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Probability Plot Goodness-of-Fit and Skewness Estimation
Procedures for the Pearson Type 3 Distribution

RiCHARD W. VOGEL! AND DANIEL E. MCMARTIN

Department of Civil Engineering. Tufts University, Medford, Massachusetts

Uniform flood frequency guidelines in the United States currently recommend fitting a Pearson (P3)
distribution to the logarithms of annual maximum flood flows. As a result. a plethora of procedures
have been recommended for obtaining unbiased plotting positions and unbiased estimates of the skew
coefficient and for inverting the cumulative distribution function of a P3 variate. These developments
are precisely the ingredients required for the construction of P3 probability plots. Using Monte Carlo
simulation, we develop a probability plot correlation coefficient (PPCC) hypothesis test for the P3
distribution. Power studies are performed to evaluate the ability of the test to discriminate among
competing distributional alternatives and to enhance our understanding of why the P3 distribution
often appears to provide such a good fit to observed flood flow data. A new estimator of the skew
coefficient is presented which, unlike the biased and unbiased moment estimators, is unbounded and
has significantly lower root mean square error than the moment estimators for highly skewed samples.

INTRODUCTION

Ever since the log Pearson type 3 (LP3) distribution was
mandated by the U.S. Water Resources Council [1967] for
use in fitting sequences of annual peak flood flows in the
United States, its application in flood studies has become
widespread. Benson [1968] reported the conclusions and the
reasoning which led to the selection of the LP3 distribution
as the “*base method™ in the United States (with provisions
for departures from the ‘‘base method’ where justified).
Similar conclusions were reached elsewhere: for example,
McMahon and Srikanthan [1981] recommend the use of the
LP3 distribution for flood frequency analysis in Australia.
There is by no means universal acceptance of the LP3
distribution for modeling flood flows. For example, the
three-parameter lognormal distribution is recommended in
Ontario [Sangel and Kallio, 1977] and the generalized ex-
treme value distribution is recommended in the United
Kingdom and Ireland [Natural Environment Research Coun-
cil, 1975]). The debate among statistical hydrologists in the
United States regarding the justification for employing the
LP3 distribution for modeling flood flow frequencies has
intensified due to recent advances in both at-site and regional
flood flow frequency analysis (see for example, Wallis and
Wood [1985] and the discussion of their work by Beard
[1987] and by Landwehr et al. [1987]). It is unlikely that a
consensus will ever be reached regarding the selection of a
universal parent distribution of flood flows.

One of the primary impediments to reaching a consensus
on the selection of an appropriate distribution to model flood
flows is the lack of powerful at-site goodness-of-fit proce-
dures for discriminating among alternative hypotheses. For
example, in describing the U.S. Water Resources Council
(WRC) Work Group study [U.S. Water Resources Council,
1967], Benson [1968, p. 902] argued that ‘‘no single method
of testing [alternate hypotheses] . . . was acceptable to all
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those on the Work Group, and the statistical consultants
could not offer a mathematically rigorous method™" leading
to the conclusion {p. 904) that ‘‘there are no rigorous
statistical criteria on which to base a choice of method.”
Matalas and Wallis [1973, p. 281] continued this logic when
they concluded that **classical statistical tests of goodness of
fit are not powerful enough to discriminate among reason-
able choices of distributions, and, more often than not, by
default the choice is made by fiat.”

