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Summary Recently probabilistic regional envelope curves of extreme floods (RECs) were
introduced along with an estimator of the exceedance probability of a REC that accounts
for the impact of correlation among flood sequences. The dependence of traditional
envelope curves on drainage area alone impacts their reliability for estimating the
design-flood. We introduce multivariate regional envelopes (MVEs) of extreme floods
which are envelope surfaces (or hyper-surfaces) that represent the bound on our flood
experience in a region in terms of geomorphologic and climatic basin descriptors. An
empirical MVE is derived for a group of 34 unregulated catchments located in north-
ern-central Italy. A cross-validation procedure that simulates ungaged conditions at every
site in the region is used to compare the reliability of design flood estimates resulting
from REC, MVE and an index-flood approach. We document that MVEs outperform RECs
and provide flood quantile estimates at ungaged sites that are nearly as reliable as index
flood quantiles.
ª 2007 Elsevier B.V. All rights reserved.
Introduction

The bound on our current experience of extreme floods
gained through systematic observation of flood discharges
7 Elsevier B.V. All rights reserved
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in a region is defined in terms of the largest observed floods
(floods of record) observed at all gaging stations and can be
graphically summarized using a regional envelope curve
(REC). RECs are curves that provide an upper bound on all
observed floods of record plotted versus the basin area.
Alternatively, the REC can be represented by a curve defin-
ing the upper bound on the unit floods (ratios of floods to
drainage areas) versus drainage areas.

The history of RECs is rather long; Myers’ envelope
curve is one of the first examples (see e.g., Fuller, 1914;
Creager et al., 1966) and, since their introduction, RECs
.

riate probabilistic regional envelopes ..., J Hydrol. (2007),

mailto:attilio.castellarin@mail.ing.unibo.it
mailto:richard.vogel@tufts.edu
mailto:nmatalas@aol.com


0.01

0.1

1

10

10 100 1000 10000

Area (km2)

U
ni

t 
di

sc
ha

rg
e

(m
3  s

-1
 k

m
-2

)

Flood of Record
Index Flood
REC

Figure 1 Representation of empirical index-flood (lX) and
flood of record (Q) values, simple regression between lX and A
(dashed line), regional envelope curve, REC (bold line).
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have been and continue to be developed worldwide. For in-
stance, Marchetti (1955) proposed a set of RECs for Italy
that is still used as a reference by practitioners; Jarvis
(1925) identified the REC for the continental US, that has
been updated by Crippen and Bue (1977) and Crippen
(1982), Mimikou (1984) constructed RECs for western
Greece; Kadoya (1992) for Japan; Costa (1987) compared
record flood experience in the US, China and the world. Re-
cent worldwide catalogues of record floods and their
graphical envelope summaries can be found in Herschy
(2002) and IAHS (2003).

The enduring value and widespread application of RECs
can only be explained by their ease of use and understand-
ing due in part to their graphical nature. RECs’ long-lasting
popularity is increasingly at odds with their traditional
deterministic interpretation, which reduces the curves to
visual catalogues of maximum observed floods limiting
their applicability for design purposes (see e.g., IAHS,
2003). Even though RECs are mainly viewed as determinis-
tic graphical tools, they are amenable to probabilistic
statements. According to Meyer (1917), Fuller (1914) was
the first to define a regional flood probability in the con-
text of an envelope curve. Only recently Castellarin
et al. (2005) proposed a probabilistic interpretation of
RECs, and formulated an empirical estimator of the excee-
dance probability pEE of the expected REC (the subscript
EE stands for Expected Envelope). These authors defined
the expected REC as the envelope curve that, on average,
is expected to bound the flood experience for a given re-
gion, where region refers to a set of annual maximum flood
sequences that are cross-correlated, concurrent and of
equal length. The terms ‘‘on average’’ and ‘‘expected
REC’’ highlight the fact that we experience only one real-
isation of the envelope, and this single realisation will dif-
fer from the theoretical expected envelope for a region of
given characteristics, to which pEE refers. Subsequently,
Castellarin (2006) presented an algorithm for the applica-
tion of the empirical estimator of pEE to historical annual
maximum series of unequal length, and assessed how the
selection of a particular cross-correlation formula and
plotting position affects the accuracy of 1/pEE-year flood
quantiles estimated from RECs at ungaged basins. Castell-
arin (2006) showed that the selection of a particular plot-
ting position significantly affects the quantile accuracy,
hence he recommended and developed a quantile-unbiased
plotting position. Castellarin (2006) also suggested that the
dependence of the envelope on drainage area alone signif-
icantly curtails the accuracy of the 1/pEE-year flood
estimates.

The primary objectives of this study are then: (1) to drop
the restriction that a single factor, the drainage area, con-
trols the flood envelope by introducing multivariate regional
envelopes of extreme floods (MVEs); (2) to show that MVEs
yield a more effective definition of the envelope than enve-
lopes which depend only on drainage area or only on some
other single factor; (3) to demonstrate, under the same
assumptions adopted by Castellarin et al. (2005), that the
exceedance probability of the expected multivariate enve-
lope coincides with pEE, and therefore can be estimated
using the same algorithm proposed for RECs; and (4) to show
that probabilistic MVEs are significantly more reliable than
RECs for estimating the 1/pEE-year flood at ungaged basins.
Please cite this article in press as: Castellarin, A et al., Multiva
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Probabilistic interpretation of regional
envelope curves

Regional flood assumptions

Several studies (e.g., Jarvis, 1925; Marchetti, 1955; Castell-
arin et al., 2005) define a REC using,

ln
Q

A

� �
¼ aþ b lnðAÞ; ð1Þ

where Q is the envelope flood for a given basin, A is drainage
area (i.e., Q/A is the unit flood of record), a and b are two
regional coefficients (see the example depicted in Fig. 1).
Castellarin et al. (2005) adopted two fundamental assump-
tions: (i) the region (i.e., pooling-group of sites (e.g., Burn,
1990; Castellarin et al., 2001)) is homogeneous in the sense
of the index-flood hypothesis (see e.g., Dalrymple, 1960);
and (ii) the relationship between the index-flood lX (e.g.,
mean annual flood) and A is of the form,

lX ¼ CAbþ1; ð2Þ

where b and C are constants and b is the same as in (1). Un-
der these assumptions the authors developed an estimator
of the exceedance probability pEE of the expected REC. Cas-
tellarin et al. (2005) identified the expected REC through a
series of Monte Carlo simulation experiments by repeatedly
generating sets of synthetic cross-correlated Gumbel se-
quences to form regions. Each region consisted of M concur-
rent synthetic annual maximum flood sequences (AMS) of
floods, each of length n.

Castellarin et al. (2005) showed that under the adopted
hypotheses the problem of estimating pEE reduces to esti-
mating the exceedance probability of the largest value in
a regional sample of standardized annual maximum peak
flows [i.e., observed peak flows divided by the mean annual
flood]. The primary challenge of their work involved estima-
tion of the regional information content of cross-correlated
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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flood series. Castellarin et al. (2005) used results introduced
by Matalas and Langbein (1962) and Stedinger (1983) to
quantify the regional information content using the concept
of the equivalent number of independent annual maxima.
Castellarin et al. (2005) expressed the equivalent number
of independent observations, or number of effective obser-
vations neff, as n times the equivalent number of indepen-
dent sequences MEC, which can be estimated from,

bMEC ¼
M

1þ qbðM� 1Þ
; with b : 1:4

ðnMÞ0:176

ð1� qÞ0:376
; ð3Þ

where qb and ð1� qÞ0:376 are average values of the corre-
sponding functions of the correlation coefficients (i.e., qb

is the average of the M(M � 1)/2 values of qb
k;j, where qk,j

is the correlation coefficient between annual maximum
floods at sites k and j, with 1 6 k < j 6 M).

