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Performance-Based Evaluation of an Improved
Robust Optimization Formulation

Patrick A. Ray, M.ASCE"'; David W. Watkins Jr., M.ASCE?>;
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Abstract: Much progress has been made in the standardization of uncertainty analysis techniques for simulation modeling but less progress has

been made in optimization modeling. Among the various techniques used for optimization modeling under uncertainty, robust optimization
(RO) uniquely allows for evaluation and control of the various risks of poor system performance resulting from input parameter uncertainties in
water-resources problems. A model formulation was developed that addresses an inadequacy in a previous RO formulation. The importance of

evaluating, through postprocessing, RO model results with respect to a range of performance metrics, has been demonstrated rather than a single
metric, as has been common in previous studies. An analysis of the tradeoffs between solution robustness (nearness to optimality across all
scenarios) and feasibility robustness (nearness to feasibility across all scenarios) illustrates the importance of including these terms in multi-
objective water resources decision models. DOI: 10.1061/(ASCE)WR.1943-5452.0000389. © 2014 American Society of Civil Engineers.

Author keywords: Instruments and techniques; Modeling; Water management; Benefit-cost analysis; Decision-making under uncertainty;

Regional planning.

Introduction

Decision-makers with responsibility over management and expan-
sion of water resources systems are interested in managing a wide
range of risks, among them the following: (1) risk of cost overruns
(solution robustness), (2) risk of system failure (reliability), (3) mag-
nitude of those failures (vulnerability), and (4) risk of performance
deterioration (sustainability). In addition, a decision-maker may
want information about the reliability, vulnerability, and sustain-
ability of the system with respect to a variety of decision variables
(e.g., withdrawals, storage, transfers, and conservation). The deci-
sions made now depend upon the budget, expectations of future con-
ditions, decision-maker’s tolerance for various types of risk, and
ability to adapt. Formulating a tool to meet the information needs of
a decision-maker and aid in the prescription of a water system design
that satisfactorily balances the numerous (and conflicting) objectives,
including minimization of risks, can be a challenging task.

The primary contributions of this paper are two-fold. First,
we present a revision of a previously developed robust optimization
(RO) model is presented (Watkins and McKinney 1997). That for-
mulation’s treatment of the risk of water system cost overruns (sol-
ution robustness term), modeled as the standard deviation (SD) of
possible future water-related costs, is not monotonically increasing
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and therefore penalizes cost deviations irrationally. This leads to
irrational second-stage decisions when a relatively large weight
is placed on minimizing cost overruns. The improved formulation
remedies the flaw and results in rational second-stage decisions
under all cases. Second, we demonstrate the use of postprocessing
is demonstrated to provide additional information regarding the an-
ticipated performance of designs recommended by the model.
Although it may not be reasonable to include measures of every
kind of risk in a multiobjective function (in the example of this
paper only two are included at a time, in addition to investment
cost), postprocessing can provide decision-makers with informa-
tion relative to as wide a range of risks as possible and perhaps
even lead to adjustments in optimization model formulation. In
the example presented in this paper, postprocessing of results in-
formed development of the improved RO model.

Optimization under Uncertainty

According to Sahinidis (2004), there are three general methods
for optimization under uncertainty: (1) stochastic programming,
(2) fuzzy programming, and (3) stochastic dynamic programming.
Stochastic programming includes the following: (1) standard
approaches using recourse models [termed two-stage or multistage
stochastic linear/nonlinear programs; Sen and Higle (1999)
provides an introductory tutorial on stochastic programming],
(2) robust optimization as described next, and (3) probabilistic
models [chance constraints, attributed to Charnes and Cooper
(1959)]. Loucks et al. (1981) and Tung (1986) provide an introduc-
tion to and applications of chance constraints to water resources
problems. Potentially a fourth class of methods for optimization
under uncertainty, evolutionary optimization algorithms (EAs),
can be connected to Monte Carlo simulation models of water
resources systems e.g., Kasprzyk et al. (2009).

Of all of these approaches, the focus of this paper is on
RO and its flexibility in the consideration of performance metrics
that might be of interest to a decision-maker. In contrast to
chance constraint techniques, for example, which can only limit
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the probability of a violation of a model constraint, RO offers a
means of simultaneously controlling the sensitivity of the solution
to any uncertain parameters or inputs, and penalizing exponentially
larger violations of one or multiple model constraints. There are
two forms of RO: (1) those that guarantee satisfaction of hard con-
straints, and (2) those that apply penalties to violations of soft con-
straints. The field of manufacturing and engineering science has
tended to emphasize formulations that guarantee the satisfaction
of hard constraints, thus leading to single optimal robust solutions
(Taguchi 1986). In contrast, Mulvey et al. (1995) recommended a
mathematical programming approach based on a tradeoff between
solution robustness (nearness to optimality across all scenarios) and
feasibility robustness (nearness to feasibility across all scenarios).
Their RO formulation extends stochastic programming to a multi-
objective optimization framework that includes higher moments of
the objective value (variance, most commonly) and penalty func-
tion(s) on violations of a chosen constraint(s). The scenarios used in
RO are discrete points in an empirical probability distribution (or
joint probability distribution), generated to represent best current
understanding of the relative likelihood of potential future system
states.