Since the original WRC study in 1967, a variety of good-
ness-of-fit procedures have been introduced which allow a
rigorous examination of alternative distributional hypothe-
ses. For example, Wallis [1988] and Hosking [1990] describe
the use of L moment diagrams, Vogel and Kroll {1989, 1991]
describe the application of regional uniform probability plot
goodness-of-fit procedures, and Chowdhury et al. [1991]
compare several regional goodness-of-fit procedures for test-
ing the fit of alternative families of distributions to regional
samples. Regional goodness-of-fit procedures are appealing
since they can be used to compare the fit of a wide class of
distributions to regional samples of flood flow sequences.
Unfortunately, most regional goodness-of-fit procedures are
based upon at-site tests which usually lack the power to
distinguish among very similar distributional hypotheses for
the small sample sizes available in most situations. For
example, Kite {1975] used Monte Carlo simulation experi-
ments to show that extreme events from some commonly
used probability density functions are statistically indistin-
guishable from the normal population for the typical sample
sizes and coefficients of variation encountered in practice.
Similarly, Wallis [1988] performed a simple Monte Carlo
experiment which provides very convincing evidence of the
inability of at-site goodness-of-fit tests to distinguish among
similar distributional hypotheses. Recent work by Wallis
[1988], Hosking [1990], and Chowdhury et al. [1991] indi-
cates that L. moment diagrams and associated goodness-of-fit
procedures may improve our ability to discern distributional
differences in regional studies. D'Agostino and Stephens
[1986] provide a review of goodness-of-fit procedures.

Given the widespread acceptance and usage of the Pear-
son type 3 (P3) and the LP3 distributions in water resource
investigations, it follows that a goodness-of-fit test should be
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available. Recently, Vogel [1986] and Vogel and Kroll [1989]
have introduced probability plot correlation coefficient
(PPCC) hypothesis tests into the water resources literature.
Such tests were originally suggested by Filliben [1975] for
the normal distribution and later extended to the Gumbel
[Vogel, 1986; Kinnison, 1989], Weibull and uniform [Vogel
and Kroll, 1989] and the generalized extreme value [Chowd-
hury et al., 1991} distributional hypotheses. In addition,
D’Agostino and Stephens [1986] describe PPCC tests for the
exponential, logistic and Cauchy distributions.

This study derives and evaluates the use of P3 and LP3
probability plots and associated PPCC goodness-of-fit tests.
The PPCC test statistic essentially summarizes the linearity
of a probability plot. In addition, the PPCC test statistic may
be used to evaluate the probability of a type I error under the
null hypothesis of a prespecified distribution. Hence PPCC
tests combine a common tool of the practitioner, a probabil-
ity plot, with a rigorous hypothesis test. Another attractive
feature of the at-site hypothesis tests developed here and
elsewhere is our ability to extend them to regional hypoth-
esis tests using the procedures suggested by Vogel and Kroll
[1989, 1991]. Power studies are performed to evaluate the
ability of the derived goodness-of-fit tests to discriminate
among competing distributional alternatives. These studies
enhance our understanding of why so many previous inves-
tigators have recommended the LP3 distribution for model-
ing flood flow and other hydrologic variables. In addition, a
new unbounded estimator of the skewness based on proba-
bility plots is described which has significantly lower root
mean square error than the alternative at-site moment esti-
mators for highly skewed samples.

PEARSON TYPE 3 DISTRIBUTION

The Pearson type 3 probability density function may be
expressed as

_ ‘B| A-—1_ -Bly—-m)
ﬂy)—l?(A—)[B(y—m)] e (n

where B, A, and m are parameters. When 8 > 0, y has
positive skewness leadingtom =y < +w. When 8 < 0, y
has negative skewness leading to ~» < y < m. Hence, m is
the lower bound of a positively skewed P3 random variable
and m is the upper bound of a negatively skewed P3 random
variable. The parameters 8, A, and m are related to the first
three months of the random variable y as follows:

A
ﬂv=m+E (2)

A
02=E—2 3)

2B
Y—W (4)

The (two-parameter) gamma distribution is a special case
of the Pearson type 3 distribution when the location param-
eter m is equal to zero.

LoG PEARSON TyYPE 3 DISTRIBUTION

If the random variable y = In (x) is distributed P3, then x
is distributed LP3. Since the U.S. Water Resources Council
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[1967] recommended the use of the LP3 distribution in flood
frequency studies, many studies have documented that this
distribution appears to fit a wide range of flood flow se-
quences. For a more recent review of the recommended
procedures for fitting an LP3 distribution see Inreragency
Advisory Committee on Water Data (IACWD) [1982]. Tasker
[1987] and Vogel and Kroll [1989}] also recommend the use of
the LP3 distribution in low-flow frequency analysis for fitting
sequences of annual minimum d day low flows. Bobee [1975]
shows that the LP3 distribution is more flexible than the P3
distribution. Given the ability of the LP3 distribution to take
on many different shapes, it should be no surprise that this
distribution appears to fit a wide range of flood flow data.