Exceedance probability of the expected REC

Castellarin (2006) presented an algorithm that relaxes the
need for concurrent series, enabling the estimation of neff
for real-world datasets. For a regional dataset consisting of
M individual AMS that globally span n years, the actual distri-
bution of the flood series in time (e.g., missing data, differ-
ent installation years for different gages, etc.) can be taken
into account as follows. First, one identifies the number of
years, n1, for which the original dataset includes only one
observation of the annual maximum discharge, that is M-1
observations are missing (for example, some gages may not
be operational, or may not be installed yet). These n1 obser-
vations are effective by definition. Second, the dataset con-
taining the n-n1 remaining years is subdivided into Nsub 6

(n-n1) subsets; each one of them (say subset s) is selected
in such a way that all its Ls 6 M sequences are concurrent
and of equal length ls and therefore suitable for the applica-
tion of the estimator proposed by Castellarin et al. (2005).
Using this splitting criterion, the effective number of obser-
vations neff can be calculated as the summation of the effec-
tive sample years of data estimated for all Nsub subsets,

n̂eff ¼ n1 þ
XNsub

s¼1
n̂eff;s ¼ n1 þ

XNsub

s¼1

Lsls

1þ qb
h i

Ls
ðLs � 1Þ

; with

b :¼ 1:4
ðLslsÞ0:176

ð1� qÞ0:376
h i

Ls

: ð4Þ

As described previously, n1 represents the number of times
annual floods were observed at one site only (and possibly
single observations or indirect measurements at miscella-
neous sites), that is, the total number of years in which
Ls = 1. The notation ½��Ls in (4) indicates that the average

terms qb and ð1� qÞ0:376, which have the same meaning as
in (3), are to be computed with respect to the Ls > 1 annual
flood sequences which form subset s.

The pEE value can be estimated by representing the inter-
site correlation from a suitable model of cross-correlation
versus distance between sites (see e.g., Tasker and Ste-
dinger, 1989; Troutman and Karlinger, 2003) and by using an
appropriate plotting position with the overall sample-years
of data set equal to n̂eff. Castellarin (2006) showed that the
selection of the cross-correlation model has limited impact
Please cite this article in press as: Castellarin, A et al., Multiva
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on the reliability of estimated pEE values. Castellarin (2006)
used a model introduced by Tasker and Stedinger (1989) to
approximate the true annual peak cross-correlation func-
tion qi,j as a function of the distance di,j among sites i and j,

qi;j ¼ exp � k1di;j

1þ k2di;j

� �
; ð5Þ

where k1 > 0 and k2 P 0 are the regional parameters which
may be estimated by either ordinary or weighted least
squares procedures (see e.g., Tasker and Stedinger, 1989).
Eq. (5) describes the tendency of peak flow correlations to
decrease as a function of distance due to both network ef-
fects and regional storm effects, and should be used in the
absence of a strong control of the channel network on the
spatial structure of the intersite correlation model (see
e.g., Troutman and Karlinger, 2003).

Castellarin (2006) addressed the problem of selecting a
suitable plotting position for estimating pEE. Cunnane
(1978) introduced the general plotting position

p̂EE ¼ 1� n̂eff � g
n̂eff þ 1� 2g

; ð6Þ

where g is the plotting position parameter and n̂eff is the
empirical estimate of neff given in (4). Each plotting position
is characterized by a particular g value (see e.g., Cunnane,
1978; Stedinger et al., 1993 for selection criteria). The re-
sults reported in Castellarin (2006) indicate that, among sev-
eral possible options, a quantile unbiased-plotting position
should be used. Castellarin (2006) derived a quantile-unbi-
ased plotting position for use with the Generalized Extreme
Value (GEV) distribution (Jenkinson, 1955). The GEV distri-
bution has been shown to satisfactorily reproduce the sam-
ple frequency distribution of hydrological extremes around
the world (see e.g., Stedinger et al., 1993; Vogel and Wilson,
1996; Robson and Reed, 1999; Castellarin et al., 2001 and
others). The proposed plotting position is a very compact
and easy to apply asymptotic formula for the estimation of
the exceedance probability of the largest value in a GEV
sample, in which the parameter g of (6) depends on the
shape parameter k of the fitted GEV distribution,

gðkÞ ¼ expðcÞ � 1

expðcÞ �
p2

12expðcÞk; gðkÞ ¼ 0:439� 0:462k; ð7Þ

where c = 0.5772 is the Euler’s constant. Eq. (7) should only
be applied when neff P 10 and �0.5 < k < 0.5 (see Castella-
rin, 2006).
Empirical RECs and REC flood quantiles

The construction of empirical RECs and estimation of pEE in-
volves the following steps: (i) a homogeneous region (or a
pooling-group of sites) is identified (see e.g., the procedure
for identification of homogeneous regions in Hosking and
Wallis, 1997; Chapter 4); (ii) estimation of the REC slope,
b̂, in (1) is obtained by regressing the empirical values of
the index-flood (i.e., at-site estimates of mean annual
flood) against the drainage areas of the corresponding ba-
sins; (iii) the value of the intercept a in (1) is computed as,

a ¼ max
j¼1;...;M

ln
Qj

Aj

� �
� b̂ ln Aj

� �� �
; ð8Þ
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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where Qj denotes the maximum flood observed at site j,
where j = 1,2, . . . ,M and M is the number of sites in the re-
gion, and Aj is the drainage area of site j; (iv) a suitable re-
gional cross-correlation function is identified [e.g.,
estimation of coefficients k1 and k2 of (5)]; (v) n̂eff is com-
puted using (4); (vi) a suitable regional parent distribution
is chosen (see e.g., the procedure for the regional parent
selection in Hosking and Wallis, 1997; Chapter 5) and (vii)
a quantile-unbiased plotting position suitable for this distri-
bution is utilized for estimating pEE as a function of n̂eff as
in (6).

Following these steps an empirical REC can be con-
structed for any group of AMS of peak flows and the regional
pEE value can then be estimated. From the empirical REC
one may then easily (graphically) estimate the 1/pEE-year
flood, that hereafter is referred to as REC flood quantile.
A REC flood quantile may be estimated for any ungaged ba-
sin in the region of interest using its drainage area.