Robust Optimization Formulations in Water
Resource Systems Planning

The RO technique introduced by Mulvey et al. (1995) is relevant to
the field of environmental and water resource (EWR) systems plan-
ning and management, in which decisions often involve multiple
objectives and soft constraints. For example, RO allows evalua-
tion of tradeoffs between expected direct costs (direct costs have
market value, such as capital costs and water transfer costs), indi-
rect costs (e.g., conservation programs and water shortages), and
performance costs (e.g., reliability), as well as the variability in
these metrics (e.g., risk).

A two-stage stochastic programming model may be formulated
as follows:

Minimize Z psgs (1)
Y SEN
Subject to
Ay=Db (2a)
g(xs)+Bsy:dsv s€EQ (Zb)
X.y20, s€Q (2¢)

where & = ¢’y + f(x); & = value of the realization of the objective
function in some future scenario s, which is composed of structural
decisions variables y with associated cost coefficients ¢ and the
operational costs of the system f(x), which are functions of control
variables x that are chosen after the uncertain parameters are
observed. Each scenario s € Q occurs with a probability p, and
> ps&, is the expected value of the objective function. Within
the constraint set, A is a matrix defining the structural constraints
of the problem; b is the corresponding right-hand side (RHS) vec-
tor; g(x) are functions representing the response of the system to
the values of the control variables; B is a matrix of coefficients
representing the effects of the structural decisions on system per-
formance; and d is the corresponding RHS vector.

The RO formulation (Mulvey et al. 1995) extends the expected
value formulation to capture risk-averse behavior in the objective
function and allow soft constraints [Eq. (2)] to be violated at a cost

subject to Egs. (2a), (2¢), and an expansion of Eq. (20) including z,
a set of infeasibility variables {z, ..., z,} that measure the amount
by which the control constraints are violated, i.e., g(xs) + Bgy +
z, = dg, s € Q, where o(&,, ..., &) is an aggregate objective func-
tion containing information pertaining to the performance of the
solution under all scenarios; p(zi, ...,z,) is a feasibility penalty
function that penalizes constraint violations under all scenarios;
and w = weight indicating the degree of acceptance or rejection
of infeasibilities in the solution.

EAs are more flexible than classical mathematical programming
formulations with respect to nonlinearities in the objective and con-
straints and can more easily absorb expansions to the objective func-
tion from single-objective to multiobjective to many-objective (Reed
and Minsker 2004). However, the focus of this paper is an in-depth
exploration of the performance tradeoffs generated using a simple
design problem, which does not require the added flexibility of
an EA. Thus, the problem is solved using the more classical math-
ematical programming techniques, which are more computationally
efficient and easily allow decisions to be made in two or more stages.

In a review of the literature, Ray (2010) encountered significant
inconsistency regarding the use of the term RO in the EWR field.
Most examples of this type in EWR involve stochastic program-
ming, as did Mulvey et al. (1995). Some however are built on
the framework of fuzzy optimization (Li et al. 2006) or EAs (Cui
and Kuczera 2003). Most that have claimed to employ RO in EWR
present tradeoffs between immediate capital cost and some other
performance metric, although not always (Rosenberg and Lund
2009). Some that closely follow the approach of Mulvey et al.
(1995) do not adopt the term RO (Kapelan et al. 2005), whereas
others that use the term RO do not (Chung et al. 2009). To place
the research reported in this paper in the context of previous appli-
cations, the writers define RO as any optimization technique
explicitly incorporating uncertain input data (model parameters)
resulting in a tradeoff between multiple objectives, with increasing
robustness with respect to one performance metric gained at a cost
in some other performance metric.

Applications of this type of RO in EWR range from water
distribution system design (Cunha and Sousa 2010) and waste-
water-treatment design (Afonso and Cunha 2007) to the design
of large-scale water systems (Escudero 2000), as well as the design
of groundwater pump and treatment systems (Ricciardi et al. 2009).
Nearly all previous EWR applications involve only feasibility
robustness, minimize Y .. P& +wp(zy, ..., 2,), and do not

. Xy .
consider solution robustness. Most such examples involve
groundwater remediation applications (Bau and Mayer 2006;
Ricciardi et al. 2007; Bayer et al. 2008; Alcolea et al. 2009; Ko
and Lee 2009). As presented in the literature review by Ray
(2010), only a few applications of RO to EWR systems also
included solution robustness through minimization of the
variance/SD  of direct cost in the objective function
minimize }cq ps&s +0(&rs -0 &) Fwplzr, -onizg)  (Watkins

and McKinney 1997; Suh and Lee 2002; Kawachi and Maeda
2004; Kasprzyk et al. 2009; Ray 2010).