However, the LP3 distribution does entail certain caveats.
For example, in portions of the United States sequences of
the logarithms of annual peak flood flow exhibit a negative
skewness (see generalized skew map in the work by IJACWD
[1982]) which implies that under the LP3 null hypothesis,
significant portions of the United States contain flood flows
which are bounded above by an amount x,,, = exp (m).
Gilroy [1972}) and Bobee [1975] describe this issue and Reich
[1972] showed that in certain cases, observed streamflows
from small samples were actually greater than x,,.

Another caveat associated with the LP3 distribution fol-
lows from its dependence upon the skew coefficient vy. Since
Wallis et al. [1974a] uncovered the enormous sampling
variability associated with small-sample estimates of the
skew coefficient, many investigators have warned us to
avoid using small-sample estimates of the skew coefficient in
hydrologic design and planning.

PROBABILITY PLOTS FOR THE PEARSON TYPE 3 AND
THE L.OG PEARSON TYPE 3 DISTRIBUTIONS

Probability plots are used widely in the field of water
resources engineering. Most practitioners would not make
engineering decisions regarding the frequency of observa-
tions without the use of a graphical display (i.e., a probabil-
ity plot). In general, a probability plot is a plot of the ordered
observations y¢,, i = 1, - -+, n versus the inverse of the
cumulative distribution function (cdf) which we term M; and
define as

M;=F '"(F(yq)) (5a)

M;=F ' (p) (5b)

where p; = F{( ¥)), termed a plotting position, is an estimate
of the cdf corresponding to the ith ordered observation.

D’Agostino and Stephens [1986] devote several chapters
to a review of the construction of probability plots and
associated goodness-of-fit procedures for a wide range of
standard distributions. In discussing the gamma distribution,
D’ Agostino and Stephens argue that this important distribu-
tion ‘‘does not lend itself immediately to the standard
probability plotting techniques.’” They argue that even with
the aid of transformations, it cannot be put in the simple
form of a distribution dependent upon a location and scale
parameter.

Wilk et al. {1962} describe procedures for constructing
probability plots for the P3 distribution. However, their
procedures are cumbersome to implement since they require
the use of tables or complex algorithms to invert the P3 cdf.
In the following sections we describe some recent develop-
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ments in the water resources literature which do allow us to
construct probability plots for the P3 and LP3 distribution
using very simple yet accurate procedures.

The Inverse of a Pearson Type 3 Distribution

The cdf of a P3 random variable is defined as

F(y) = f’f(y) dy y>0
m (6)

F(y)=fy fy) dy y<0

which, given the complex form of f{y) in (1), is not easily
inverted. Fortunately, many investigators have developed
approximate inversion formulae. Chowdhury and Stedinger
[1991] compare the accuracy of five approximations to K,
the inverse of a standardized P3 random variable where

M,=p + oK, (7

In the water resources literature, K is usually referred to as
the frequency factor for the P3 distribution. All of the
approximations yield an estimate of K; in terms of the skew
coefficient y and @ ~!(p,), the inverse of a standard normal
distribution function. Chowdhury and Stedinger [1991] con-
cluded that Bobee’s [1979] formula is best for skew coeffi-
cients in the range —-2.0 < y = 5.0; however, Bobee’s
formula only provides values of K; for 15 values of the
nonexceedance probability p;, hence interpolation would be
required for constructing a probability plot. Kirby’s [1972]
algorithm, which was ranked second best, reproduces the
correct lower bound of —2/y, performs well over a wider
range of skews —9.0 = y =< 9.0, and does not require
interpolation. We employed Kirby’s [1972] algorithm which
takes the form
3
-C } 8)

K;= H, 1 EZ Bq:"
i = Aymax ,—6 +g (p)

where

A = max (2/vy, 0.40)
B=1vy—0.063 max (0, y — 1)''%
C=1+0.0144 max (0, y — 2.25)?
H={C - [Q/v)/A}"”

and ® ~!(p,) is the inverse of a standard normal distribution
function. Kirby’s algorithm is a modification of the Wilson
and Hilferty [1931] transformation which was shown to
perform poorly for highly skewed samples by McMahon and
Miller {1971).

