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Disaggregation and multisite auto regressive moving average (ARMA)(l,l) time-series models provide
simple and efficient frameworks for generation of multisite synthetic streamflow sequences that exhibit
long-term persistence, This paper considers multisite ARMA(l,l) models whose II> ~nd 0 matrices are
diagonal; a Monte Carlo study examined the efficiency of three procedures for estimating individual 4>-()
values for each site and two estimators of the covariance matrix of the innovations, Also included in the
study was a univariate ARMA(l,l) model of the aggregate flows with a simple disaggregation algorithm
to generate flows at the individual sites. In the realm of most hydrologic interest, simple diagonal
multisite ARMA(l,l) models performed adequately and it is not necessary to fit the more cumbersome
nondiagonal models. The disaggregation procedure coupled with an ARMA(l,l) aggregate flow model
did as well as the multivariate diagonal ARMA(l,l) models,

INTRoDucnoN In this paper, we explore fitting methods for multivariate
Autoregressive moving-average time series models have ARMA(I,I) models employed in two ways. The first form uses

proven to be a flexible tool for use in water resources plan- an ARMA(I,I) model structure for flows at each site. This we
ning. The auto regressive moving average (ARMA)(I,I) model, belleye is an advantage from the standpoint of physical plausi-
in particular, has a physically reasonable correlation structure bility. Models of this kind have been proposed by Matalas and
which can reflect the long-term persistence which may be pres- Wallis [1976] for AR(I) processes and by Salas et al. [1980]
ent in geophysical time series. Several papers have discussed and Loucks et al, [1981] for ARMA(p,q) process. However, the
long-term persistence ~nd possible physical explanations (see, question of the relative performance of the several possible
for example, Klemes [1974, 1978}; P()tter [1975, 1976]). Of the parameter estimation methods has not been addressed. We
operational models which provide for long-term persistence, also consider a univariate ARMA(I,I) model of the aggregate
the ARMA(I,I) model has the advantage that it is consistent flows coupled with a disaggregation procedure to generate
with at least two explanations that have been advanced. The separate annual flows for each site,

first, advocated by Mandelbrot and Wallis [1968], was that M I ' I S ' ARMA(II) M d II ., h I fl ' hd I ' utlpe Ite , oes
ong-term persistence IS t e resu t o ong memory In y rau IC

processes. However, it can be argued that this explanation is The general multiple-site ARMA(I,I) model may be written

not reasonable in view of the time constants observed in the X = fl)X -+ V -8V - ( 1
)h . 1 I ' , .. ff t ti t ti

p yslca processes resu tlng In surlace runo [Moss, 1972,
Klemes, 1974]. where Xt is an m x 1 vector of normally distributed flow re-

The secorid and we believe more plausible explanation is siduals (zero mean) in period t with covariance matrix So,
that long-term persistence results from shifts in the means of where Vt is an m x 1 vector of time-independent normally
hydrologic processes which may be related, for instance, to distributed random fluctuations with covariance matrix G,

! climatic change. Boes and Salas [1978] have demonstrated and where <1> and e are m x m coefficient matrices. A thor-
-'* that a univariate ARMA(I,I) structure can result from a shift- ough discussion of such multivariate stochastic models is pro-
1 ing means process. Moreover, the Hurst phenomena may be vided by Jenkins and Alavi [1981].
;; just preasymptotic behavior for relatively persistent short- Various approaches to estimation of the parameter vectors

me~ory models such as ARMA(l,l) processes [Salas et al., and covariance matrices have been explored. Wilson [1973]
1979]. O'Conneff[1971, 1974, 1977] has pursued the long-term and Tiao and Box [1981] recommend maximum likelihood
persistence basis of the model with the practical result that the estimates (MLE) of <1>, e, and G. Spliid [1983] presents a
ARMA(I,I) structure may be considered compatible with similar but computation ally faster alternative. The difficulty
either explanation. with these procedures is that they both require a compu-

tationally burdensome search for the 2 m2 elements of the <1>
Copyri~t 1985 by the American Geophysical Union, and e matrices prior to estimation of G as the covariance

Paper number 4W1459, matrix of the fitted residuals V t. Beyond the computation
0043-1397/85/004W-1459$05.00 burden, Lettenmaier [1980] found that the single-site auto-
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correlations corresponding to fitted MLE models could differ unreasonable; these constraints are described in the experi-
substantially from those obtained from univariate estimation mental design section. We note that these univariate MLE's
at the individual sites. In this work, we also show that ap- together are not equivalent to the MLE's for cI> and e which
proximate MLE estimates of the lag-zero cross-correlations are obtained by simultaneous optimization of the joint likeli-
tend to be biased strongly downward, particularly when the hood function. Joint estimation of the model parameters may
(population) cross.correlations are high. This is troubling result in more efficient estimators [Nelson, 1976; Moriarty and
given that the cross-correlation of annual streamflows within Salamon, 1980; Umashankar and Ledolter, 1983].
the same region are generally quite high. Stedinger [1981] 2. Univariate method of moments: this involves esti-
considered alternative estimators of the cross-correlation of mation of 4>; by
AR(l) processes and obtained similar results.

Salas et al. [1980] and Loucks et al. [1981] have suggested t;b'1 = ~ (3) ,
that cI> and e be taken as diagonal matrices. Then the ele- fi1(11
ments of each are essentially the parameters of univariate and computation of 111 by solution of the quadratic equation
ARMA(l,l) models fitted to the flows at each site. G can then
be estimated as the sample covariance of the fitted V, defined ~ (i) = (1 -t;b';l1i)(4>; -11,)
by (1). The sample elements of V, are produced as a byproduct P1 1 + 11;2- 2t;b';11; (4)

of the MLE fitting process, or they can be computed directly. .
from the fitted univariate models and the data. Initial values yleldmg
in the re~ursions can be obtai~ed, given the univariate param- 111 = 0.5[B -B2 -4]
eters, usmg the back forecasting method of Box and J enkins
[1976] to provide unconditional estimates of the residuals. where

Alternatively, given cI> and e, G can be computed so as to B -1 .t .t 2 ~ ..t ~ .
reproduce the observed lag-zero covariance matrix, So, of the -[ + '1'1('1'1- P1(/))]/['1'; -P1(/)]

flows. Method of moments solutions do not exist for certain combi-
O'Connell [1974, 1977] has suggested a method of moments nations of fi1(i) and fi2(i). Screening criteria, described in the

approach to the estimation of cI>, e, and G. His method in- experimental design section, were employed to ensure that
volves substitution of the sample lag zero, one and two covari- fi1(i) < t;b'i < 1 and 11; < t;b';.
ances of the X process, (So, S1' and S2) into population re- 3. a'Connell's method: O'Connell [1974] performed exten-

lationships between cI>, e, and G. In practice, the method is sive Monte Carlo experiments to relate an estimator of the
plagued by numerical difficulties associated with the inversion Hurst coefficient, h and an estimator of the lag-one correlation
of certain matrices whose sample estimates may not be posi- coefficient to parameters of the univariate ARMA(l,l) model.
tive semidefinite [Armbruster, 1978; Puente and Deeb, 1979]. The Hurst coefficient can be defined by E(RjS.) = (n/2)~,
Many of these problems arise because there may be no feasi- where n is the sequence length, R. is the range or maximum of
ble cI> and e matrices for given So, S1' and S2. Consequently, the cumulative departures from the mean in a sequence of
we did not pursue this approach. length n, S. is the standard deviation of the observations, and

All of the methods suggested to date have some drawbacks. h is a measure of the long-term persistence of a hydrologic
The estimation of cI> and e using univariate methods has the time series. For a general description of the Hurst effect, see
advantage that the m single-site models are then ARMA(I,I) the works by Burst [1965], Mandelbrot and Wallis [1968], or
with well known properties. This assures that the multisite Bipel [1975].
model is hydrologically reasonable at each site individually O'Connelrs [1974] Monte Carlo experiments provide a de-
and jointly. For example, the elements of the covariance scription of the relationship between (1) the expected value of
matrices are given by K, an estimator of h; (2) the expected value of a lag-one corre-

k-1 lation coefficient estimator, E[fi1], and (3) the population pa-
Sk = .., S1 k > 1 (2) rameters 4> 'and (} (note that subscripts have been dropped for

and decay monotonically so long as O < 4>1 < 1, as should be convenience). a'Connell's experiments were performed by
the case for hydrologically reasonable univariate models fixing 4> and (} and numerically evaluating the expected value
[O'Connell, 1974]. of K and fi1 for sequences of length n = 25, 50, and 100.