One plausible reason for the failure of these previous studies
to incorporate metrics for solution robustness other than computa-
tional demand is that the two-stage mean/variance model for
incorporation of solution robustness suffers from a fundamental
shortcoming (Bai et al. 1997). In particular, the minimization of
variance, a symmetrical measure of risk, penalizes outcomes that
are better than the expected value just as it penalizes outcomes
that are worse. As a result, as documented by King (1993),

Minimize o(¢, &) +wplz, z,) (3) mean/variance functions do not always increase monotonically, an
S1r st hs i SRR R ) . . oge . . . .
xy important requirement of utility functions. Fig. 1 illustrates this,
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A — Utility Function
Mean/Variance Function 1

= = = Mean/Variance Function 2

u(r)

Fig. 1. Mean-variance approximations to a utility function; function 1
appears to be a good approximation, given the SD of return o; function
2, corresponding to a larger weight on the variance term than in func-
tion 1, is a poor approximation and may lead to preference for a sto-
chastically dominated solution (e.g., return distribution A dominated
by return distribution B)

showing two mean-variance approximations to a (monotonic) utility
function (Watkins 1997). The function incorporating a larger penalty
on variance would lead to preference of return distribution A (higher
total utility, measured as the aggregate value of mean utility and
weighted variance of utility, over a narrow range of r) over B, even
though distribution B is stochastically dominant (meaning that in B
the system never provides less of what is wanted r than does A). In
separate studies, Sen and Higle (1999) and Takriti and Ahmed (2004)
demonstrated that the RO model of Mulvey et al. (1995) can be
suboptimal when compared to the solution of the more basic
two-stage stochastic recourse formulation and that the variability
of the RO solution may be underestimated. Takriti and Ahmed
(2004) showed that modifying the objective function to minimize pos-
itive deviations from a fixed target direct cost remedies this problem, a
finding derived and reinforced in the model formulation of this paper.

For illustration of these RO model limitations, an example is
used of a city faced with potential water scarcity and uncertain
water demand.

Robust Optimization Formulation: An Example

In this example [from Lund and Israel (1995), as adapted by
Watkins and McKinney (1997) and Ray (2010)], a city is subject
to water scarcity and must plan accordingly. The objective is to
minimize the cost of satisfying next year’s water requirements
through decisions made now (first stage) and utilization of options
once next year’s conditions are realized (second stage). The city has
only one immediate (first stage) option; it can build desalination
capacity or not. Upon making this decision, if local water availabil-
ity next year is insufficient, the city can take combinations of the
following three courses of action: (1) utilize its constructed desali-
nation capacity, (2) make emergency spot-market transfers at mar-
ket prices, and (3) accept some amount of water conservation
(shortage) at a cost.

One possible formulation of this problem is minimization of ex-
pected total (direct and indirect) cost, as in Lund and Israel (1995).
They represented potential water availability and use in the sub-
sequent year through a set of discrete scenarios with corresponding
probabilities. Local water availability and the price of an emer-
gency water transfer were perfectly correlated in accordance with
the probabilities assigned to supply scenarios. Water use was also
represented as a random input parameter but assigned probabilities
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independent of those related to supply. Model 1 [Eq. (4)] shows a
two-stage stochastic nonlinear program for minimization of the di-
rect cost (in dollars) of decisions made now, plus the expected value
of next year’s decisions

minZ; = c.Q+ > Y ppilcoUqp + Uty +n(Usy)] (4)

seS rer
Subject to

maximum use of desalination capacity Ug,, < Q V,, V, (5a)

satisfy water requirement a; + Ugq,, + Ut  + Us,, >d, VY,, VY,
(5b)

nonnegativity Q, Uq,,, Ut,,,Us,, >0 V,, V, (5¢)

where Z, is the objective function value, total cost (direct and indi-
rect), to be minimized; ¢, = unit capital cost of desalination plant
[$/ million cubic meters (MCM)]; Q = capacity of desalination
plant (MCM/year); p, = probability of water requirement event
r; p, = probability of supply event s; ¢, = amortized unit operation
and maintenance cost of desalination plant ($/MCM); Ugq,, =
capacity of desalination plant actually used (MCM/year); ¢, = unit
cost of water transfer ($/MCM); Ut,, = quantity of transfer water
purchased (MCM/year); Us,, = quantity of water shortage
(MCM/year); nUs,,” = nonlinear cost of water shortage
($/MCM); n and ~y constants; a, = local water availability in reali-
zation s occurring with probability p,; and d, = water requirement
in realization r occurring with probability p,.

Model 1 yields the least-cost solution to the overall problem
(both stages). It is an improvement over a deterministic formulation
using the mean values of availability and demand because it takes
into account uncertainties in next year’s water availability and
water requirement by minimizing over a range of input scenarios
(Table 4, discussed in greater depth in the Results section). It rec-
ommends the construction of a certain amount of desalination
capacity based upon next year’s expected conditions. Less conse-
quentially, it provides values for the second-stage variables under
each scenario. Under expected conditions, based upon the pre-
scribed first-stage decision, the city will make use of E[Ug,]
amount of the constructed desalination capacity, transfer E[Ut,,]
amount of water, and have a shortage of size E[Us,,]. The formu-
lation is an example of expected-value decision-making and does
not factor in a decision-maker’s likely aversion to risk.

Adding measures of risk to the two-stage stochastic nonlinear
program, Model 2 [Eq. (6)] is a multiobjective two-stage robust
optimization model (MO-RO; Watkins and McKinney 1997).
Model 2 extends Model 1 by additionally considering the SD of
second-stage decisions (solution robustness term), plus a penalty
on water shortages (feasibility robustness term). These additional
terms are weighted by w; and w,, respectively, in accordance with
the decision-maker’s aversion to risk. Each of the weights can be
varied to trace out the Pareto-optimal frontier of tradeoffs between
expected system performance and robustness

min ZZ = C('Q + Z Z prp.\‘fr.\‘ + Wi

seS reR
X [Z,YES ZreR PrDs (grs - Z Z pr’ps"gr’s’)z] .
s'eSr'er
+w222prpsn(Usrs)7 (6)
seS rer

J. Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage.



