by taking logarithms, product
moment estimators will behave similarly to L moment esti-
mators. Unfortunately, transforming the data will not usu-
ally assist us in determining the distributional properties of
the original data except in special cases such as the LP3 and
N3 distributions. Furthermore, streamflow cannot always
be transformed by taking logarithms, since many flow se-
quences contain zeros. Another situation in which relatively
unbiased product moment estimators are available is in
large-sample, low-C,, applications; however, such situations
are not usually encountered in hydrology.

We conclude that for the purpose of constructing moment
diagrams in hydrology, L moment diagrams are always
preferred over product moment diagrams because the L
moment ratios L-C,,, L skewness, and L kurtosis are nearly
unbiased for all combinations of sample size and C,, and for
all populations [Hosking, 1990].
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