Through a comprehensive cross-validation for a wide
geographical region in northern central Italy, Castellarin
(2006) showed that the reliability of REC flood quantiles
for ungaged sites is comparable with the reliability of regio-
nal estimates of flood quantiles generated by the index-
flood approach. More importantly, Castellarin (2006) found
that the most limiting factor of the REC approach is the
dependence of flood quantiles on drainage area alone; thus
this restriction is removed in the following section.
Probabilistic multivariate envelopes of
extreme floods

Multivariate envelopes

The theoretical framework of probabilistic RECs can be gen-
eralized to take into account basin area and other factors
that have a bearing on flood magnitude. We consider a mul-
tivariate envelope (MVE) of record floods in a region using

lnðQÞ ¼ aþ a1 lnðx1Þ þ a2 lnðx2Þ þ � � � þ am lnðxmÞ; ð9Þ

where, Q is the envelope flood and xi, i = 1,2, . . . ,m, are
geomorphoclimatic basin descriptors, while a and ai, for
i = 1,2, . . . ,m, are regional coefficients. Analogous to the
univariate case (i.e., REC), once estimates of the coeffi-
cients âi, with i = 1,2, . . . ,m, are obtained through multivar-
iate regression techniques (see next section), the intercept
a in (9) may be computed from,

a ¼ max
j¼1;...;M

lnðQjÞ �
Xm

i¼1
âi lnðxi;jÞ

( )
; ð10Þ

where Qj denotes the flood of record at site j = 1,2, . . . ,M
and M is the number of sites in the region, while xi,j is
the ith geomorphoclimatic parameter of basin j.
Probabilistic multivariate envelopes

The index-flood lX (i.e., mean annual flood) can be assumed
to depend upon several geomorphologic and climatic basin
descriptors through a power-law relationship,

lX ¼ a0x
a1
1 xa2

2 � � �xam
m : ð11Þ
Please cite this article in press as: Castellarin, A et al., Multiva
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Multivariate power-law relationships such as (11) are com-
monly adopted in practice to express the index-flood as a
function of several geomorphologic and climatic parameters
(see e.g., Brath et al., 2001). The identification of a multi-
variate regression model consists of selecting candidate
explanatory variables (geomorphoclimatic descriptors)
using, for instance, a stepwise regression analysis (e.g.,
Wiesberg, 1985; Brath et al., 2001). Instead of stepwise
regression analysis, alternative multivariate procedures
can also be adopted for identifying multivariate estimators
of lX, such as artificial neural network, principal component
or canonical correlation analysis (see e.g., Shu and Burn,
2004; Ouarda et al., 2001; Chokmani and Ouarda, 2004).

If, as assumed in the studies by Castellarin et al. (2005)
and Castellarin (2006), the study region, or pooling-group
of sites, is homogeneous in the sense of the index-flood
hypothesis (see e.g., Dalrymple, 1960), then the probability
distribution of standardized annual maximum peak flows is
the same for all sites. The standardized annual maximum
peak flow, X 0, is defined for a given site as the annual max-
imum peak flow, X, divided by the site-dependent scale fac-
tor, lX. Under this assumption, the flood quantile with
exceedance probability p, xp, is,

xp ¼ lXx
0
p; ð12Þ

where x0p is the regional dimensionless flood-quantile with
exceedance probability p.

Combining (11) and (12) leads to an expression of ln(xp/
A) that defines the multivariate envelope (in terms of unit
floods) of exceedance probability p,

ln
xp
A

� 	
¼ ln

lXx
0
p

A

� �
¼ lnða0x

0
pÞ � lnðAÞ þ a1 lnðx1Þ þ a2 lnðx2Þ þ � � �

þ am lnðxmÞ: ð13Þ

The structure of (13) is analogous to (1), the difference
being the number of basin descriptors which are employed
to describe the envelope.

Assume that an empirical MVE is identified by a bounding
surface (or hyper surface) on all record floods to the pres-
ent, say up to the year n. Let Xi

j denote the annual maxi-
mum flood in year i = 1,2, . . . ,n at site j = 1,2, . . . ,M,
where M is the number of sites in the region. Let XðiÞj denote
the flood flow of rank (i) at site j, where ranking is from
smallest (1) to largest (n) (i.e., XðnÞj ¼ Qj). The theoretical
MVE intercept a up to the year n can then be expressed as,

a ¼ max
j¼1;...;M

lnðXðnÞj Þ �
Xm

i¼1
ai lnðxi;jÞ

( )

¼ max
j¼1;...;M

lnðlX;jX
0ðnÞ
j Þ �

Xm

i¼1
ai lnðxi;jÞ

( )
; ð14Þ

where X 0ðnÞj is the dimensionless record flood at site j, de-
fined as XðnÞj =lX;j, with lX,j index-flood of site j = 1,2, . . . ,
M. Combining (14) and (11) leads to,

a ¼ max
j¼1;...;M

flnða0Þ þ lnðX 0ðnÞj Þg

¼ lnða0Þ þ ln max
j¼1;...;M

fX 0ðnÞj Þg
� �

ð15Þ
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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in which maxj¼1;...;MfX 0ðnÞj g is the standardized maximum flood
(referred to as the regional record flood by Castellarin et al.
(2005)).

Analogous to the probabilistic interpretation of a REC
introduced by Castellarin et al. (2005) a probabilistic state-
ment can also be associated with the multivariate envelope
through the intercept a of (10) and (15). As illustrated in
(15), a is controlled by the regional record flood. Therefore,
the exceedance probability of the probabilistic MVE coin-
cides with the exceedance probablity (or p-value) of the re-
gional record flood.

The problem of estimating the p-value of the MVE re-
duces to estimating the p-value of the regional record-
flood, the maximum of n ÆM standardized annual maximum
peak flows, and therefore is completely equivalent to the
problem of estimating the p-value of a REC. Hence the gen-
eralization of a REC to a MVE does not alter the theoretical
framework of probabilistic envelope curves. We can still de-
fine an expected MVE for a cross-correlated region of given
characteristics. We can also recognize that the p-value of
the expected MVE reduces to the exceedance probability
of the largest value in a regional sample of standardized an-
nual maximum peak flows (i.e, observed peak flows divided
by the mean annual flood, see Castellarin et al., 2005).

Empirical MVEs and MVE flood quantiles

We have shown above that the same empirical estimator of
pEE used for expected RECs (see steps iv–vi of Section
‘‘Empirical RECs and REC flood quantiles’’) can be applied
for estimating the exceedance probability of the expected
MVE. Thus an estimate of the 1/pEE-year flood quantile,which
is hereafter referred to as theMVEfloodquantile, canbecom-
puted for any ungaged basin in the region of interest.

The steps required to construct the envelope in the mul-
tivariate case are analogous to the steps listed in Section
‘‘Empirical RECs and REC flood quantiles’’ for constructing
empirical RECs. First, the homogeneous pooling-group of
sites needs to be identified (identical to step i for the uni-
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variate case, see Section ‘‘Empirical RECs and REC flood
quantiles’’). Second, a suitable multiregression model for
estimating the index-flood is identified, and its coefficients

i, with i = 1,2, . . . ,m, estimated (analogous to step ii for the
univariate case, see Section ‘‘Empirical RECs and REC flood
quantiles’’). This task can be accomplished by regressing
the empirical values of the index-flood (i.e., at-site esti-
mates of mean annual flood) against a set of basin descrip-
tors through, for instance, a stepwise regression analysis.
Thirdly, the value of the intercept a of (9) is computed as
in (10) (analogous to step iii for the univariate case, see Sec-
tion ‘‘Empirical RECs and REC flood quantiles’’). Finally, pEE
is estimated analogous to the univariate case (see Section
‘‘Empirical RECs and REC flood quantiles’’, steps from iv
to vi).