Downloaded from ascelibrary.org by TUFTS UNIVERSITY on 03/26/14. Copyright ASCE. For personal use only; al rights reserved.

Subject to

maximum use of desalination capacity Uq,, < Q V,, V. (7a)

satisfy water requirement a, + Uq,, + Ut + Us,, >d, V,, V¥,

(7b)
limitshortage Us,; <0.10-d, V,, V; (7¢)
nonnegativity Q, Uq,,, Ut,,,Us,, >0 V,, V, (7d)

where ¢,, = ¢,Uq,, + c,Ut,,. The prime notation indicates that the
inner summations over the sets R and S occur separately from the
outer summations.

In addition to the introduction of risk factors into the objective
function, there are two significant differences between Models 1
and 2. The shortage cost function is no longer minimized along
with the expected cost of desalination and water transfers. It has
been removed from the expected direct cost summation and placed
on its own, as a weighted function of the risk of shortage (indirect
cost). To better evaluate the tradeoff between the expected value
and the SD of direct cost, the amount of water conservation in each
scenario is limited to 10% of that scenario’s water requirement,
thereby hedging against the unlikely scenario in which there is high
water requirement and low water availability, resulting in an ex-
treme water shortage. In this example, the top design priority then
becomes to hedge against catastrophe.

Performance Metrics

The performance metrics explicitly incorporated into Model 2 are
the expected direct cost and two risk metrics: (1) solution robust-
ness (i.e., the minimization of variance of total direct cost), and
(2) feasibility robustness (i.e., the added penalty on indirect short-
age costs). In addition, three other common performance metrics
are evaluated in a postprocessing analysis: (1) reliability, (2) vulner-
ability, and (3) sustainability.

Reliability, as defined by Hashimoto et al. (1982), is the prob-
ability « that a system is in a satisfactory state. Eq. (8) presents
reliability as the probability that the system’s output state, denoted
by the random variable X, is not a member of F, the set of all unsat-
isfactory (failure) outputs. The definition of what constitutes a fail-
ure is somewhat subjective and in practice stakeholders would
arrive at such a definition through consensus. In the writers’ case,
a failure is defined as the occurrence of a nonpreferred outcome of
any magnitude (e.g., a shortage of any size Us, or a water transfer

of any size Ut,,)
a=1->">"P[X, cF (8)

seS reR

Relative vulnerability » quantifies the relative magnitude of
failure, given that one occurs. Relative vulnerability ranges from
0-1, with the scenario of maximum system vulnerability producing
the failure of greatest magnitude. Although Loucks (1997) pre-
sented vulnerability as the expected magnitude of shortage relative
to the maximum shortage, in this study vulnerability is presented as
the expected magnitude of a nonpreferred outcome (e.g., a shortage
Us,, or a water transfer Ut,) relative to the magnitude of the water
requirement

p— E[er|er € F]

H A ©)

Sustainability can be defined in a number of ways. From
Loucks (1997), a sustainable alternative is one in which there
are no long term decreases in the level of welfare produced by
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the system. If the statistical measures for reliability «, resilience
r, and in-vulnerability (1 — v) range from 0-1 with higher values
preferred over lower values, as is true in this paper, then Loucks
(1997) suggested defining sustainability ¢ as the product

p=a-(1—-v)-r (10)

Unfortunately, a single-year model provides no insight into
the resilience of the system and hence the writers assume r = 1.
The sustainability of a water system could be evaluated using a
multistage (contiguous stages) optimization model, including resil-
ience in the definition of sustainability (Cai et al. 2002). However,
Kjeldsen and Rosbjerg (2004) observed that the high correlation
between vulnerability and resilience guarantees that solutions with
low vulnerability also are marked by high resilience. They therefore
recommended against the use of both vulnerability and resilience
in the Loucks (1997) equation for sustainability, and thus the
assumption that » = 1 in Eq. (10) may be reasonable.

Tables 1-3 summarize the input data for this problem. Next
year’s available water supply, spot market transfer price, and quan-
tity required are modeled as random normal variables. Local water

Table 1. Water Supply Scenarios for Input to the Robust Optimization
Model

Supply Probability of  Local water availability = Spot market price
scenario supply event p, event a;, (MCM/year) event ¢, ($/MCM)

1 0.000078 0.0 300,000
2 0.000489 20.0 281,250
3 0.002403 40.0 262,500
4 0.009245 60.0 243,750
5 0.027835 80.0 225,000
6 0.065591 100.0 206,250
7 0.120978 120.0 187,500
8 0.174666 140.0 168,750
9 0.197413 160.0 150,000
10 0.174666 180.0 131,250
11 0.120978 200.0 112,500
12 0.065591 220.0 93,750
13 0.027835 240.0 75,000
14 0.009245 260.0 56,250
15 0.002403 280.0 37,500
16 0.000489 300.0 18,750
17 0.000078 320.0 0