With the assumption of diagonality for cI> and e, the model O'Connell [1974, 1975] suggests that these results can be used
fitting process consisted of two independent steps: estimation for estimation by mapping individual sample estimates K and
of cI> and e, and estimation of G conditioned on cI> and e. fi1 into estimates of 4> and (} by assuming the former equal
This resulted in a total of six parameter estimation procedure their expected values. Although a'Connell's results might be
combinations. A seventh method, based on disaggregation of used in this manner via a table lookup procedure for individ- ,
aggregate or summed flows to the individual sites, is discussed ual applications, the Monte Carlo experiments described in ~

in the next section. The three methods for estimation of cI> and this paper required automation of the procedure. A family of
e considered here are as follows. curves was fitted to a'Connell's results. As is shown in Appen-

1. Univariate unconditional MLE: as is suggested by Box dix .B, there was a narrow region in which K and fi1 result in
and Jenkins [1976; pp. 212-219], this involves minimization of feasible values of 4> and (}. Therefore we chose to relate both 4>
the sum of squares of univariate residuals. The Simplex search and (} to K alone so as to obtain a solution in the majority of
method of Nelder and Mead [1965] was used. We have found cases.
this method to be considerably more efficient than the lin- Two methods were considered for estimation of G, given
earization method suggested by Box and Jenkins or the the coefficient matrices cI> and e:

method of Rosenbrock [1960] employed by O'Connell [1974]. 1. A quasi MLE estimate of G was obtained by using ..,
The ~LE method was modified in certain instances when the and 8 in (1) (after subtraction of the at-site sample means) to
resulting values of cI> and e were thought to be hydrologically obtain estimates of the residuals Vas described in the work,
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by Box and Jenkins [1976, pp. 212-218]. Our estimate of G X,I; it will also reproduce the observed covariance between
was then X,2 and X,. and the sample variance of Xt2.

.In addition, it would be desirable to have a model which
(; = l/n L V,V,T (5) would reproduce the persistence structure of the individual

,=-Q Xtl and XI2 series. As is discussed in the works by Lane

2. It can be shown that So, (f), 8, and G satisfy [1980] and Stedinger and Vogel [1984], it is often impossible
within a disaggregation model structure to reproduce the

So = (f)So(f)T -(f)G8T + G -8G(f)T + 8G8T (6) sample lag-one correlation of the X,i series. However, a feasi-

A method-of-moments estimator of G was obtained by substi- ble and. reasonable sub~titute is to reproduce the obser~ed
tuting cb, 9 and correlation of the ~ serIes. Thus the ~ were generated usIng

the model
.

SOil = l/nLX,X,T (7) ~ = CX~-1 + I-; (14)
,= 1 with

for the population values in (6), Making use of the fact that (f) 1 .
and 8 are diagonal, the resultant estimator of G has compo- Ii. = ;;-=-2 ~ (X.1 -/3'X..)(X.-ll -/3'X.-l.)
nents .-2 ( 1 . ) -1 (j.. = (So)I}(l -cf>ucf>JJ) (8) .-=-1 L (X.1 -/3'X..)2 (15)

'1 l-.r. i {j..-{j...r.. + {j..{j.. n .=1
III, 11 ll11111 II 11

~ ~ and independent zero-mean innovations I-; with variance
Given (f) and 8, this estimator of G will reproduce the ob-
served variance and lag-zero cross-covariances of the flows. Var [I-;] = (1 -li.2)aw2 (16)

A FI d lOne exception was made; should Ii. be negative, a value of zero
ggregate ow Mo e was substituted. We felt it was physically unreasonable for

The seventh model represents a different generation strategy higher than expected flows in year t -1 at site 1 to imply
from the first six. Rather than attempting to model flows at lower than expected flows at site 1 in year t.
each site individually, a univariate ARMA(l,l) model was fit. ...
to the aggregate flows using maximum likelihood estimates of Model EstimatIon Assessment CrIterIa

t/> and () and the method of moments estimator of the inno- Assessment measures for model performance evaluation
vation's variance, as in (8). This will be shown, in general, to should det~rmine how well fitted models replicate important
be about the best univariate technique from the standpoint of population characteristics. bur assessment procedure consist-
parameter estimation efficiency. The fitted model was used to ed of two stages. The first was to determine whether the fitted
generate aggregate annual flows which were then divided parameters, based on "historical" data, replicate population
among the sites. parameters, such as means, variances, autocorrelations, and

The aggregate flow X I. was apportioned between the two cross correlations. In general, the population parameters are
sites using the simple disaggregation model described by Sted- not known. However, this problem was avoided by using syn-
inger and Vogel [1984]. In the two-site case, that model be- thetically generated data (pseudo-historical) in lieu of histori-
comes cal sequences. A second stage (stage II) was used to determine

whether flow sequences generated using the estimated parame-
X,1 = pX,. + ~ (9) ters reproduce drought frequency and cross-drought corre-

X 2 = (1 -P)X .-~ (10) lation chaJacteristics similar to sequences generated by the
, , , true model. This is especially important as the parameter esti-

The parameter p and the variance of the noise sequence ~ mat ion procedures sometimes resulted in a fitted model appre-
were selected so as to reproduce the covariance of X,. with ciably different from the prototype.
X,1 and X,2 as well as the variances of both X,1 and X,2. The stage I at-site assessment criteria included the bias and
Note that (10) can be omitted because X,2 is also given by root mean square error of the fitted models' lag-one corre-

Xt. -X,I. lation coefficient and the estimated variance of flows at both
Without loss of generality, we assume that the ~ will be sites. An additional indicator of flow persistence

independent of the X I.. Then, to reproduce the covariance of
[ k J ,

X,.andX,I,pshouldbe rk=~Var LX}i (17)
ku }=1

p -E [ X 1 X "J/E [(X . )2] (11
)-, , , for k = 4 and 10 was also employed. r k would equal 1 for

::- We employed the estimator independent ~?WS and increases as the modeled persistence

among the X,' Increases.
:. -.1 . 1..2 Because both the pseudo-historical and generated flows

/3' -~ (X. X. ) ~ (X. ) (12) were normally distributed, their distribution is completely
.-1 .-1 specified by their mean, variance, and autocorrelation func-

Likewise, to reproduce the observed variance of X,I, the vari- tion. Thus when examining the persistence or variance of
ance of the generated ~ was taken to be flows over extended time periods, it is sufficient to focus on

their variance, and particularly their correlations. r k provides
a 2 = ! f (X 1 -/3'x .)2 (13) a measure of the normalized variance of the average flow over

w n .= 1 ' , any k-year period; its (population) value is

k-l
This ~hoice of /3' and aw2 allows reproduction of the o.bserved r k = 1 + 2 L (1 -j/k)p} (18)
covarIance between X,1 and X,. and the sample varIance of }=1
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TABLE 1. Description of Diagonal ARMA(l,l) Models Used to listed in Table 1. These represent a range from processes with
Generate Flows no long-term persistence (case 1) to extreme long term persist-

( .. ) ...L .ence (case 3). Without loss of generality, we assumed the
P1/,},lr} Ifl h . h d 5 d . hannua ows at eac sIte a mean an variance 1. In eac

For For case, flows were generated with cross correlations (80)12 =
Case cfJu (Ju PI(i, i) Po(i,j) = 0.7 po(i,j) = 0.9 Po(I,2) of 0.7 and 0.9. This yields six parameter combinations.