Graphical representation of MVEs

Traditional envelope curves have been used widely in part
because they are graphical, and thus very easy to use and
understand. Thus, it is important to extend this graphical
feature to multivariate envelopes of extreme floods. Graph-
ical representation of MVEs is straightforward if the multi-
variate power-law relationship in (11) consists of only two
independent basin descriptors in which case one may con-
struct 3-dimensional scatter plots or contour plots. In this
instance, MVEs are represented by a plane in log space or,
more generally, a surface in real space. A graphical repre-
sentation is even possible for multiregression models with
more than two explanatory variables. Suppose the first k
explanatory variables of the model in (9) are geomorpho-
logic parameters (i.e., xi for i = 1,2, . . . ,k), while the
remaining n–k variables are climatic parameters (i.e., xi

for i = k + 1,k + 2, . . . ,m). We can define a geomorphologic
factor (GF) and a climatic factor CF as follows:

GF ¼ xa1
1 xa2

2 � � �x
ak
k ; CF ¼ xakþ1

kþ1 xakþ2
kþ2 � � �xam

m ; ð16Þ

and use GF and CF to represent the MVE using contour plots
or three-dimensional scatter plots. Alternatively, one may
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represent the MVE by reporting the unit discharges against a
geomorphoclimatic factor defined as GF ÆCF. This latter rep-
resentation is analogous to the usual representation of a
REC (Fig. 1), and is suitable for comparing the univariate
and multivariate envelopes of extreme floods for a given re-
gion. Three examples of a graphical representation of an
empirical MVE are provided in Fig. 2.
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(dashed line), multivariate envelope of extreme floods, MVE
(bold line).

Please cite this article in press as: Castellarin, A et al., Multiva
doi:10.1016/j.jhydrol.2007.01.007
Application

Study area

Fig. 3 shows the study region along with outlines of the 34
unregulated river basins considered here. The AMS of peak
discharges were obtained for all basins from the stream-
gages belonging to the former National Hydrographic Ser-
vice of Italy (SIMN) over the period 1920–1997. Table 1
reports the record lengths, the empirical values of the in-
dex-flood, lX (average of annual maximum peak flows) and
the flood of record (Q) for the group of 34 catchments. Ta-
ble 1 also provides relevant geomorphologic and climatic
parameters of the basins, such as the basin area A [km2],
impervious area Aimp [km2], maximum, Hmax, mean, Hmean,
and minimum, Hmin, elevations [m above the sea level, m
asl], main channel length L [km], and mean annual precipi-
tation at basin scale MAP [mm]. We also considered several
derived measures, such as the mean slope of the main chan-
nel, and, for each basin, factors of shapes and elongation
and estimates of the time of concentration. Finally, Table
1 lists the unit flood of record (Q/A) over the study region.

The study region consists of 34 small to large Apenninic
basins, which are characterized by significantly different
percentages of impervious area (from roughly 20% to
100%). Mean annual precipitation varies significantly over
the study area. In view of these differences among the
catchments one may expect the regional flood frequency re-
gime to be strongly heterogeneous.

We analysed the homogeneity of this group of sites in
terms of the frequency regime of annual maximum floods.
The analysis used the heterogeneity measure proposed by
Hosking and Wallis (1997), which is briefly illustrated in
Appendix A. Considering the most selective heterogeneity
measure proposed by Hasking and Wallis (i.e., H1, see
Appendix A), the results of the test indicate that the region
should be regarded as ‘‘definitely heterogeneous’’, given
H1 = 4.46. Nevertheless, the study region can be regarded
as possibly homogeneous with respect to the other two het-
erogeneity measures proposed by Hosking and Wallis (1997)
(H2 = 0.10 and H3 = �1.04; see Appendix A for the definition
of H2 and H3). Hosking and Wallis (1997) recommend H1 as
the most reliable heterogeneity measure. Despite the re-
sults obtained in terms of H1, we accepted the region as a
possibly homogeneous region, which is a necessary assump-
tion for the probabilistic REC and MVE theoretical frame-
work, in order to illustrate the incorporation of factors in
addition to basin area in developing and utilising envelopes.
We are aware that this approximation may impact the reli-
ability of REC and MVE flood quantiles for the study region.
The robustness of our results when the assumption of regio-
nal homogeneity is violated needs further investigation, as
discussed in the results and discussions section.

Empirical REC and MVE

Following steps (ii) and (iii) of the procedure summarized in
Section ‘‘Empirical RECs and REC flood quantiles’’ we iden-
tified the REC for the study area. The REC is illustrated in
Fig. 1 (black thick line). The estimated REC’s slope b̂ is
equal to �0.193, and REC’s intercept a, computed from
(8), is equal to 2.135 [ln(m3 s�1 km�2)].
riate probabilistic regional envelopes ..., J Hydrol. (2007),



Figure 3 Study area: locations of the 34 study basins.
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The regression of the empirical index-flood values versus
drainage area alone is illustrated in Fig. 4 (left panel, Regio-
nal Estimates). The regression of ln(lX) versus ln(A) (termed
regression model lX–A) produced an overall Nash and Sutc-
liffe (1970) efficiency measure E = 0.498, where E 2 (�1,
1]: E = 1 for a perfect fit; E < 0 for a model that performs
worse than using a single regional mean value for site.

We assessed the robustness of the regression through a
(leave-one-out) jackknife cross-validation procedure (see
e.g., Shao and Tu, 1995; Brath et al., 2001; Castellarin
et al., 2004). The procedure simulates ungaged conditions
at each and every site of the study region and can be sum-
marized as follows: (1) all Nsite = 34 streamgages are consid-
ered; (2) one of these gaging stations, say station s, is
removed from the set; (3) regression model lX–A is re-esti-
mated using only the values of lX and A at the remaining
Nsite � 1 gaged sites; (4) using the regression model esti-
mated in step (3), the index-flood is estimated for station
s (Jackknife Estimate, left panel of Fig. 4); (5) steps (2)–
(4) are repeated Nsite � 1 times, considering in turn each
of the remaining streamgages. The cross-validation proce-
dure provides useful insights into the robustness and reli-
ability of the regression model for the entire study region.
The cross-validation procedure resulted in an overall Nash
and Sutcliffe (1970) efficiency measure Ejk = 0.150, which
is significantly smaller than the E value obtained from the
lX–A regression model (E = 0.498). One’s initial reaction is
to conclude that the robustness of the regression model is
limited. A closer look at the left panel of Fig. 4 shows in-
stead that the regression model lX–A is rather robust be-
Please cite this article in press as: Castellarin, A et al., Multiva
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cause the differences between the regional and jackknife
estimates are quite small. The low overall goodness of fit
(represented by E values with and without cross-validation)
results mainly from the few discordant sites (four sites). As
shown in Fig. 4 (left panel), a basic regression model that
assumes a simple scaling law between lX and A is incapable
of correctly reproducing the empirical values of lX for all of
these basins.

The construction of the empirical MVE requires the iden-
tification of a regional multivariate predictive model for lX.
The empirical index-flood values for the 34 sites were re-
gressed against the available geomorphoclimatic basin
descriptors (see Section ‘‘Study area’’ and Table 1) using
multivariate stepwise regression (see e.g., Wiesberg,
1985). Models of the form,

lnðl̂XÞ ¼ C0 þ C1 lnðx1Þ þ C2 lnðx2Þ þ � � � þ Cm lnðxmÞ
þ # ð17Þ

were considered, where l̂X indicates the empirical at-site
index-flood estimate for a particular basin, xi, for
i = 1,2, . . . ,m, are the explanatory variables of the model,
Ci, for i = 0,1, . . . ,m, are parameters and # is the residual
of the model. The optimal subset of explanatory variables
and the estimates of Ci, with i = 0,1, . . . ,m were identified
using stepwise regression, based on a weighted least-
squares (WLS) algorithm. The WLS algorithm weights each
squared residual proportionally to the length of the AMS of
flood flows at each site. The stepwise procedure begins with
a simple model that estimates the dependent variable l̂X as
riate probabilistic regional envelopes ..., J Hydrol. (2007),