Table 2. Water Requirement Scenarios for Input to the Robust
Optimization Model

Water requirement Probability of water Water requirement d,

scenario requirement event p, (MCM/year)

1 0.00088 140.0

2 0.02951 160.0

3 0.23559 180.0

4 0.46803 200.0

5 0.23559 220.0

6 0.02951 240.0

7 0.00088 260.0

Table 3. Cost Coeftficients

Coefficient Value
Desalination capital cost c,. $30,000/MCM
Desalination operations and management cost c,, $80,000/MCM
Shortage function cost coefficient 7 6,000
Shortage function cost coefficient 2
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availability is generated from a normal distribution with p =
160 MCM/year and coefficient of variation C, = 0.25, the spot
market transfer price with p = $150,000/MCM and C, = 0.25,
and the water requirement with g = 200 MCM/year and C, =
0.08. The supply function and water requirement functions are then
discretized to formulate the scenario-based optimization model in
GAMS (Brooke et al. 1992). The local water availability and spot
market water transfer price are assumed to be perfectly correlated.
For example, if local/regional water is scarce next year, the price
of a transfer will be higher than average. The water use target is
assumed to be independent of water availability.

Model Results

Solving this problem deterministically, using mean values for water
requirement (200 MCM/year), water availability (160 MCM/
year), and cost of transfer ($150,000/MCM), the total (first and
second stage) expected direct cost would be $3.4 million and the
expected penalty on shortage would be $500,000, for a total objec-
tive function value of $3.9 million. The modeler would recommend
the construction of a desalination plant of size 30.83 MCM/year
and expect the operator to use it all (Ug = 30.83 MCM). The mod-
eler would expect no transfer (Ut = 0 MCM) and a shortage of just
less than 10 MCM (Us = 9.17 MCM). The cost of this determin-
istic solution under uncertainty is much higher (Table 4). If the
deterministically prescribed first-stage decision (Q = 30.83) is
subjected to the range of possible future scenarios (not just their
expected values), with optimal decisions made in the second stage,
the total direct cost would be $5.4 million, with a C, ~ 1. This
is because the quality of the deterministic solution is entirely con-
tingent upon the (arbitrary) realization of the singular expected
scenario.

The previously discussed results motivate use of the stochastic
model, Model 1, which results in a direct cost of E[directcost] =
5.4 million, and indirect costs of E[cost Us] = $540,000, for a total
objective function value of E[Z;] = $5.9 million, all of which are
superior to the deterministic solution applied under uncertainty.
The recommendation would be for the construction of a larger
desalination plant of size 52.4 MCM/year, with the expectation
that just more than half of it (E[Uq] = 29.7 MCM) would be used
under average conditions. The stochastic model indicates that the
expected transfer and shortage would be 6.9 and 7.5 MCM, respec-
tively. The stochastic model also reduces the SD of the direct to
approximately $4.5 million. Other performance metrics are com-
puted through postprocessing of the optimization model results.

Table 4. Comparison of Deterministic and Stochastic Model Results

The stochastic solution (Model 1) is both more feasible (perfor-
mance metrics in terms of shortages) and more cost-effective (SD
of direct cost) across a wider range of scenarios than the determin-
istic solution. Robustness can be improved further by introducing
the basic MO-RO model (Model 2). To demonstrate this, for each
solution of Model 2, the Q must be fixed in Model 1 and the
second-stage operational variables are optimized. These postpro-
cessed second-stage solutions (Ug, Ut, and Us) are compared
to those produced by Model 2. The value of Model 2 is seen in
its ability to control the SD of the direct cost. By varying the weight
w; in the objective function of Model 2 (and fixing corresponding
Q values in Model 1 for comparison), a tradeoff curve is created
between the expected direct cost and SD of direct cost (Fig. 2). The
greatest reductions in the SD of direct cost are made during the
initial increases in w;, with diminishing returns thereafter. Likely,
a decision-maker would prefer to choose a desalination plant capac-
ity with the E[direct cost] approximately the same for both Model 2
and Model 1 but with the SD of cost SD(cost) significantly re-
duced; however, decision-makers would almost certainly not want
to choose a point at the far right-hand of the plot in which the
decrease in SD(cost) has been won at a considerable increase in
expected cost relative to the stochastic solution.

Unfortunately, Model 2 can overestimate the reduction in vari-
ance due to generation of irrational second-stage decisions. Both
Models 1 and 2 begin with Q = 52.4 MCM/year, in which the
solutions are the same (high SD and low expected direct cost;
Fig. 2). However, as Q increases, the expected direct cost of the
Model 1 result rises more slowly than the expected direct cost
of Model 2 and the SD of the Model 1 result falls more slowly.
This occurs because Model 2 provides a wider range of operational
choices than does Model 1. When other performance measures are
considered, the two methods yield strikingly different results
(Figs. 3-5). Figs. 3-5 demonstrate the performance of Model 2
relative to the postprocessed second-stage indications of failure
(Ut, Us) of Model 1.