Plotting Positions for the Pearson Type 3
Distribution

Many investigators have advocated the use of quantile-
unbiased plotting positions when constructing probability
plots (see Cunnane [1978) for a review). A quantile-unbiased
plotting position defined as
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pi=F(E[yy)D 9

reproduces the expected value of the order statistics for the
distribution of interest. Most such plotting positions advo-
cated in the literature take the form

i—«

pi= (10)

n+1-2a

For the P3 and LP3 distributions, a quantile-unbiased
plotting position depends upon the shape parameter 8 and
hence yin addition to n and i. Cunnane [1978) argues that for
most situations encountered in hydrology, the distribution of
P3 variates will have shapes which range from a normal to an
exponential distribution. Hence Cunnane suggests that for
the P3 distribution, a in (10) should range from 0.375 to 0.44,
which leads to quantile-unbiased plotting positions for the
normal [Blom, 1958], and the exponential distributions
[Gringorten, 1963], respectively. Sutcliffe et al. [1975], and
Srikanthan and McMahon [1981} suggest using = 0.4 as a
reasonable compromise for the P3 and LP3 distributions.

More recently, Xuewu et al. [1984] and Nguyen et al.
[1989] developed exact and approximate quantile-unbiased
plotting positions for the P3 and LP3 distributions all of
which depend upon sample estimates of y. The approximate
formula developed by Xuewu et al. [1984] requires the use of
tables and associated interpolation schemes. The approxi-
mate unbiased plotting position developed by Nguyen et al.
[1989] takes the form

i—0.42

—_— 11
n+ 0.3y +0.05 (n

pl=
and is suitable for skews in the range —3 < y < 3 and
samples in the range 5 < n =< 100. Harter [1984], Vogel
[1986] and Vogel and Kroll [1989] argue that if one’s interest
is in exploiting a probability plot to evaluate the goodness of
fit of a particular distribution, then the choice among plotting
positions is not critical.

We test two plotting positions, Blom’s [1958] plotting
position which is given by (10) with a« = 0.375, and the
approximately unbiased plotting position given in (11). When
Blom’s [1958] plotting position is used, @I D) approxi-
mates E[Z;], where Z; is the ith ordered value from a
standard normal distribution.

Estimation of the Skew Coefficient
of a Pearson Type 3 Variable

The construction of probability plots for the P3 and LP3
distributions requires estimation of the skew coefficient in
order to obtain the frequency factor X; in (8) and to estimate
the unbiased plotting position in (11). An estimate of the
skew coefficient is required to construct the necessary
probability paper, upon which the observations are to be
plotted. The method-of-moment estimator of the skew coef-
ficient is usually defined as