Table 1 Annual flood sequences: variability of the number of observations, empirical index-flood, lX, flood of record, Q; and
relevant geomorphoclimatic basin descriptors

Site No. Obs. lX
(m3/s)

Q (m3/s) A (km2) Aimp (km2) Hmax

(m asl)
Hmean (m asl) Hmin (m asl) L (km) MAP (mm) Q/A

(m3 s�1

km�2)

8 23 743.8 1640.0 1439 1281 1803.0 660.0 26.3 108.9 1231.8 1.14
11 55 421.3 823.0 1301 1053 2120.0 606.0 21.5 98.5 1149.7 0.63
12 60 413.3 925.0 1019 713 2165.0 662.0 18.4 106.0 1126.1 0.91
16 74 739.0 2200.0 1055 1055 1945.0 639.0 58.0 84.2 1303.2 2.09
17 33 166.5 452.0 178 178 902.0 375.0 44.0 37.7 889.5 2.54
18 20 16.2 62.0 12 12 1276.0 1005.0 730.0 6.0 1317.1 5.26
19 23 210.3 446.0 398 398 1303.0 430.0 29.1 57.7 955.7 1.12
20 26 14.4 27.4 23 23 608.0 285.0 91.6 10.2 822.8 1.18
22 27 152.9 297.0 256 249 1242.0 511.0 49.7 53.7 1096.2 1.16
23 15 235.4 706.0 518 511 1242.0 439.0 2.0 103.0 993.8 1.36
24 33 98.0 304.0 272 272 1187.0 438.0 32.7 45.7 1001.1 1.12
25 41 300.0 762.0 440 426 1657.0 569.0 57.0 57.5 1112.3 1.73
26 42 378.4 814.0 593 580 1408.0 525.0 41.5 66.5 1018.3 1.37
27 29 391.8 834.0 614 454 1702.0 600.0 182.6 56.3 1160.1 1.36
28 29 591.6 1230.0 1044 835 1702.0 560.0 109.7 75.7 1120.0 1.18
29 25 136.1 356.0 470 371 2478.0 1135.0 268.2 55.8 1109.3 0.76
30 41 331.1 1320.0 901 756 2478.0 959.0 90.5 77.2 926.7 1.47
31 41 86.1 185.0 431 185 1570.0 616.0 168.0 58.4 1103.7 0.43
32 41 38.7 92.5 100 29 2334.0 1170.0 424.8 19.4 1145.0 0.93
33 22 51.4 131.0 84 48 2478.0 1100.0 437.0 26.0 946.9 1.57
36 43 261.0 805.0 606 605 1415.0 384.0 38.8 80.0 955.7 1.33
37 9 34.1 84.0 114 62 1815.0 214.0 4.2 36.0 839.9 0.73
38 31 102.3 340.0 148 140 2435.0 930.0 221.8 35.1 981.1 2.30
39 20 93.6 259.0 216 184 2914.0 1530.0 505.1 24.3 1157.3 1.20
40 40 36.6 156.0 58 28 2914.0 1950.0 406.8 11.9 1047.9 2.71
41 15 40.0 82.3 44 10 2914.0 1200.0 400.0 10.0 1334.0 1.86
42 9 310.2 567.0 570 428 2914.0 1065.0 136.0 51.8 1142.8 0.99
45 30 23.8 57.0 113 74 1616.0 1026.0 760.0 20.8 996.4 0.51
50 14 79.6 217.0 157 89 2795.0 1077.0 198.4 18.8 1420.5 1.39
51 39 256.2 796.0 3082 1294 2795.0 940.0 4.5 159.9 872.2 0.26
57 32 17.9 41.4 32 6 1260.0 1080.0 816.3 10.6 1233.8 1.31
58 38 160.9 420.0 562 197 2795.0 1320.0 720.0 61.2 1236.1 0.75
60 6 83.2 168.0 199 119 2795.0 1191.0 270.9 24.6 880.1 0.85
61 9 120.6 256.0 229 135 2795.0 1090.0 225.0 30.1 892.5 1.12

Min 6 14.4 27.4 12 6 608.0 214.0 2.0 6.0 822.8 0.26
Mean 30 209.9 525.2 508 377 1993.3 831.8 223.2 52.3 1074.1 1.37
Max 74 743.8 2200.0 3082 1294 2914.0 1950.0 816.3 159.9 1420.5 5.26

8 A. Castellarin et al.
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a constant value. Each step results in an additional explan-
atory variable in the model, choosing the variable that max-
imizes the adjusted efficiency of the model (see e.g.,
Wiesberg, 1985). At each step with p explanatory variables,
the procedure then tests the performance of all the p mod-
els including p � 1 explanatory variables that can be ob-
tained from the p-variable model by dropping one variable
at a time. If none of the simpler models performs better
than the p-variable model, the procedure searches for the
best multivariate model with p + 1 explanatory variables.
The stepwise procedure ends when no further increases in
the efficiency of the model are obtained.

The identified model reads,
Please cite this article in press as: Castellarin, A et al., Multiva
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lnðl̂XÞ ¼ 1:130þ 0:699 lnðAimpÞ þ 2:214 ln
MAP

1000

� �
þ #0;

ð18Þ

where l̂X is expressed in m3/s, Aimp in km2 and MAP in mm.
The stepwise regression analysis indicated a strong
connection exists between lX (average value of the maxi-
mum annual flood) and MAP (mean value of long-term pre-
cipitation). This result is not surprising, as the strong
relationship between MAP and the second- and third-order
statistics of rainfall extremes is well documented (Schaefer,
1990; Brath et al., 2003), and rainfall dominates the hydro-
logic response of abasin.
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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Figure 4 Simple regression between lX and A (left panel) and multivariate model (right panel): the empirical index-flood values
are reported vs. the corresponding Regional and Jackknife Estimates.

0.1

0.2

0.3

0.4

L
-k

ur
to

si
s

At-site Data
Mean of Sample Data
U-Unif., E-Exp., G-Gumbel, L-Logistic, N-Normal
Generalized Pareto
Generalized Extreme Value
Generalized Logistic

L

N
G E

Multivariate probabilistic regional envelopes of extreme floods 9

ARTICLE IN PRESS
The overall efficiency measure of the regional model (19)
is E = 0.913. We assessed the robustness of this model using
a jackknife cross-validation as described earlier. The cross-
validation resulted in an overall efficiency measure equal to
Ejk = 0.881. The rather high E and Ejk values and the marked
agreement between regional and jackknife estimates that is
visible in the scatter plots of Fig. 4 (right panel) indicate
that the application of the jackknife procedure does not sig-
nificantly influence the performance of the models, imply-
ing a strong robustness of the models (see e.g., Brath
et al., 2001).