1 020 0000 0200 0 140 0 180 In the fourth case, to be discussed at greater length later,
I* 0:40 0:177 0:233 0:163 0:210 flows were generated by a multisite ARMA(I,I) model with a
I* 0.60 0.363 0.267 0.187 0.240 range of symmetric c1) and 0 matrices with nonzero off-
2 0.80 0.572 Q.300 0.210 0.270 diagonal elements. These contaminated cases allow evaluation
I* 0.85 0.617 0.333 0.233 0.300 of the consequences of using diagonal ARMA models to de-
I* 0.90 0.675 0.376 0.257 0.330 .

b h d 3 0.95 0.758 0.400 0.280 0.360 SCrl e t e IstrlbutI~n of ~ows generate~ by .a nondIagonal
ARMA model. We dId not Include a case In WhICh the pseudo-

*Intermediate cases were used to produce figures; they do not historical flows were generated by a disaggregation model.
appear ~n tables. Here PI(i, i) refers to PI(l,l) and PI(2,2), the auto- For each generating model, bivariate 50-year sequences
correla~lons of flows at site 1 and 2, respectively; PI(i,j), i ~ j, refers to were generated using the startup algorithm described in Ap-
p[(1,2) and p[(2,1), where PI(I,2) = PI(2,1) and P1(1,1) = PI(2,2). d . A A ... I ... d dpen IX. n InitIa screenIng was perlorme , an sequences

were rejected for which either fJ1(1,1) ~ 0.05 or fJ1(2,2) ~ 0.05.
All of the statistics described above can be calculated after Additional sequences were generated to provide a total of

the model parameters have been estimated using stage I syn- 1000 sequences which passed this test. The screening test was
thetic flows. We also calculated at stage I and II the at-site designed to limit consideration to those sequences to which 3,
required reservoir capacity S necessary to satisfy a given hydrologist would reasonably consider fitting an ARMA(I,I)
demand D equal to 0.7 or 0.9 times the true mean annual flow model; it was felt that in practice sequences not passing such a
(MAF), for a reservoir initially full. test would most likely be modeled as independent noise.

Each of the seven model fitting techniques described in the
EXPERIMENTAL DESIGN previous section was applied to the 1000 generated sequences.

The muitivariate ARMA model in (1) and the disaggrega- The first six models consisted of univariate maximum likeli-
tion model can be used to generate concurrent flows at any hood, method of moments (MOM), and O'Connell's [1974]
number of sites. However, the analysis here is restricted to a method (OCE) for univariate estimation of I/>i and (J;, coupled
two-site situation. In all cases, flows were generated with the with MOM or conditional MLE (product estimate of G from
multivariate ARMA(I,I) defined by (1) with m = 2. Four cases fitted i.nnovation series) for estimation of G. The seventh fit-
were considered. In the first three, described in Table 1, the c1) ting method was univariate MLE applied to the aggregate
and 0 matrices in the generating model had zero off-diagonal flows with a method of moments estimate of the variance, and
elements. Thus the fitted diagonal ARMA(I,I) model structure disaggregation to the individual sites as described in the pre-

was identical to the structure of the model from which ceding section.
pseudo-historical Stage I flows arose. In these three cases, the Additional restrictions were applied to some of the esti-
population values satisfy 1/>1 = 1/>2' (J1 = (J2' G11 = G22, and mation procedures. For MLE and MOM estimates of I/>i and
G12 = G21. Thus the time series models employed at each site (Ji it was required that ° < (Jj < $i < 1. When either of these
were also the same. This greatly reduced the number of pa- constraints was violated we set $i = P1(i,i) and (Jj = 0; the

rameter combinations which needed to be considered. How- initial screening guaranteed fJ1(i,i) ~ 0.05. For OCE, estimated
ever, we did not constrain $1 to equal $2' or (J1 to equal (J2. values of K less than 0.670 were set to 0.670; K = 0.670 corre-

The values of 1/>; and (Ji employed in the first three cases are sponds to E[fJ1(i,i)] = ° for our ARMA(I,I) processes. This

TABLE 2. Estimates of the Mean and Roqt Mean Square Error of Statistics Describing the
Persistence of Modeled Flows at Each Site

Estimation Method E[pJ RMSE[P1] E[f' ~ RMSE[f' 4] E[f' 10] RMSE[f' 10]

Case 1 MLE 0.24 0.11 1.47 0.28 1.72 0.57
MOM 0.21 0.11 1.40 0.25 1.59 0.45

-OCL 0.17 0.17 1.49 0.51 2.22 1.48
DISAG (po(l, 2) = 0.7) 0.24 0.10 1.47 0.24 1.69 0.50
DISAG (po(l, 2) = 0.9) 0.24 0.11 1.48 0.27 1.71 0.53
True values 0.20 1.34 1.44Case 2 MLE 0.31 0.15 1.74 0.41 2.47 1.09 -,

MOM 0.25 0.15 1.55 0.43 1.94 1.07
OCL 0.36 0.25 2.01 0.73 3.58 2.05 ~DISAG (po(l, 2) = 0.7) 0.31 0.12 1.72 0.35 2.38 0.98 ,

DISAG (po(l, 2) = 0.9) 0.31 0.13 1.73 0.38 2.43 1.05
True values 0.30 1.79 2.66

Case 3 MLE 0.35 0.19 1.90 0.59 3.04 1.88
MOM 0.23 0.24 1.49 0.78 1.87 2.46
OCL 0.41 0.26 2.18 0.75 4.03 2.00
DISAG (po(l, 2)= 0.7) 0.33 0.16 1.84 0.55 2.85 1.84
DISAG (po(l, 2) = 0.9) 0.34 0.18 1.87 0.56 2.95 1.86
True values 0.40 2.16 4.16

Ninety-five percent confidence intervals for E[PI]' RMSE[PI]' E[f'4]' RMSE[f' 4]' E[f' 10]' and
RMSE[f' 10] are within :t6, :t5, :t3, :t5, :t4, and :t9%, respectively, of the reported values.
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Fig. I. Root mean square error and bias of Pi' r 4' and r 10 estimators for at-site ARMA models and disaggregation
model (with Po(I,2) = 0.7). Expectations were estimated using 1000 Monte Carlo sequences; see Table I for generating
models' parameters.