n

z y,-3/n - :’»)':s2 - 513

i=1

1
G== (12)

s

where
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n
y= 2 yiln

i=1

Craig [1929] first derived expressions for the expectation,
variance and skewness of the estimator G. However, his
expressions are only accurate for samples sizes, s, in excess
of about 100. Bowman and Shenton [1988] provide analytic
approximations for the moments and distributional proper-
ties of G. Wallis et al. [1974a) used Monte Carlo simulation
to summarize the sampling properties of G for the small
samples (n = 90) of interest in water resource applications.
Ever since Wallis et al. [1974a] exposed the significant
small-sample bias associated with the estimator G, a number
of investigators have sought to develop [Bobee and Ro-
bitaille, 1975; Lettenmaier and Burges, 1980; Tasker and
Stedinger, 1986] and compare [Bobee and Robitaille, 1977,
Lall and Beard, 1982] unbiased alternatives. All of the
unbiased estimators of y are simply factors which when
multiplied by G in (12) produce an estimator whose expec-
tation is approximately equal to y. The unbiasing factor
recommended by JACWD [1982], equal to [n(n — 1)]"?/(n
— 2), was originally derived by Fisher [1950] for the normal
distribution; hence its use for the P3 distribution is question-
able. On the basis of empirical studies, Hazen [1930] sug-
gested the use of the unbiasing factor [1 + 8.5/n] for the P3
distribution. More recently, Bobee and Robitaille [1975]
used Wallis et al.’s [1974a, b] results to derive the approx-
imately unbiased estimator

6.77 ~
7).

6.51 20.2 1.48
14—+ —|+|—+
n n n

where G is the mean of the distribution of the sample
skewness for a sample of size » from a P3 distribution
(usually estimated using G since only one sample is typically
available). In a subsequent comparison of alternative unbi-
ased estimators, Bobee and Robitaille [1977] recommended
(13) if vy is outside the range of (0.5; 2). Since this study
develops hypothesis test procedures for the P3 distribution
over a wide range of skews (=5 = y = 5), the unbiased
estimator G, is employed here.

(13)

Construction of Probability Plots for the P3
and LP3 Distribution

A probability plot for the P3 distribution is constructed by
plotting the ordered observations y(;, i = 1, - -+, n versus
an estimate of the inverse of the fitted distribution M; given
by (7) and (8). To obtain K; in (8), an estimate of the plotting
position p; and skewness vy, is required. We employed
Blom’s [1958] plotting position given by (10) with a = 0.375
and the approximately unbiased estimator of y given by G,
in (12) and (13). For an LP3 random variable x, one plots the
ordered logarithms y;, = In (x,;,) versus the estimated M;
where now u, o, and y are the mean, standard deviation and
skewness of the logarithms of x.
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PROBABILITY PLOT CORRELATION COEFFICIENT TEST

The probability plot correlation coefficient (PPCC) testis a
goodness-of-fit test which measures and evaluates the linear-
ity of the probability plot. If the sample to be tested is
actually drawn from the hypothesized distribution, one
expects a plot of the ordered observations y(; versus the
expected value of the order statistics, M;, to appear linear
with a correlation coefficient in the neighborhood of one.
The PPCC test statistic is

> (v — M, — M)

i=1

D (i -3 D, (M; - M)?

i=1

r= 72 (14)
i=1

where ¥ and M are sample estimates of the mean of the y;
and the M;. The PPCC test statistic, r, is an estimate of the
population correlation coefficient p, between the y; and the
M; defined as

_ Coviy, M)
P [Var (y;) Var (M)]'""

(15)

which can be combined with (7) and simplified to yield

~ Cov (y;, K})
p= [Var (y;) Var (K;)]"?

(16)

Since K; is only a function of the plotting position p; and the
skewness vy, the PPCC test statistic only depends upon the
observations y,, the assumed plotting position p; and the
estimated skew coefficient. One attractive property of the
test is that the test statistic in (16) does not depend upon the
location and scale parameters, u and o.

Percentiles of the Probability Plot Correlation
Coefficient Test Statistic

The basic idea of this study is to use Monte Carlo
simulation to obtain the sampling distribution of the PPCC
test statistic, r, under the null hypothesis that the observa-
tions arise from a P3 distribution. Critical values of the
PPCC test statistic were obtained as follows:

1. Sequences of P3 random variables with . = 1 and o =
0.25 were generated of length n = 10, 15, 25, 50, 75, 100,
200, and 500 with skew coefficients y = 0.01, 1, 2, 3, 4, and
5, using the International Mathematical Subroutine Library
(IMSL) subroutine RNGAM. A total of 100,000 sequences
were generated for each of these 48 combinations of # and .