Once the model in (19) is identified, the intercept of the
empirical MVE can be computed from (10) where the âi val-
ues for i = 1,2, . . . ,m, coincide with the estimates of Ci coef-
ficients of (19), with i = 1,2, . . . ,m. The resulting MVE can be
expressed in terms of unit flood of record, Q/A, as follows:

ln
Q

A

� �
¼ 2:756þ 0:699 lnðAimpÞ þ 2:214 ln

MAP

1000

� �
� lnðAÞ

¼ 2:756þ GCF; ð19Þ

where GCF is the geomorphoclimatic factor used for illus-
trating the MVE in Fig. 2c. Graphical visualizations of the
MVE in (20) are also provided in Figs. 2a and 2b, where
the geomorphologic factor GF is defined as follows:

GF ¼ A�0:301
Aimp

A

� �0:699

; ð20Þ

with usual notation and units, and CF = MAP (mm).
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Figure 5 L moment ratios diagram for the study area (see
Hosking and Wallis, 1997).
Exceedance probability of the expected REC and
MVE

MVEs are generalizations of RECs that assume a multivariate
relationship between index-flood and catchment character-
istics. As documented in Section ‘‘Probabilistic multivariate
envelopes’’, under the adopted hypotheses, the same prob-
Please cite this article in press as: Castellarin, A et al., Multiva
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abilistic statement can be assigned to both types of enve-
lopes, hence the expected REC and the expected MVE for
a given region share the same exceedance probability pEE.
pEE can be expressed as a function of the effective number
of observations neff, which, in turn, can be estimated as de-
tailed in Section ‘‘Exceedance probability of the expected
REC’’.

In the cross-correlation formula (5), estimates the param-
eters k1 = 4.69 Æ 10�05 (m�1) and k2 = 2.42 Æ 10�05 (m�1) (see
Fig. 6) were obtained using WLS with weights equal to the
corresponding number of concurrent annual floods. The k1
and k2 estimates enabled us to apply the algorithm in (4)
to the regional dataset, which counted a total of 1035 sam-
ple-years of data, n1 = 10 single observations, and a modeled
riate probabilistic regional envelopes ..., J Hydrol. (2007),



-1.0

-0.5

0.0

0.5

1.0

0 50 100 150 200 250 300 350 400 450

Distance (km)
C

ro
ss

-c
or

re
la

ti
on

 c
oe

ff
ic

ie
nt

Figure 6 Empirical cross-correlation coefficients for flood sequences with length <10 (open circles) and P10 (black dots); moving
weighted average curves (thick line); cross-correlation formula proposed by Tasker and Stedinger (1989) fitted onto the empirical
data (thin line).

10 A. Castellarin et al.

ARTICLE IN PRESS
average cross-correlation among the series equal to 0.272.
The application of the algorithm produced an estimated
number of effective observations equal to n̂eff ¼ 593 sam-
ple-years of data. Fig. 6 illustrates significant scatter associ-
ated with the estimated cross-correlation coefficients,
which is in part due to sampling variability. The weak con-
nection between correlation and distance conveys little
information. Fortunately, Castellarin (2006) observed that
the cross-correlation has a marginal impact on the reliability
of estimated pEE values.

The exceedance probability pEE in (6) requires the selec-
tion of suitable regional parent distribution to enable selec-
tion of a suitable parameter g. The GEV distribution is a
suitable probabilistic model for representing the annual
maximum series of flood flows in the study area, as shown
by the L moment ratios diagram reported in Fig. 5 (see Hos-
king and Wallis, 1997; Chapter 5). The shape parameter
k = �0.111 of the GEV distribution was estimated using the
L moments (see e.g., Hosking and Wallis, 1997, Chapter
6). The quantile-unbiased GEV plotting-position proposed
by Castellarin (2006), whose g(k) parameter results in this
case equal to 0.491, produces an estimate of the recurrence
interval for the expected envelope TEE = 1/pEE equal to 1165
years. This estimate of the recurrence interval applies both
to expected REC and expected MVE for the considered group
of 34 AMS of flood flows. Importantly, this estimate of TEE
takes into account the cross-correlation among the series
and the actual distribution of data in time (e.g., missing
data, different installation years for different gages, etc.).

The REC illustrated in Fig. 1 and the MVE reported in
Fig. 2 can be applied for any ungaged basin in the study area
to produce an estimate of the TEE-year flood quantile,
where TEE = 1165 years. The REC flood quantile can be read-
ily estimated on the basis of the drainage area of the basin,
whereas the estimation of MVE flood quantile requires
knowledge of the three geomorphoclimatic descriptors: A,
Aimp, and MAP.

Evidently, the uncertainty and reliability of REC and MVE
flood quantiles can be rather different. The previous section
documented that the multiregression model outperforms
the simple scaling relationship in (2). The improved perfor-
mance of the multiregression model must result in a higher
reliability of MVE flood quantiles with respect to the REC
flood quantiles. In the following section we quantify the
reliability of REC and MVE flood quantiles for ungaged
basins.
Please cite this article in press as: Castellarin, A et al., Multiva
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Accuracy of REC and MVE flood quantiles

Reference regional design flood estimates

The proposed probabilistic interpretation of univariate and
multivariate envelopes of extreme floods relies on the
assumption of regional homogeneity in the sense of the in-
dex-flood hypothesis (Dalrymple, 1960). Hence, the index-
flood method is a natural choice as a reference method
for generating regional estimates of the design flood for
comparison with REC and MVE quantiles (see also Castella-
rin, 2006).

Two different reference regional estimates of the TEE-
year flood are used for comparison with REC and MVE flood
quantiles. Both regional estimates are computed assuming
that the index-flood hypothesis holds (i.e., same probability
distribution of standardized annual maximum peak flows for
all sites belonging to the homogeneous region). We termed
the first reference estimate the ‘‘true flood quantile’’,
Q̂ði;TEEÞ. Q̂ði;TEEÞ refers to the ideal situation in which an
observed AMS of flood peaks is available at a gaged site i.
The second reference, Q̂ði;TEEÞjk, represents the best regio-
nal estimate that one can obtain via of the index-flood pro-
cedure if site i were an ungaged site. Q̂ði;TECÞjk, as
indicated by subscript jk, is evaluated through a jackknife
resampling approach by neglecting the observations col-
lected at site i. Appendix B details how Q̂ði;TEEÞ and
Q̂ði;TEEÞjk were computed.

Uncertainty affects both Q̂ði;TEEÞ and Q̂ ði;TEEÞjk, and is
obviously higher for Q̂ði;TEEÞjk. Nevertheless, we termed
the estimate Q̂ði;TEEÞ the ‘‘true flood quantile’’ to charac-
terize it as the best possible estimate within the index-flood
framework. The second index-flood quantile, Q̂ði;TEEÞjk, is
utilized in order to quantify the additional uncertainty that
affects the index-flood approach when it is applied to un-
gaged sites.
Cross-validation procedure

The comparison of the different approaches (probabilistic
univariate and multivariate envelopes of extreme floods) fo-
cuses on the estimation of the design-flood at ungaged sites.
Consequently, we assessed the reliability of REC and MVE
flood quantiles through a cross-validation procedure that
simulates the ungaged conditions in turn at each and every
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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site. The structure of the cross-validation can be summa-
rized as follows:

1. one gaging station (site i) is removed from the set of 34
streamgages;

2. resampled (or jackknife) empirical REC and MVE, indi-
cated as RECi and MVEi respectively, are constructed by
ignoring data belonging to site i, and their TEE(i) = T is
then estimated (see Sections ‘‘Exceedance probability
of the expected REC’’ and ‘‘Exceedance probability of
the expected REC and MVE’’);

3. flood quantiles Q̂ði; T ÞREC and Q̂ði; T ÞMVE are estimated
from RECi and MVEi respectively;

4. using T evaluated at step 2, the true and jackknife flood
quantiles, Q̂ði; T Þ and Q̂ði; T Þjk respectively, are esti-
mated for site i as described in Appendix B;

5. the following relative errors are then computed:

eREC ¼ ½Q̂ði;TÞREC � Q̂ði;TÞ�=Q̂ði;TÞ; ð21aÞ

eMVE ¼ ½Q̂ði;TÞMVE � Q̂ði;TÞ�=Q̂ði;TÞ; and ð21bÞ

eR-LMOM ¼ ½Q̂ði;TÞjk � Q̂ði;TÞ�=Q̂ði;TÞ; ð21cÞ

where R-LMOM stands for regional L moments implemen-
tation of the index-flood approach;

6. steps 1–5 are repeated M � 1 times, with M = 34, for
each one of the remaining streamgages.