default value for K resulted in default values of cf> = 0.880 and and r 10 which serve as simple measures of modelled longer-
O = 0.844 which are still indicative of long-term persistence- term persistence. Table 2 and Figure 1 report the means and

root mean squre error (RMSE) of the last three statistics for
MONTE CARLO RESULTS the three standard cases. Also included are the corresponding

We consider first the stage I performance of the seven statistics obtained using the aggregate-flow ARMA(l,l) model
ARMA(l,l) models and parameter estimation procedures with in conjunction with disaggregation. For the diagonal ARMA
the constraints described above. The constraints imposed are models the results in Table 2 are independent of the specified
designed to improve the fidelity or precision with which the value of Po(1,2). However, Po(1,2) does affect the performance
fitted models will describe the distribution of streamflow se- of the disaggregation model, though only slightly as demon-
quences one would expect to see in practice. For example, strated by our results.
estimates such that 0 < cf> < 0 < 1 are admissible [see Box and Figure 1 compares the three at-site <I> and e estimation pro-
Jenkins, 1976, pp. 76-77,520] but result in a negative lag-one cedures along with the disaggregation model performance
correlation coefficients. Thus cf> = PI ~ 0.05 and O = 0 are with Po(1,2) = 0.7. In terms of the RMSE of flow persistence

almost surely better parameter estimates based on hydrologic statistics such as PI' r 4' and r 10, the disaggregation model
experience with large numbers of catchments [Yevjevich, generally did the best while our formulation of O'Connelrs
1963]. However, if cf> is near 1 and O is not much less than cf>, [1974] method was clearly worst. The method of moment and
then the occasional substitution of (PI' 0) for (cf>, 0} can have a MLE estimation procedures as constrained generally per-

~ dramatic impact on the bias and variance of cf> and O and formed almost as well, and sometimes better, than the disag-

hence their mean square error as well. Likewise, it is impor- gregation model. It is interesting that the relative performance
tant to note that for all cf> and O such that O = cf>, an equivalent of the MOM procedure improves in the low persistence case

,t.- model is obtained for cf> = 0 = 0. For these reasons the bias while that of the MLE procedures improves in the high per-

and mean square error of the model parameter estimates cf> sistence case. Much of the difference between the RMSE of
and O can have little practical significance in that the relation- MOM estimators and those of MLE and the disaggregation
ship between these values and the correlations among the gen- procedures is due to the large bias in MOM estimators in the
erated flows is highly nonlinear if not discontinuous; it is more high persistence cases (see the bottom panels in Figure 1 ).

appropriate and meaningful to focus on hydrologically impor-
tant characteristics of the fitted models. Estimates of G

The characteristics considered to be most important here The previous discussion focused on the modeled p~rsistence
were the fitted variance of the flows, the fitted lag-one corre- of flows at each site. With each method of estimating (f) and
lation coefficient PI (measuring short-term persistence), and r 4 0, two procedures were considered for estimating the covari-
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TABLE 3. Estimates of the Mean and Root Mean Square Error of At-Site and Aggregate Flow Variances as Well as the Cross-Correlation
of At-Site Flows Resulting From Different Estimation Procedures

Method

4>,8 G E[ai2] RMSE[aI2] E[a.2] RMSE[a.2] E[po(1,2)] RMSE[fio(1,2)]

Case 1 MLE, MOM, ,OCL, DISAG MOM 0.063 0.014 0.21 0.047 0.70 0.079
MLE MLE 0.062 0.014* 0.21 0.046* 0.68 0.081
MOM MLE 0.061 0.013 0.21 0.045 0.68 0.080
OCL MLE 0.069 0.021 0.23 0.064 0.68 0.091
True values 0.0625 0.2125 0.70

Case 2 MLE, MOM, OCL, DISAG MOM 0.060 0.015 0.20 0.050 0.70 0.085
MLE MLE 0.062 0.017* 0.21 0.053* 0.66 0.090
MOM MLE 0.059 0.015 0.20 0.049 0.67 0.088
OCL MLE 0.079 0.039 0.26 0.114 0.65 0.104
True values 0.0625 0.2125 0.70

Case 3 MLE, MOM, OCL, DISAG MOM 0.050 0.018 0.17 0.063 0.70 0.096
MLE MLE 0.058 0.026* 0.19 0.074* 0.64 0.118
MOM MLE 0.049 0.019 0.16 0.065 0.66 0.098
OCL MLE 0.073 0.040 0.24 0.114 0.65 0.114
True values 0.0625 0.2125 0.70

Herepo(1,2) = 0.7.
*Ninety-five percent confidence intervals for E[ai2], RMSE[ai2], E[a.2], RMSE[a.2], E[po(l, 2)], and RMSE[po(l, 2)] are within :t3, :t7,

:t3, :t7; :t I, and :t5%, respectively, of the reported values except for the values marked with asterisk whose 95% confidence intervals are
within 16% of the reported values.

ance matrix G of the innovations. This matrix determines the the aggregate floWS that would result from use of the floW
fitted variances and lag-zero correlation (or covariance) of models with the various parameter estimates. Such an analysis
floWS at the individual sites. Table 3 reports the mean and is appropriate if the reservoir storage system to be simulated is
RMSE of the fitted variances and lag-zero correlations for highly interconnected So that the aggregate inflow is of para-
Po(1,2) = 0.7; the Corresponding table for Po(1,2) = 0.9 may be mount importance.

found in the microfiche appendix.l (The microfiche appendix Table 4, analogolis to Table 2, reports the mean and RMSE
contains seven additional tables expanding upon Tables 3-5 of Pl(il), r 4.' and r lOa for the aggregate floWS. Clearly, oUr
and 8-9. The microfiche appendix also contains 12 additional implementation of O'Connell's [1974] method performed very
figures displaying the root mean square error and bias of ail, poorly overall. For the other three methods, the ranking and
aa2, Pl(a), r 4a, and r 10. for all four cases and PI' r 4' and r 10 the relative differences were dependent on the underlying pa-
for the nondiagonal model simulations.) Of the six univariate rameter values. For a croSS correlation Po(1,2) of 0.9 (see Table
fitting procedures, all those which reproduce So will yield the in appendix) there was almost no difference in the RMSE's of
same estimates of these statistics. However, the pseudo-MLE Pl(a), r 4.' and r lOa except in the most persistent case when
estimators of G will depend on the procedure used to estimate the method of moments' performance deteriorated. For
cD and e. Po(1,2) = 0.7, the results were more varied. The method of

From Table 3 and Figure 2 one can see that in terms of
their ability to estimate the lag-zero cross-correlation, Po(1,2), p,(1 2) = 0.7 p, ( 1,2) = 0.9
MLE procedures exhibited a substantial downward bias and o ' 0

also a larger RMSE than the estimators obtained using So. ;i .07 /
MOM estimators for G are clearly to be preferred. The only t ~; !:' .0
close competitor was MOM estimates of <f>i and ei with MLE = ~
G estimators; hoWever, this combination makes little philo- ~ J <~ .0

I-I
sophic sense and offers no statistical advantages in terms of ~ .~ .0
estimator performance. Moreover, it is clearly inferior in terms ~ ~
of the RMSE of Po(1,2) estimators. Only MOM estimators of .0 .0

G, Corresponding to reproduction of So, will be employed in. .0
the subsequent analysis. Lettenmaier [1980] and Stedinger R
[1981] have also documented the poor performance of MLE t
estimators of G. It should be noted that the disaggregation
model als.o reproduc~s So, hence it pro~uces Ui2, u.l, and ;'C ~ ~~E--:::;~LE-G
Po(1,2) estl~ators equIvalent to those of dIagonal ARMA(l,l) ~;:;q ,.~~' MM -G ~ 1
models whIch are based upon So. ~ " ~