Fig. 3 shows that, in terms of shortages, by using more of the
desalination design capacity, Model 2 appears to make great gains
in reliability. Model 1, choosing to use nearly the same amount of
desalinated water regardless of the design capacity, does not realize
gains in reliability in accordance with increases in Q. Neither does
it result in vulnerability increases as does Model 2. The end result is
that Model 2 leads to more reliable and sustainable results in terms
of shortages for design capacities between approximately 100 and
170 Mm? /year, yet counter-intuitively Model 2 leads to more vul-
nerability to shortage events in that range.

Deterministic solution Deterministic solution

Variable definition Model result with no uncertainty under uncertainty Model 1
Desal plant capacity 0, MCM/year 30.8 30.8 524

E requirement Eld| — 200.0 200.0
Desal capacity used E[Uq|, MCM 30.8 204 29.7
Transfer water used E[Ut], MCM 0 14.7 6.9
Shortage E[Us|, MCM 9.17 9.0 7.5
Total objective value E[Z], $1 million 3.896 6.141 5.908
Expected direct cost E|cost], $1 million 3.392 5.427 5.370
SD of direct cost SD cost, $1 million — 5.459 4.472
Expected cost of shortage Elcost Us], $1 million 0.504 0.714 0.538
Expected size of shortage if one occurs E[Us||shortage event — 11.9 10.0
Reliability o — 0.245 0.245
Vulnerability v — 0.06 0.05
Sustainability ¢ — 0.230 0.233
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Fig. 2. Tradeoff between expected direct cost and solution robustness,
Model 2 versus Model 1; to perform this analysis, desalination capacity
Q in Model 1 is treated as a parameter (not a variable) and fixed to a
value corresponding to the given weight w; in Model 2
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Fig. 3. Comparison of model performance in terms of shortages,
Model 2 versus Model 1, controlled as described in the caption of Fig. 2
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Fig. 4. Comparison of model performance in terms of transfers, Model
2 versus Model 1, controlled as described in the caption of Fig. 2
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Fig. 5. Comparison of model performance in terms of all recourse
actions, Model 2 versus Model 1, controlled as described in the caption
of Fig. 2

A comparison of the results with respect to transfers (Fig. 4)
indicates poorer performance measures for Model 2. Fig. 4 shows
that the difference in the performance of Models 1 and 2 stems in
part from the total quantity of water supplied (or oversupplied) by
transfers. Taking a closer look at second-stage decisions generally,
Fig. 5 shows the system reliability, vulnerability, and sustainability
in terms of all recourse actions (shortage and/or transfer, e.g., reli-
ability is the probability that neither a transfer nor a shortage is
needed). The combination of the two metrics removes some of
the variability in Model 2 and almost all the variability from the
Model 1 results. Using Model 1, there are slim gains to be made
in system performance metrics through an increase in desalination
plant capacity.

At each fixed Q in Model 1 (Table 5), the total water supplied
(Elavail] + E[Uq] + E[Ut] + E[Us]) exactly equals the water use
requirement of 200 MCM/year. To reduce the SD of direct cost,
Model 2 sometimes supplies more water (through surplus transfers
and desalination usage) than required. If the decision-maker has
reason to be risk averse with respect to water transfers (from a ten-
uously allied neighbor, for example), then this finding has particu-
lar significance. Even under scenarios of abundant local water
availability, Model 2 still recommends large usage of desalinated
water in excess of water-use requirements just to reduce the vari-
ance in direct costs. This is an example of the model behavior
(Fig. 1), in which the tradeoff between expected cost and SD of
cost seems to have value only to a point, after which it would be
irrational to choose a solution with a smaller SD. Watkins (1997)
noted this breakdown of the expected cost/SD formulation: “In
reality, once [the system capacity] is chosen and a given scenario
s is observed, the response which maximizes second-stage return
would be preferred to one which accepts a smaller return in order to
minimize the variance between the observed return and the returns
under all other scenarios considered in the model (i.e., all those
which were not observed).”

Revised MO-RO Formulation

Ray (2010) developed three alternative MO-RO formulations to
Model 2, with the preferred formulation, Model 3, given in
Eq. (11). Model 3 penalizes the square of positive deviations from
a fixed target cost (Takriti and Ahmed 2004). By considering only
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Table 5. Snapshot of Models 1, 2, and 3 Solution Robustness Results

Model 2 with Model 3 with
Variable definition Model result Model 1 w; =8 w, =0 w; =15 w, =0
Desal plant capacity Q, MCM/year 524 158 158
E[requirement] Eld] 200.0 200.0 200.0
Desal capacity used E[Uq], MCM 29.7 80.8 36.6
Transfer water used E[Ut], MCM 6.9 14.4 0.0
Shortage E[Us|, MCM 7.5 1.0 7.5
Total nonlocal supply Sum E[U]s 441 96.3 44.1
Expected supply and local water availability® sum E[U]s + Elavail] 200.0 2522 200.0
Excess supply a + U — demand 0.0 52.2 0.0
Expected direct cost Elcost], $1,000 54 12.9 7.7
SD of direct cost SD cost, $1,000 4.5 0.3 2.5
Expected cost of shortage E[costUs], $1 M 0.5 0.1 0.6
Expected size of shortage if one occurs E[Us]|shortage event 6.7 18.8 9.9
Reliability o 0.245 0.946 0.245
Vulnerability v 0.050 0.094 0.049
Sustainability ¢ 0.233 0.858 0.233

Note: Reliability, vulnerability, and sustainability are with respect to shortages only, not total recourse actions.