2. For each of the previously generated samples of P3
random variables the corresponding values of M, are ob-
tained from (7) and (8). Since the M; are a function of both
vy and p;, three separate methods for estimating the M; are
used to evaluate the influence of both the skew coefficient
and the plotting position on the resulting sampling properties
of the test statistic r. Method 1 employs the unbiased
estimator of the skew coefficient G,,, given by (12) and (13)
and Blom’s {1958] plotting position (10) with a = 0.375.
Method 2 employs the true skew y and Blom’s plotting
position. Method 3 employs the true skew y and the unbi-
ased plotting position p¥ given in (11).
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Method 1 - Unbiased Sample Skew (;U and Blom's Plotting Position
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Fig. 1. The 5% level Pearson type 3 probability plot correlation

coeflicient test statistic rg g5 as a function of sample size, n, and
skew coefficient, v, using three different methods to construct the
hypothesis test.

3. The PPCC test statistic, r, for each sample is obtained
using (14). Percentage points of the distribution of r were
obtained using the empirical sampling procedure

4 = r(100,0009) (17)

where r, denotes the gth quantile of the distribution of r,
and r (60,0004 denotes the 100,000¢ largest observation in
the sequence of 100,000 generated values of r. Essentially g
is the prespecified type I error (or significance level) associ-
ated with the P3 or LP3 hypothesis test.

Figure 1 summarizes the values of the 5% level test
statistic, rg g5 (the value of r which is exceeded 95% of the
time) when observations arise from a P3 distribution, using
the three different methods described above. For all three
methods ryos tends to increase with sample size and to
decrease with skew. The 5% level test statistic is uniformly
higher for all values of n and y when one employs the
approximately unbiased sample skew G, instead of y to
construct the probability plot and estimate r. Apparently,
when one uses the sample skew to construct the probability
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paper (or estimate the M;), samples appear more linear than
when the true skew is employed. The estimated sample skew
acts to adjust the probability paper to make the sample,
when plotted, appear more linear than it would if the true
skew had been used to construct the plot. Methods 1 and 2
lead to significantly different percentage points of the distri-
bution of r, indicating the importance of the skew coefficient
in constructing P3 probability plots and associated hypoth-
esis tests.

A comparison of methods 2 and 3 in Figure 1 shows that
rg.os is insensitive to the plotting position for skews in the
range (0, 2). The approximately unbiased plotting position p*
is only valid for y < |3|; hence the results for large skews
corresponding to method 3 in Figure 1 are questionable.
Since p¥ is only valid for small skews and since rj g5 is
insensitive to the plotting position in this region, we no
longer consider the use of the unbiased plotting position p7¥.

In Figure 1 the symbols represent the results of the Monte
Carlo simulations and the solid lines represent equations
which were fit to these points. For method 1 in Figure 1 the
5% level PPCC test statistic can be approximated using

ro.0s = €xp [2.97 ~ 0.0307G2

= 0.000796n]n 103G, ~ 0632 (18)

as long as |G,| = 5. The 5% level PPCC test statistic
corresponding to method 2 in Figure 1 can be approximated
using

ro.os = €xp [3.77 - 0.0290y % — 0.000670n]n (*-1057 ~0.758)
(19)

as long as |y < 5.

Power Studies

In this section we investigate the power of the g = 5%
level PPCC tests developed in the previous section. Power is
defined as the probability that the 5% level P3 hypothesis
test will be able to detect a sample which arises from an
alternative population. More formally, power is defined as
the probability that the P3 null hypothesis is rejected when it
is false. The power of a P3 PPCC test was investigated by
generating 20,000 samples (& = 1 and o = 0.25) of length n
= 10, 25, and 100, from alternative hypotheses including the
normal, lognormal, uniform and Gumbel distributions. For
each generated sample from the alternative distribution, the
PPCC test statistic, r, was computed from (14) using (7) and
(8) with Blom’s plotting position and asstimed skew coeffi-
cients ¥y = 0, 1, 2, and 3. The computed test statistic was
compared with ry s computed from (19) using the four
assumed skew values. Power is defined as the percentage of
the 20,000 samples which led to values of r < r 45, for each
alternative probability. Figure 2 summarizes the power (in
percent) of a 5% significance level P3 PPCC test against the
normal, lognormal, Gumbel and uniform distributional hy-
potheses. As anticipated, the power generally increases with
sample size. While the 5% level P3 PPCC test has modest
power against the uniform alternative regardless of the
assumed skew, it appears unable to reject alternatives which
are similar to a P3 distribution. For the normal, lognormal
and Gumbel alternatives, one observes that when the as-
sumed skew used to construct the test is close to the
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Power of a 5% level Pearson type 3 PPCC test against four alternative distributional assumptions using Bloms