<t:{! <~Correlations of the Aggregate Flows';;;' L-O
~ V)

TWo approaches were employed to analyze the coherency, m ffi 0 ---8 ---8 8 timing, or Correspondence of streamflows, and particularly ~

! -=~ ~ --0
drought floWS, which would be generated by the models for ~ ~
the tWo sites. The first approach is to analyze the properties of ~ -10 ~ ~ -10

'0;2 ", 0.3 0.4 Q2; 0.3

lSupplement is available with entire article on microfiche. Order Pj Pj
from American Geophysical Union, 2000 Florida Avenue, N. W., Fig. 2. Root mean square error and bias of Po(1,2) for Po(1,2) =
Washington, D. C. 20009. Package W85-001; $2.50. Payment must 0.7 and 0.9. Expectations were estimated using 1000 Monte Carlo
accompanyorder. sequences; see Table 1 for generating models' parameters. i

~- ~.I1j- i
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TABLE 4. Estimates of the Mean and Root Mean Square Error of Statistics Describing the
Persistence of Aggregate Flows Which Would be Generated by the Fitted Models

Method

t/>,8 G E[fJ.(a)] RMSE[fJl(a)] E[t 4.] RMSE[t 4.] E[t 10.] RMSE[t 10.]

Case 1 MLE MOM 0.24 0.10 1.47 0.24 1.71 0.48
MOM MOM 0.21 0.09 1.40 0.21 1.59 0.37
OCL MOM 0.17 0.15 1.48 0.43 2.19 1.29
DISAG 0.25 0.11 1.49 0.29 1.74 0.59
True values 0.20 1.34 1.44

Case 2 MLE MOM 0.31 0.12 1.74 0.34 2.46 0.92
MOM MOM 0.25 0.13 1.54 0.38 1.93 0.96
OCL MOM 0.35 0.21 2.00 0.63 3.57 1.80
DISAG 0.32 0.14 1.76 0.40 2.50 1.10
True values 0.30 1.79 2.66

Case 3 MLE MOM 0.34 0.16 1.88 0.51 3.01 1.70
MOM MOM 0.23 0.22 1.49 0.75 1.86 2.41
OCL MOM 0.41 0.22 2.18 0.63 4.04 1.69
DISAG 0.35 0.18 1.91 0.56 3.06 1.83
True values 0.40 2.16 4.16

Here Po(I,2) = 0.7. Ninety-five percent confidence intervals for E[fJl(a)], RMSE[fJl(a)], E[t 4.]'
RMSE[r 4.]' E[t 10.]' and RMSE[r 10.] are within :!:5, :!:5, :!:2, :!:5, :!:3, and :!:7, respectively, of the
reported values.

moments went from best to worst as the persistence of the Consider a demand level D. For a bottomless reservoir ini-
underlying model increased. Over the whole range, the disag- tially full, the drawdown after t periods can be calculated from
gregation model, which explicitly models the aggregate flows, S i = [0 S i D -Q i] (19)
did slightly worse than a diagonal ARMA(I,I) model with ,+ 1 max, , + ,

MLE tf>iand 8i estimators and a MOM estimator of G. where Q,i = X,i + Jli is the inflow at the site. The sequence S,i
The results show a curious situation where the disaggrega- defines the cumulative impact of low flows on storage levels

tion model, which explicitly models aggregate flows, generally for demand D at site i.
yields the best at-site estimators of PI' r 4' and r 10. The MLE One rea$onable measure of multisite drought correlation is
at-site estimators of tf>i and 8; within a diagonal ARMA model the lag-zero correlation of the deficit levels S,1 and S,2 at the
framework yielded better estimators of Pl(a), r 4.' and r 10. for two sites,
aggregate flows. We attribute this reversal, which is most ap-
parent for a cross-site correlation Po( 1,2) of 0.70 as opposed to -f (S, 1 -SI )(S, 2 -S2) (20)
0.90, to an averaging which occurred in the parameter esti- Pd -1 [ n n 2 ] 1/2 mation processes. That is, the disaggregation model to some ,= ~ (S,1 -SI)2 ~ (S, -S2)

extent yields at-site autocorrelations which are an a verage of' -1 , -1

the two at-site hisotrical values; given that the Pk(i,i) for
i = 1,2 and various lags k are by assumption identical, such an Another potentially u:eful mea.sure focu~es on the wors~
averaging of the two estimators is advantageous here. On the drought o~ record. Let; be the ~Im.e at whIch. t~e !argest S,
other hand, the diagonal ARMA models employed individual occurs at sIte i. Then a drought coIncIdence statIstIc IS

MLE or MOM estimators of each tf>i and 8i; thus the result-
ant values of Pl(a), r 4.' and r 10. were the average of the Y = 1 :!!! E(lt * -t *I) (21)
properties of these independently estimated (but not statis- T n2 -1 1 2

tically independent) at-site models.
where (n2- 1)/3n is the expected value of It1 * -t2*1 if the

.drawdown sequences at the two sites were independent. If theModel Asse~sm.ent Measures: Cross-S,te drought sequences were perfectly correlated, then E(ltl * -
Drought CrIterIa t2*1) would be zero and YT would equal 1, because the critical

A primary consideration in multisite streamflow generation ~oint in both drawdown sequ.ences. would have occurred
for multiple reservoir operation studies is that drought se- slmultaneously..In ge~e~al, YT wIll be In.the range 0 ~ YT ~ 1
quences at all sites occur with a distribution resembling that for sequences with POSltIV~ cross correlatIon.
of the natural flows. An obvious and widely used performance A ~nal measure Td' whIch we have termed drought coher-
measure is the fidelity of the fitted cross-correlation coefficient ency, IS defined as

Po(I,2) of the flows at the two sites. Persistence measures of
the aggregate annual flows such as r k. provide another useful T = [ I ] J/ (t -t ) (22)measure which reflects whether the properties of the total flow d ,=1, I 2 1

are similar to those of the population. However, Pl(a), r 4.'
r 10., and Po(I,2) alone may be insufficient to demonstrate where (t1, t2) solves maxt"t2 (t2 -tJ such that for all t E {tl'
whether or not the psuedo-historic and generated sequences ..., tJ, St1 > 0 and where ]1 = 1 for St2 > 0 and zero other-
are compatible in terms of drought occurrence and severity. A wise. Therefore Td is the fraction of the periods during the
potentially useful approach for measuring the joint occurrence interval (t1' t2) in which site 2 is in deficit state (S2i > 0), where
of droughts at the two sites is to evaluate the simulated simul- (t1, t2) is the longest continuous deficit period at site I.
taneous operation of two hypothetical bottomless reservoirs, These drought statistics were employed to test whether con-
one at each site. current drought flows at the two sites occur with the appropri-

-~ ,'i%fi(
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TABLE 5. Estimates of the Mean of Drought Correlation, Concurrency, Coherency, and Required
Storage for True and Fitted Models for Demand = 0.90 MAF and Po(I,2) = 0.7

Method
E[p.] E[yT] E[i.]

q,,8 G (0.7) (0.7) (0.7) E[S]

Case 1 MLE MOM 0.55 0.36 0.78 1.2
MOM MOM 0.55 0.37 0.78 1.1
OCL MOM 0.52 0.34 0.75 1.3
DISAG 0.59 0.42 0.78 1.2
True values 0.58 0.36 0.78 1.0

Case 2 MLE MOM 0.53 0.36 0.75 1.5
MOM MOM 0.54 0.37 0.76 1.4
OCL MOM 0.53 0.37 0.73 1.8
DISAG 0.59 0.43 0.77 1.5
True values 0.55 0.35 0.77 1.4

Case 3 MLE MOM 0.51 0.33 0.69 2.0
MOM MOM 0.52 0.32 0.72 1.7
OCL MOM 0.52 0.34 0.69 2.3
DISAG 0.55 0.36 0.71 2.1
True values 0.52 0.36 0.73 1.9

.