“The expected local water availability is always 160 MCM. However, in certain supply scenarios the local water availability is greater than the requirement
(wet years). In those scenarios neither shortage, transfer, nor use of desalination capacity occurs, but the local water availability exceeds the water requirement.
The average of all of those excesses is 4.1. That 4.1 MCM is not supplied, but is available for supply, and results from a direct summation of the
sum(E[U]values) and local water availability E[avail]. Table 5 shows the true expected water supply and the actual expected excess supply.

positive cost deviations, the objective function remains monotonic,
as required for a utility function (Fig. 1)

minZ = CCQ + Z Zprpsgrs

seS reR

e {Zses D er Prps - max [0, (&, — fT)]2}O'S
tw) Y prpnUsls an

seS reR

The subsequent continuous approximation is used for the dis-
continuous max(*) term

max[o’ (grs _ 5370158)] _V (grs — é'T)z ‘;52 + (grs - fT) (12)

where ¢7 is the fixed target cost; and ¢ is a very small constant, in
this case 0.0001. The fixed target cost is chosen to be the expected
direct cost of Model 2 with a zero weight on cost deviation
wy = 0, E[cost] = $5.370158 million.

Fig. 6 presents the tradeoff between expected direct cost and
solution robustness for Model 3, a result substantially different
from Model 2. Fig. 6 shows that Model 3 results very nearly

H 51 T180 o
= 451 1160 &
@ 4 S
8 +140 M
%5 357 t120 & _
K 22 | 1100 §§-
E ’ 180 ©O £
> 24 ==
a = Model 1 stdev(cost)|L g9 © =

1.5 b=
ko] ===NModel 3 stdev(cost) ®©
& 14 T40 £
= ---Model 1 Q =
§ %% —Model 3Q 120 ¢
» 0 ; . o QA

4 5 6 7 8 9

Expected Cost ($M)

Fig. 6. Tradeoff between expected direct cost and solution robustness,
Model 3 versus Model 1; to perform this analysis, desalination capacity
Q in Model 1 is treated as a parameter (not a variable) and fixed to a
value corresponding to the given weight w; in Model 3
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are in accordance with the results obtained from the Model 1 ap-
proach. At high values of w;, Model 3 achieves slightly better
(smaller) SD at slightly better (smaller) direct cost than Model 1.
All other models explored in the research reported in this paper
and in Ray (2010) won smaller SD values than Model 1 at higher
direct cost. In the results of Model 3, there is the possibility for
outperforming Model 1 in terms of both shortages and transfers
simultaneously.

Model 3 recommends operation of the system in essentially the
same fashion as does Model 1 (Table 5). Unlike Model 2, Model 3
does not achieve its decrease (almost 45%) in SD of direct cost
through irrational oversupply of water. It does not spuriously inflate
reliability and sustainability with respect to shortage. Rather, it
reduces reliance on highly cost-variable water transfers during
dry years through increased (though not radically increased) use
of its excess desalination plant capacity and accepting some
amount of expected water shortage at a (fairly stable) direct cost.
However, the improved optimality robustness of Model 3 comes at
an elevated direct cost (up 43%) and a nearly 50% increase in
E[Us]|shortage. This is a rational tradeoff for the decision-maker
to consider and Model 3 provides a tool for its evaluation.

Holding w; constant and varying the weight on the water short-
age term w, in the objective function of Model 3, the resulting
tradeoffs between expected direct cost and expected cost of water
shortage in accordance with increasing desalination capacity can be
evaluated (Fig. 7). Model 1 results (Fig. 7) were created by holding
constant w, = 1 and varying the design capacity QO to match that
resulting from the corresponding Model 3 run. The point farthest to
the left in Fig. 7 (high expected cost of shortage and low expected
direct cost) is the result when w, =0. As w, is increased
(Aw, = 0.2), the expected cost of shortage decreases and the ex-
pected direct cost increases. As in the case for solution robustness,
the greatest gains in feasibility robustness are made during the ini-
tial increases in w,, with diminishing returns thereafter.

Fig. 7 shows that simply increasing the system desalination
capacity Q will not result in a decrease in the expected cost of short-
ages. Models 1 and 3 each have available the same Q but over the
range tested in this feasibility-robustness experiment produce very
different results with respect to the expected cost of water short-
ages. Over the range of Q considered, there is not a great variation
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Fig. 7. Tradeoff between expected direct cost and feasibility robust-
ness, Model 3 versus Model 1; to perform this analysis, desalination
capacity Q in Model 1 is treated as a parameter (not a variable) and
fixed to a value corresponding to the given weight w, in Model 3

in system performance (reliability, vulnerability, and sustainability)
in accordance with variations in w,. Most notable is the increased
reliance on transfers in accordance with a decreased tolerance
for shortages. This is demonstrated in the higher vulnerability of
Model 2 to large transfers and lower sustainability in terms of trans-
fers at larger values of w, (larger values of Q).