It is important to note that TEE(i) = T refers to the effec-
tive regional sample-years of data that characterizes RECi

and MVEi, and therefore varies for the 34 sites because
the regional sample-years of data vary for each site during
the cross-validation. Accordingly, Q̂ði;TÞ and Q̂ði;TÞjk are
evaluated for the T value obtained for site i.

A comprehensive evaluation of the reliability of REC
flood quantiles has been already performed with a very sim-
ilar procedure by Castellarin (2006). Hence, we focus here
on an evaluation of the improvement in the reliability of
flood quantiles, if any, that can be acquired through the
generalization of probabilistic envelope curves and the
introduction of probabilistic multivariate envelopes of ex-
treme floods. Our comparisons of the errors eREC and eMVE
enables us to understand whether or not the reliability of
flood quantiles benefits from the multivariate generaliza-
tion of the envelope. In addition, the comparison of these
errors with eR-LMOM shows how far the reliability of envelope
flood quantiles is from the target reliability associated with
the index-flood approach, a standard and proven design
approach.
-1

-0.5

R-LMOM REC MVE

Figure 7 Results of the cross-validation: distributions of
relative errors of the T-year flood quantiles estimated for the
34 considered sites with the index-flood approach (R-LMOM)
and retrieved from the probabilistic regional envelope curve
(REC) and multivariate envelope of extreme floods (MVE); each
box-plots reports the minimum and maximum values, the 25th,
50th and 75th percentiles, highlighting the presence of outliers
(circles).
Results and discussion

Figs. 7 and 8 illustrate the results of the cross-validation
experiments. The box-plots in Fig. 7 depict the distributions
of relative errors obtained for the probabilistic univariate
(REC) and multivariate (MVE) envelopes of flood extremes
and for the index-flood approach (R-LMOM), for ungaged
conditions. The bar-diagram in Fig. 8 compares the relative
error values separately at all 34 sites.

The comparison between the eR-LMOM, eREC and eMVE values
reported in Figs 7 and 8 shows that the reliability of the
Please cite this article in press as: Castellarin, A et al., Multiva
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three considered approaches is similar. The comparison be-
tween eR-LMOM and eREC confirms the results obtained by Cas-
tellarin (2006), who showed that, REC flood quantiles
exhibit a reliability and accuracy which is comparable to in-
dex-flood quantiles. Fig. 7 also shows that eREC values are
positively biased and present the largest dispersion around
the expected error (largest interquartile distance). Fig. 7
documents the advantages associated with a multivariate
generalization of the regional envelope of food extremes.
The distribution of eMVE values shows a low interquartile dis-
tance (low dispersion around the expected error) and a
small positive bias, when compared to eREC values.

The bias associated with the MVE flood quantiles (see
Fig. 7) is in part due to the heterogeneity of the study region
(see Section ‘‘Study area’’). As noted by Castellarin et al.
(2005, see Fig. 8 on p. 10), in a heterogeneous pooling-group
of sites, a few discordant sites characterized by a distribu-
tion with a heavier right tail can exert a strong control on
the envelope, resulting in a positive bias of the quantile
estimates. On the contrary, classical regional flood fre-
quency analysis (RFFA) studies indicate that limited degrees
of regional heterogeneity do not significantly affect the reli-
ability of flood quantile estimates resulting from the appli-
cation of the index-flood hypothesis (see e.g., Lettenmaier
et al., 1987; Stedinger and Lu, 1995). For this reason the
comparison of REC and MVE quantiles with the ‘‘true flood
quantiles’’ exhibits a positive bias. For the REC flood quan-
tiles the bias is even greater (see Fig. 7), due to the fact
that the regression model lX–A does not incorporate any
information on the impervious portion of the catchment
area nor on the climatic regime of each catchment (summa-
rised by MAP).

Although the advantages of a multivariate approach over
the index-flood approach are not evident (see Fig. 4), the
improvements resulting from a multivariate interpretation
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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of probabilistic regional envelopes is rather striking in terms
of improved reliability of estimated flood quantiles. This
outcome was expected because the multivariate model of
index-flow enables us to integrate information on climate
and permeability of the catchment. This information is rel-
evant to lX and is crucial for characterizing the physical pro-
cesses that generate extreme floods, and hence for a better
identification of the envelope.

The results in Fig. 7 refer to the region as a whole
whereas the bar diagram in Fig. 8 enables us to analyze
the performance of each methodology across sites. In par-
ticular, it is interesting to observe that the sign of the three
errors is not always consistent as in some cases one ap-
proach overestimates the flood quantiles and the two
remaining approaches underestimate it, and vice versa.
We also observe that the best performing approach depends
on the site being considered. This suggests that RECs and,
particularly, MVEs can provide valuable complements to de-
sign-flood estimates derived from traditional regionalization
approaches such as the index flood method.

RECs and MVEs were not developed as design flood meth-
ods, hence it is important to highlight that with respect to
traditional RFFA techniques, probabilistic envelopes of ex-
treme floods suffer from the disadvantage of being associ-
ated with a single (arbitrary) recurrence interval, which is
the recurrence interval of the expected envelope TEE. There-
fore, RECs and MVEs can only be utilized for the estimation
of TEE-year floods. Nevertheless, Figs. 7 and 8 show that, un-
der ungaged conditions, the reliability of REC based flood
quantiles is similar to the reliability of flood quantiles esti-
mated through traditional RFFA approaches and MVE based
flood quantiles are practically as reliable as RFFA flood quan-
tiles. More importantly, with respect to traditional RFFA
techniques, RECs and MVEs present the noteworthy feature
of providing a comprehensive and readily interpretable visu-
alization of the bound on our current experience of extreme
flood flows in a region (see Figs. 1 and 2).
Please cite this article in press as: Castellarin, A et al., Multiva
doi:10.1016/j.jhydrol.2007.01.007
Note that we decided to construct the empirical enve-
lopes for the univariate (REC) and multivariate (MVE) case
by fitting the empirical annual floods (i.e., index-floods)
and subsequently shifting the univariate and multivariate
regression relations upward by modifying their intercept.
This approach is consistent with the adopted assumption of
regional homogeneity in the sense of the index-flood hypoth-
esis. Nevertheless, alternative multivariate estimation pro-
cedures can be applied, such as fitting the envelope by
constraining all the residuals to be positive while minimizing
distance from envelope to observations. Future analysis will
address this issue, investigating whether or not the use of dif-
ferent estimation methods would produce a better envelope
and thus a higher reliability of the resulting design floods.