Ninety-five percent confidence intervals for E[p.], E[yT]' £[i.], and E[S] are within :!:4, :!: 14, :!:3,
and :!: 11% of the reported values.

ate frequency and severity. Table 5 reports the expected values teristics for the nondiagonal case restricts the range of param-
of the drought correlation Pd' drought coincidence YT' and eters that may be considered hydrologically reasonable. The
drought coherency "Cd statistics for a demand D of 90% of the intrinsic behavior of the nondiagonal model can be illustrated
true mean annual flow. Only the expected values of these by writing X, as a linear combination of the eigenvectors, El
statistics calculated at stage 2 with each 50-year flow sequence and El, of cJ). In particular, the cJ) given in (23) has eigenvalues
generated using a unique set of fitted model parameters are A = 4>(1 :t 11), with associated eigenvectors El = (1 I)T and
reported. The observed variances are not given because they El = (1 -1)T for 11 # 0 and eigenvectors El = (1 O)T and
reflect both the variation in the parameter estimators and also El = (0 I)T for 11 = 0 corresponding to the double eigenvalue
the variability of these statistics across 50-year flow sequences of A = 4>.

generated from the respective models at stage 2. With a few Consider first the case with 11 # 0. Let
exceptions, all of the models generally did about the same.
The disaggregation model tended to produce higher values of X, = Z,El + y,El

Pd and YT reflecting, perhaps, higher lagged cross-correlations \( z,
)among the flows. = (E1El,\ (24)

Table 5 also includes the expected value of the 50-year re- y,

quired storage S for a demand D of 90% of the true mean Here z, and y, are univariate time series corresponding to the
annual flow and a reservoir initially full. Except for the first and second eigenvectors. Because cJ) is symmetric, El and
method of moments, the methods tended to over estimate El are orthogonal vectors.
E[S]. O'Connell's [1974] method produced the largest values; Substituting (24) into (1) and decomposing the innovation
this is consistent with the values of Pl' t 4' and t 10 reported in terms into their contribution to each mode of variation, one
Table 2 and Figure 1. finds that the time-series models for z, and Yt are

NONDIAGONAL ARMA(I,I) MODELS Zt = 4>(1 + I1)Z,-l + E1T(V, -ev,-J

To this point, our attention has been restricted to -1 E T V (25)
ARMA(I,I) models with diagonal cJ) and e matrices. It is y, -4>( -I1)Y,-l + 1 ( , -ev,-J

important to evaluate how well diagonal models perform if Clearly, the terms EiT(Vt -ev,-J are univariate moving
the flows are actually generated by a more general model. average (MA) (1) processes so that the two univariate time
Although the universe of possible generating models is very series Zt and Y, are both ARMA(I,I) processes. The terms
large, we restrict our attention to the case where cJ) and e are 4>(1 :t 11) are the autoregressive coefficients that determine the
symmetric with long-term persistence of each series.

[ 4> 4>] [ 8 8] This analysis has demonstrated that the bivariate
cJ) = 4> ~ e = 8 ~ (23) ARM.A(I,!) stochastic .pro~ss X, in (1) with (23) is a linear

11 11 combInation of two umvanate ARMA(I,I) processes Zt and Y,.

Further, we take 4> > 0, so as 11 approaches zero the diagonal The multivariate process can now be interpreted in terms of
models considered earlier are obtained in the limit. the statistical characteristics of its two modes of variation ,

The assumptions of symmetry and equal diagonal elements corresponding to the two eigenvalues of cJ). For any X, and

are reasonable if streamflows arise from hydrologically similar 11 # 0,
drainage basins. These assumptions have the further practical -05E TX -05( 1 1
advantage of reducing the number of degrees of freedom that z, -.1 t- .Xt + X, ) (26)

need to be considered without sacrificing the essential charac- Yt = 0.5ElTX, = 0.5(X,1 -X,l)
teristics of the problem.

,- / Therefore z, describes the variation over time of the sum of the
Theoretical Analysis flows at the two sites. If regional climatic patterns exhibit

Although the nondiagonal model is much more general long-term persistence, then one would expect that persistence
than the diagonal model, careful consideration of the charac- to be reflected in the summed flows and 4>(1 + 11) may be near
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TABLE 6. Description of Multivariate Nondiagonal ARMA(l,l) ~ = X,I -P(X,J + X,2) = (1- P)X,1 -PX,2 (27)
Models All of Which Have p,(i, i) = 0.3

If So is symmetric as has been assumed throughout, with" ' 4>/1 8/1 p,(i,j) P2(i, i) P2(i,j) (SO)11 = (SO)22' then p = t, and

Po(J,2) = 0.7 ~ = 0.5(X,1 -X,2) (28)
-0.2 0.667 0.360 0.154 0.179 0.063

0.0 0.800 0.572 0.210 0.240 0.168 Clearly, the disaggregation model generates the sequence of
0.2 0.667 0.465 0.246 0.231 0.204 differences, [X,I -X,2], with an AR(l) model rather than the
0.4 0.571 0.392 0.267 0.232 0.221 ARMA(l,l) model implicit in our non-diagonal multivariate
0.6 0.500 0.339 0.282 0.235 0.231 d I Th ... h Id b ...
0.8 0.444 0.298 0.293 0.239 0.238 ARMA(l,l) mo e. IS approximation s ou e satlslactory

1.0 0.400 0.266 0.300 0.242 0.242 if flow imbalances (or differences) exhibit relatively little long-

Po(J,2) = 0.9 term pers~stence. Thus th~ d.isaggregation model, in general,

-0.2 0.667 0.336 0.248 0.167 0.125 may provide a good descnptlon of flows generated by hydro-

0.0 0.800 0.572 0.270 0.240 0.216 logically reasonable nondiagonal but symmetric multivariate
0.2 0.667 0.473 0.282 0.237 0.228 ARMA(l,l) models. However, the disaggregation model may
0.4 0.571 0.404 0.289 0.238 0.234 have difficulty providing a good description of the distribution
0.6 0.500 0.352 0.295 0.239 0.238 f fl d b h . hl . d .