The Model 3 formulation is able to reduce the cost of shortages
dramatically by increasing w, (Fig. 7). However, increasing w,
improves neither the reliability, vulnerability, nor sustainability
of the design with respect to shortages, relative to the simple least-
cost solution. In Model 1, [Us,]|shortage remains the same as Q
increases. In Model 3, E[Us,]|shortage falls from 20.2 to
1.1 MCM/year. Due to the exponential cost function (as discussed
previously) it is cost-effective to allow some small shortage in
almost every scenario, decreasing the system reliability but not
adding appreciably to total cost. Reliability remains low even at
w, values as high as 100.

Conclusion

This paper aimed at a deeper understanding of the design choices
recommended by MO-RO models. Compared to a single-objective
stochastic programming model (Model 1), the traditional MO-RO
model [Model 2, the original development of which is credited to
Mulvey et al. (1995)] effectively reduced the SD of the direct cost
and cost of shortage over a range of design decisions, up to a certain
point. Previous studies that optimize capital cost plus a single per-
formance metric have neither demonstrated the operational trade-
offs inherent in the model’s achievement of a low SD of direct cost
nor a high reliability with respect to shortages. The case study illus-
trated, for example, that a low SD of direct cost might be achieved
at the cost of a high vulnerability with respect to shortages and a
significant dependency on water transfers. Without adequate con-
sideration of the second-stage decisions (through postprocessing),
the full ramifications of the model recommendations might be lost
and the decision-maker ill-informed.

It should be stressed that the Model 1 formulation as it has been
employed for the sake of comparison to other model versions in this
work (holding Q constant and optimizing only second stage deci-
sions) here is not an actual two-stage optimization model. If all of
the first-stage decisions are already enumerated and applied to
Model 1, then it produces logical results with which the decision
maker should be informed. However, when the first-stage is high-
dimensional, an MO-RO approach is needed.
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The improved MO-RO formulation (Model 3), the solution
robustness element of which minimized squared positive devia-
tions from a fixed target cost, addressed known deficiencies in
Model 2 and demonstrated them in a water resources context.
Based upon comparative assessments using multiple performance
metrics, Model 3 demonstrated the best ability to simultaneously
control solution robustness and performance with respect to short-
ages, transfers, and total recourse actions.

The linkages between solution robustness and feasibility ro-
bustness are important. Improved optimality robustness of Model
3 comes at a cost to feasibility robustness (reduced shortages).
This is a rational tradeoff for the decision-maker to consider
and Model 3 provides a tool for its evaluation. As in the case for
increasing weights on the solution robustness element in the ob-
jective function, the greatest gains in feasibility robustness are
made during the initial increases in the weight on the shortage
penalty function w, with diminishing returns thereafter. Over the
range of Q considered, a great variation in system performance
was not observed in accordance with variations in w,. Most
notable is the increased reliance on transfers with a decreased
tolerance for shortages.

The three primary objectives minimized were (1) expected di-
rect cost, (2) direct cost deviations, and (3) expected cost of water
shortage, with three additional metrics: (1) reliability, (2) vulner-
ability, and (3) sustainability (evaluated by postprocessing). Future
studies might experiment with different primary and secondary ob-
jectives to identify the ideal configuration of objectives for each
category of decision-maker (budget-constrained, intolerant of water
transfers, and so on). An EA formulation of the type developed by
Kasprzyk et al. (2009) may be useful in this regard. However, given
that EAs allow much greater complexity in their tradeoffs com-
pared with traditional mathematical programming techniques (lim-
ited to simpler objective functions), thorough evaluation of system
performance as presented in this paper may become even more im-
portant as a check on the reasonableness of those solutions.

Comparisons with alternative formulations of the MO-RO
model results might be insightful: (1) reduction in the variance
of recourse actions (Vladimirou and Zenios 1997), or (2) a more
direct application of the e-constraint method (Kawachi and Maeda
2004) and/or the robust chance constraint method described by Xu
et al. (2009). In many cases, simulating second-stage decisions
without the need to optimize them, focusing the optimization only
on the choice of first-stage decisions (Kapelan et al. 2005), may be
preferable.

The shortage of every scenario was limited to 10% of that sce-
nario’s water requirement, thereby hedging against the unlikely
catastrophic scenario in which there is high water requirement and
low water availability. This limitation on water shortage had a
powerful effect on the model’s results. The expected shortage could
have been limited to 10% of the expected requirement across all
scenarios, i.e., E(shortage) < 0.10 - E(water requirement)). When
this was tested, the formulation yielded numerous scenarios with
water shortages far in excess of 10% of the given scenario’s water
requirement. The result seemed to be overly permissive of short-
ages, so much so that the solutions to worst-case (high requirement
and low water availability) scenarios allowed essentially a complete
lack of water in the city. In light of this, the more conservative (and
more common) approach of hedging against catastrophe was
chosen, as unlikely as that catastrophe might be. Given the ability
of worst-case scenarios with low probabilities to influence the
entire set of results, it seems that this design choice should be
reexamined and improved in the next version of the MO-RO model.
The design choice described in this paper (hedging against catas-
trophe) has been advocated by those who value water infrastructure
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designs that function reasonably well no matter the climate scenario
(Stakhiv 2011) and improvement in the controls imposed upon
those solution-dominating, catastrophic (but unlikely) scenarios
might have far-reaching ramifications. Adaptive designs that are
able to adjust incrementally to increasing probabilities on system-
straining scenarios are important in this respect.
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