As a final remark, it cannot be denied that the index-
flood approach (R-LOM) outperforms the two considered
envelope-based approaches (REC and MVE) for the whole
study region. In fact, our goal here is not to present a
replacement for RFFA approaches. Nevertheless, our results
confirm the value of envelope-based approaches to design-
flood estimation at ungaged sites and indicate that MVEs
are very promising evolutions of RECs.
Conclusions

Our study presents a multivariate generalization of probabi-
listic regional envelope curves (RECs), recently proposed by
Castellarin et al. (2005) and Castellarin (2006) for estimat-
ing the design flood at ungaged sites. Our main objectives
were to:

• provide a multivariate generalization of previous univar-
iate probabilistic RECs;

• demonstrate that the exceedance probability of the gen-
eralized envelope, pEE, can be estimated using the same
algorithm proposed for RECs;
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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• quantify the reliability of 1/pEE-year flood quantiles esti-
mated at ungaged sites from generalized multivariate
envelopes of extreme floods (MVEs) and compare it with
the reliability of flood quantiles based on (1) univariate
envelope curves (RECs) and (2) traditional regional flood
frequency analysis (RFFA).

We document a multivariate extension of RECs which we
term probabilistic multivariate regional envelopes of ex-
treme floods (MVEs). We also propose a two- or three-
dimensional representation of MVEs that provides a graphi-
cal visualization of the current bound on our experience
of extreme floods in a multivariate framework.

We proves that expected RECs and expected MVEs (i.e.,
the univariate and multivariate envelopes that, on average,
are expected to bound the extreme flood experience for a
group of cross-correlated flood sequences) are associated
with the same exceedance probability, pEE. Therefore, the
algorithm developed by Castellarin (2006) for estimating
pEE from real world dataset can be applied for both ex-
pected RECs and MVEs.

A cross-validation for a region in north-central Italy en-
ables us to assess the reliability of flood quantiles estimated
for ungaged sites using a traditional RFFA procedure, and
using an empirical REC and MVE. The results of the cross-val-
idation demonstrate the superiority of MVE over REC and
also show that the MVE indices of performance are practi-
cally equivalent to the RFFA indices of performance.

In conclusion, our study documents that a multivariate
generalization of RECs, which we term MVEs, represent
practical and easy-to-use tools to (1) graphically and quan-
titatively summarize the extreme flooding experience in a
region in a multivariate framework; (2) determine plausible
extreme-flood values at ungaged sites and (3) provide a
realistic estimate of the recurrence intervals associated
with such extreme floods. The general applicability of MVEs,
and their real potential for predicting design floods at un-
gaged sites needs further experimentation in different geo-
graphical contexts. More importantly, MVEs, along with
RECs, should be seen as valuable and useful complements
to traditional RFFA techniques, rather than substitutes.

Extensions to the multivariate regional envelope meth-
odology introduced here will likely benefit from: (1) applica-
tion of generalized least squares (GLS) regression methods
(see Kroll and Stedinger, 1998) for both identification and
estimation of the multivariate envelope surface and for
estimation of the relationship between cross-correlation
and distance between sites; (2) an improved understanding
of the theoretical properties of record floods and their
covariance structure; and (3) an improved understanding
of the geomorphic and climatologic factors which control
and/or dictate the upper bound on flood discharges.
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Appendix A. Homogeneity testing

The homogeneity test proposed by Hosking and Wallis (1997,
Chapter 4) assesses the homogeneity of a group of se-
quences at three different levels by focusing on three mea-
sures of dispersion for different orders of the sample L
moment ratios (see Hosking and Wallis (1997) for an expla-
nation of L moments),

1. A measure of dispersion for the L coefficient of variation,
L–Cv,

V1 ¼
XR
i¼1

niðt2ðiÞ � �t2Þ2
,XR

i¼1
ni: ðA1Þ

2. A measure of dispersion for both the L–Cv and the L-
skewness coefficients in the L–Cv–L-skewness space,

V2 ¼
XR
i¼1

ni t2ðiÞ � �t2
� �2 þ t3ðiÞ � �t3

� �2h i1=2,XR
i¼1

ni: ðA2Þ

3. A measure of dispersion for both the L-skewness and the
L-kurtosis coefficients in the L-skewness–L-kurtosis
space,

V3 ¼
XR
i¼1

ni t3ðiÞ � �t3
� �2 þ t4ðiÞ � �t4

� �2h i1=2,XR
i¼1

ni; ðA3Þ

where �t2, �t3, and �t4 are the group mean of L–Cv, L-skew-
ness, and L-kurtosis, respectively; t2(i), t3(i), t4(i), and ni
are the values of L–Cv, L-skewness, L-kurtosis and the
sample size for site i; and R is the number of sequences.

The underlying concept of the test is to measure the
sample variability of the L moment ratios and compare it
to the variation that would be expected in a homogeneous
group. The expected mean value and standard deviation
of these dispersion measures for a homogeneous group,
lVk

and rVk
respectively, are assessed through repeated sim-

ulations, by generating homogeneous groups of basins hav-
ing the same record lengths as those of the observed data
following the methodology proposed by Hosking and Wallis
(1997, Chapter 4). The heterogeneity measures are then
evaluated using the following expression:

Hk ¼
Vk � lVk

rVk

; for k ¼ 1; 2; 3: ðA4Þ

Hosking and Wallis suggest that a group of sites may be re-
garded as ‘‘acceptably homogeneous’’ if Hk < 1, ‘‘possibly
heterogeneous’’ if 1 6 Hk < 2, and ‘‘definitely heteroge-
neous’’ if Hk P 2. The authors also point out that H2 and
H3 lack power to discriminate between homogeneous and
heterogeneous regions, whereas H1, has much better dis-
criminatory power.
Appendix B. Computation of reference
regional design flood estimates

Under the index-flood assumption, the T-year flood for site
i, Q(i,T), is,

Qði;TÞ ¼ lXðiÞ � x0ðTÞ; ðB1Þ
riate probabilistic regional envelopes ..., J Hydrol. (2007),
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where lX(i) is the index-flood for site i (assumed in this
study to be equal to the mean annual flood), whereas
x 0(T) is the regional dimensionless flood-quantile with
exceedance probability 1/T for the homogeneous region
that contains site i.

The first reference regional estimate, Q̂ði;TÞ, represents
the ‘‘true flood quantile’’ and refers to an optimal scenario,
for which an observed AMS of flood peaks is available at site
i (gaged conditions). Q̂ði;TÞ is computed as the average of
the observed annual maxima (sample estimate of lX(i))
times a regional estimate of x 0(T) resulting from a GEV re-
gional parent distribution, whose parameters are identified
by using the L moments method (see e.g., Hosking and Wal-
lis, 1997, Chapter 6). The estimation of the regional parent
is performed considering all AMS observed in the study
region.

The second reference regional estimate, Q̂ði;TÞjk, repre-
sents the best regional estimate that one can obtain through
the application of the index-flood procedure if site i were an
ungaged site (ungaged conditions). Q̂ði;TÞjk is evaluated
using a jackknife resampling approach by neglecting the
observations collected at site i, and is the product of an
indirect estimate of lX(i), l̂XðiÞjk, and a resampled regional
quantile, x̂0ði;TÞjk:

• l̂X ðiÞjk is estimated using a multiregression model that is
identified by discarding the flood data observed at site i
(see e.g., Brath et al., 2001; Castellarin et al., 2001).
In particular, we the estimates l̂X ðiÞjk are based on 34
estimates resulting from the cross-validation of the mul-
tiregression model (19) presented in Section ‘‘Empirical
REC and MVE’’; these estimates are illustrated in the
right panel of Fig. 4 (Jackknife Estimates);

• x 0(i,T)jk is estimated from a GEV regional parent, whose
parameters are estimated by applying the method of L
moments illustrated by Hosking and Wallis (1997, Chapter
6) to all sequences except for the one observed at site i.
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