I ARMA(l 1)0.8 0.444 0.312 0.299 0.240 0.240 o ows generate y Ig y persIstent lagon a ,

1.0 0.400 0.280 0.300 0.241 0.241 models with relatively little correlation between flows at the

two sites. Such cases have not been analyzed.
.Here p,(i, J) is p,(l, 2) or p,(2, 1), where p,(l, 2) = p.,(2,.1); P2(i, i) is It is also possible to decompose any multivariate

eIther P2(1, 1) or pi2, ~, where pi1, 1) = pi2, 2); P2(i,J) IS P2(1, 2) or ARMA(p,q) model in this way so as to identify independent
pi2, I), where pi1, 2) -pi2, 1). .. h .. I b h .. d .

d bmodes of vanatlon w ose statlstlca e avlor IS etermme y

separate univariate ARMA(p,q) models. Consider the general

unity. On the other hand, y, describes the variation over time multivariate model

in the difference or imbalance in the flows at the two sites. If P q

both sites display concurrent long-term persistence as a result Zt = I Ci)iZt-l + Vt -I9jVt-j (29)
of regional climatic variations, then the persistence in the flow i= 1 j= 1

difference sequence should be much less than that in the flow One can determine the eigenvalues .1. of the autoregressive

sums, since the differencing acts to filter out the low frequency operator by solving the np-order polynomiai equation

variations. Thus based on hydrologic considerations, we

expect that reasonable models will have the eigenvalue ° = d t[ .1.PI- f .1.P-iCi)i
] (30)

41(1 -'1), associated with y, smaller than 41(1 + '1), the eigen- e i= I

value associated with z,. This implies that n ~ 0, correspond- .
t .t . ff d . I I t . th t -I. > ° Once the np roots of this charactenstlc equation have been

mg o pOSI Ive o -lagon a e emen s, given a 'I' Finally, observe that for 41 > 0, both eigenvalues of Ci) will Jdent~fied, the correspond.mg.elge~vectors and urnv.anate sto-

be positive only for '1 < 1. It seems reasonable to expect both chastlc processes are easily Identified. Box and Tzao [1977]

.
I f II -b .t . t .. I . I consider examination of the eigenvalues and eigenvectors of

elgenva ues o '0' WI e posllve; nega Ive elgenva ues Imp y

that positive variations in one period (in either the sum or
difference sequence) are likely to be followed by negative vari- Po{!,2)= 0.7 Polli21 ' 0.9

ations in the following period; such variations appear incon- !';sistent with the physical mechanisms giving rise to persistence r-. .

in annual streamflow sequences [see Klemes, 1974]. N:

Several things can now be observed. First, for 41 > 0, the <~ ;10

most reasonable range for '1 is ° ~ '1 ~ 1 with (1 + '1)41 < 1. In ';:;'

this range, 41(1 + '1) ~ 41(1 -'1) ~ 0, as desired so that both ~
cr

eigenvalues are positive and variations in the flow sums show.

more persistence than do the flow difference variations. The I diagonal models, for which '1 = 0, lie on the boundary of this Ii c I

range; the persistence in the sum and difference sequences is ?0,2 ,0.2 0.6 1.0

the same, and the variation modes at the two sites are struc- 'TJ "7

turally independent though perhaps highly cross-correlated. It

may be important to note that the structure of the flows gen-
erated by our diagonal and nondiagonal ARMA(l,l) models '::' I

are very different. In the diagonal models tested in the pre- ~ ~

vious section, the synthetic flows at the two sites showed coin;. <~ <5

cident persistence only because of the large cross-correlation ';n' ~
among the innovation terms. Physically, this is analogous to ~ iD -

two unconnected aquifers whose discharges are highly corre- ~ -~ -1

lated because their recharge rates are correlated. t: ~
It is also instructive to compare the structure of our disag- ~ -~ -I

no
gregation algorithm with that of the general nondiagonal -.-2
ARMA(l,l) model. First, the disaggregation model explicitly t>.6 -..

models the sum of the flow at the two sites by a univariate .'TJ ..'TJ
ARMA(l 1) model. For > ° this is equivalent to the multi- Fig. 3. Ro?t mean ~quare error an.d bias of Po(1,2) for 'po(1,2) =

.' '1, ...0.7 and 0.9 usIng nondlagonal generatIng models. Expeclatlons were
vanate ARMA(l,l) model s Implicit aggregate flow model. eslimated using 1000 Monte Carlo sequences; see Table 6 for gener-

The disaggregation model in (9) and (14) employs ating models' parameters and Figure 2 for key.

---
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TABLE 7 Estimates of the Mean and Root Mean Square Error of Statistics Describing the
Persistence of Flows At Each Site When the "' and @ Matrices in Case 2 are Contaminated

Method.

"', II " E[p,] RMSE[p,] E[r .] RMSE[r .] E[r 10] RMSE[r 10]

MLE -0.2 0.31 0.13 1.69 0.35 2.20 0.83
MOM -0.2 0.27 0.13 1.57 034 1.92 0.72
D1SAG (0.7) -02 031 0.1! 1.66 0.28 2.08 0.62 .DlSAG (0.9) -02 03! 0.!1 l67 029 2.!2 0.67 .

True values -0.2 030 l69 2.!7
MLE 0.4 03! 0.!4 l74 0.40 2.44 l07
MOM 0.4 026 0.!4 !.55 0.4! 195 l02
DlSAG (07) 04 03! 0!2 l74 036 2.45 lOO
DlSAG (09) 04 031 013 l74 038 245 l07
True values 0.4 0.30 l77 2.6!
MLE lO 031 015 174 040 2.44 UO
MOM lO 025 015 l55 043 194 l08
DlSAG (07) lO 032 013 l76 037 2.50 l03
D!SAG (09) lO 0.31 013 l74 0.39 246 l08
True values lO 0.30 l79 267

Ninety-five percent confidence intervals for E[p,], RMSE[p,], E[r .], RMSE[r J, E[r '0]' and
RMSE[r,o]arewithin :t3, :t5, :t2, :t6, :t3,and :t9%of the reported values

.Values in parenthesis are the cross correlation of at-site flows, Po(12)

So -I(So -G), while Tiaa and Bax [1981] suggest examina- flows at the two sites rather than the correlation structure at
tion of other matrices. each site.
A I ,I" M d I p .I: Likewise, '1 ..0 has relatively little effect on the RMSE of

na ysls Oj o e erjOrmance 2 2 .
various ,,; and ", estimators. However, '1 ..0 has a very

The Monte Carlo Analysis reported in Tables 1-5 and Fig- large impact on the precision with which Po(1,2) is estimated
ures I and 2 was repeated with a range of bivariate nondiago- as shown in Figure 3. Here, MLE estimators of G with a
nal ARMA(l,!) models. In all cases, the I!> and 0 matrices structurally incorrect model and '1 > 0 do much worse than
were as specified in (23). For each '1, the scale parameter"' was reproduction of the observed covariance matrix So.
taken to be (0.8/(1 + 1'11) so that the larger eigenvalue of I!>, In terms of the RMSE of PI(a), t .', and t 10' reported in
",(I + '1), will equal 0.8; this is the value of "'; for the case 2 Table 8, '1 ..0 had relatively little impact upon the ranking of
diagonal model. Given these values of "' and '1, the scale pa- the procedures which all performed about as well. (Our imple-
rameter O was selected so that the flows at each site had a mentation of O'Connelrs [1974] procedure was omitted be-
lag-one correlation coefficient PI(l,l) ~ PI(2,2) = 0.3 corre- cause of its very poor performance earlier.) In general, MLE

sponding to the case 2 multivariate diagonal ARMA(I,I) "'i and Oi estimators in a diagonal model were best with the
model. Table 6 gives the actual values of O as well as Pl(I,2), competing procedures performing almost as well most of the
P2(1,1), and P2(1,2). Values of '1 from -0.2 to 1.0 are con- time; the one exception was the RMSE of t 4' when Po(I,2) =

sidered. The Monte Carlo results are summarized in Tables 0.7. It is interesting to note that while the disaggregation
7-9 analogous to Tables 2-5. model often yielded the larger RMSE's in Table 8, it generally

In terms of RMSE's reported in Table 7 for the fitted PI' t 4' had the smallest bias; this is particularly true with respect to
and t 10' the use of a nondiagonal ARMA population model PI(a) when Po(I,2) = 0.7 With respect to PI(a) overall, there

has almost no impact on the performance of the various meth- was relatively little difference in the RMSE's, while the disag-
ods as one would expect The transition to a nondiagonal gregation model yielded a substantially smaller bias for large
mode! basically affects the relationship or cross correlation of '1

TABLE 8 Estimates of the Mean and Root Mean Square Error of Statistics Describing the
Persistence of Aggregate Flows When the "' and @ Matrices in Case 2 are Contaminated

Method

"', II E[p,(a)] RMSE[p.<a)] E[r .'] RMSE[r .'] E[r 10'] RMSE[r 10']

MLE -02 0.3! 012 l69 0.30 219 070
MOM -02 027 01! l57 027 192 0.55
DlSAG -02 029 013 l62 0.32 2.04 0.72
True values -0.2 0.27 l58 190
MLE 04 0.3! 012 U3 0.37 2.42 l02
MOM 04 025 014 !54 0.44 192 ll!
DlSAG 04 0.35 014 l84 0.41 2.67 U6 ",Nj
True values 04 033 !.87 2.84 ",c!i!
MLE lO 031 013 U3 041 2.42 UO
MOM lO 025 016 l54 049 192 l23
DlSAG lO 037 014 l88 0.42 2J6 U9
True values lO 0.36 !.93 2.97

Here Po(!,2)=0.7 Ninety-five percent confidence intervals for E[P.<a)], RMSE[P.<a)], E[r .'],
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0.6 correlation coefficient P1 and the Hurst coefficient h for a

~ !P.- Range of 8 range of univariate ARMA(I,I) models. The results of his ex-

0;5 .96 .52- .92 periments were used here to derive expressions which relate
.92 .52. 88 6 the small sample estimator K of the Hurst coefficient h to

04 a .88 52- 84 a Ox values of I/> and (J. These expressions were used in our experi-
.a 84 52-.80 .d . f -1.

d (J . d . 1 I .
..80 50. .75 ~o ments to pro VI e estimates or 'l'i an i In lagona mu tt-
6 .75 .45- 70 6. o x variate models as a function of K.

0.3 aa o Analysis of O'Connell's D974] results reveal a near-Iinear

E [..8) 6 ~ .relationship between E[K] and E[P1] for samples of length 50 --
0.2 6. ~ as shown in Figure Bl. Figure Bl also shows that for given

aa~ E[K], the range of values of E[P1] which can be obtained

Q.I ::.'t with ARMA(I,I) models is very limited. Seldom will it be
"' possible to select 4> and (j so that the expected value of K and

0.0 ~ P1 will equal the value of their sample estimators, as was
originally suggested by O'Connell D974; see also 1977]. In an

.62 ,64 66 .68 ,70 .?2 .74 76 .78 .80 90 attempt to implement O'Connell's method, we were forced to

E LKJ relate I/> and (J to K alone.

Fig. B1. E(pJ versus E(K) for various ARMA(l,l) generating Further graphical analysis yielded approximate linear re-
models [data from O'Connell, 1974]. lationships between E[K] and (J for each of the six values of I/>

used in O'Connell's [1974] experiments. This led to ex-
pressions of the form

ApPENDiX A: INITIALIZATION OF MULTISlTE E[ K 1 -1. (J] = A ( -1.) + (JA ( -1.) (Bl )ARMA(I,I) FLOW GENERATORS 'I', 11'1' 12 'I'

An approach commonly used to initialize a synthetic E[p111/>, (J] = A21(1/» + (JA22(1/» (B2)

streamflow generat~r is to ~,elect an arbitrary initial value, to where the parameters Ajl(I/», for i, j = 1 or 2, were estimated
generate a set of Q st.a~t~p values, and then to take the final for each of the six values of I/> (0.75, 0.80, 0.84, 0.88, 0.92, 0.96).
startu~ value a~ the !mttal value. of the. ~enerated sequence. It was found that these functions were approximately linear so
The difficulty Wit? this approach. IS that it. IS cumbe~some and our model employed
can be computattonally demanding for highly persistent pro-
cesses. For univariate ARMA(I,I) processes, Lettenmaier and Ail(l/» = ail + bill/> (B3)

Burges [1977~ have show~ how the initial values may ?e se- Substitution of (B3) into (Bl) and (B2) yields a system of
lecte~ to avoid th~ necessity for a startup. se~tience. This ap- linear equations for E[K II/>, (J] and E[p111/>, (J] as a function
pend~x ext~nds theIr procedure. to ~he multIvarIate cas~. of I/>, (J, and the product I/>(J. A Newton-Raphson algorithm

It IS desIred to generate reallzattons of the process In (1) for was used to obtain values of I/> and (J which satisfy (B4) and
t = 1, 2, ..., n. Xo and Vo are correlated so that for given Vo, (B5) for fixed values of E[p ] and E[K]. For each fixed value

a corresponding Xo can be generated using the model of E[pJ a range of feasible1combinations of I/> and (J resulted,

Xo = AVo + Uo (AI) c?rresponding to eac~ val~e o~ E[K].This is to ?e expect~d
given the scatter depicted In Figure Bl. The median value In

for some matrix A and innovation vector Uo. this range was selected and a linear relationship with K ob-
For Xo and Vo to have the correct cross correlation, A must served. (See Figure B2 in microfiche appendix.) The final esti-

satisfy mation equations for our implementation of O'Connell's
E(Xo V o T) = AE(V o V o T) method (for n = 50) are

f h . h bt .4> = 0.689 + 0.285K (B4)
rom w IC one o ams

A=E(XoVoT)E(VoVOT)-l=I (A2) (j=2.15-1.95K (B5)

where Acknowledgments. This work was supported by grants CME

E(X V T) = G = E(V V T) 8010889 and CEE 8211730 from the U.S. National Science Founda-
0 0 0 0 tion.

Rearranging (Al), the required covariance for Uo is
REFERENCES

E(UOUOT) = E(XOXOT) -AE(VoVOT)AT = So -G .(A3) :,

Armbruster, J. T., Multisite generation of monthly flows using an
Therefore to mlttallze the generator, take autoregressive integrated moving average model and disaggrega-

X ~ V + U (A4) tion, paper presented at American Geophysical Union Spring
0- 0 0 Meeting, AGU Miami Beach, Fla., Apri11978.

where V and iJ are independent with Boes, D. C., and J. D. galas, Nonstationarity of the mean and the
0 0 , Burst phenomenon, Water Resour. Res., 14(1),135-143, 1978.

U -N(O, So -G) V -N(O, G) (A5) Box, G. E, P., and G. W. Jenkins, Time Series Analysis: Forecasting
0 0 and Control, Bolden-Day, San Francisco, Calif., 1976.

One can then use (1) to generate XI' t = 1,2, ..., n recursively. Box, G. E. P., and G. C. Tiao, A canonical analysis of multiple time
series, Biometrika, 64(2), 355-365, 1977.

ApPENDiX B: O'CONNELL'S METHOD Bipel, K. W., Contemporary Box-Jenkins modelling in hydrology,
d I ., I Ph.D. thesis, Univ. of Waterloo, Waterloo, Ont., 1975.

Base on Monte Car o experIments, a Connell [1974] ca- Burst, B, E., R. P. Black, and Y. M. Simaika, Long Term Storage,
culated the expected value of sample estimates of the lag-one Constable and Co., London, 1965.
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