plotting position and an assumed skew coefficient.

population skew of these alternatives, the power is ex-
tremely low, indicating the inability of this test to discrimi-
nate among distributional alternatives which are similar in
shape to the P3 alternative. The more the assumed skew
differs from the population skew of the distributional alter-
native tested, the greater the power of the P3 PPCC test.

Figure 2 implies that a 5% level P3 PPCC test could
discriminate against similar distributional alternatives only if
the assumed skew used to construct the test differs from the
population skew of the alternatives. Hence, if one assumes a
fixed skew coefficient for a particular region, the P3 PPCC
tests described here should be able to detect samples which
have population skews which differ from the assumed re-
gional skew. Similarly, Chowdhury et al. [1991] performed
power studies to evaluate PPCC tests for the generalized
extreme value hypothesis assuming fixed (or regional) values
of the shape parameter. They show that PPCC tests can be
useful for determining whether or not the at-site estimate of
the shape parameter differs from the assumed regional shape
parameter.

In practice, one must use a sample estimate of vy to
perform an at-site P3 PPCC hypothesis test. Figure 3 sum-
marizes the power of a ¢ = 5% level P3 PPCC test against
the same four alternatives when method | (Blom’s plotting
position and unbiased estimator G,) is used to estimate the
test statistic and (18) is used with G, to estimate rq 5. Here
20,000 samples of length n = 10, 25, 100, and 500 are
generated from the same four aiternate hypotheses as in
Figure 2. The power of an at-site 5% level P3 PPCC test
against the normal, lognormal and Gumbel alternatives is
remarkably low. An at-site test is only able to discriminate

against the uniform alternative, and even then only for
relatively large sample sizes. As we showed earlier in Figure
1, when the sample skew G, is used to construct a P3
probability plot, the samples appear more linear than they
should, leading to very low power.

A PROBABILITY PLOT CORRELATION ESTIMATOR
OF THE SKEW COEFFICIENT

Ever since Wallis et al. [1974a] discovered the remark-
ably large small-sample bias and variance associated with
the sample skew estimator G, investigators have discour-
aged the use of such estimators particularly for the estima-

u=1 o=025
100
z 90 Cn=10
ne=
3 _ e0
g ® i ESn=256
< § 60 f EZ2n=100
2 50 -
a n=500
> 40
g 30
2 20
10
0 onf I nRes pRal
Uniform Gumbsl Normal Lognormal

Alternative Distributions

Fig. 3. Power of a 5% level Pearson type 3 PPCC test against
four alternatives using Blom’s plotting position and an unbiased
estimator of the skew coefficient G,.
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TABLE 1. A Comparison of the Bias and Root Mean Square Error (RMSE) of the Bounded Sample Skew Estimators G and G, With
the Unbounded Probability Plot Correlation Skew Estimator G,
Bias [6] = y — E[6] RMSE (6] = E[(8 - 7] Percent
of
Skew y 86=G =G, 8=G, =G =G, 8=0G, Rejects
Sample Size n = 10
0.25 0.12 -0.02 0.00 0.59 1.24 1.15 0
0.12)* (0.59)
1 0.49 —0.11 -0.04 0.77 1.39 1.27 0
(0.49)* (0.77)
3 1.67 -0.33 -0.27 1.78 2.07 1.81 0.2
(1.66) (1.77)
S 3.20 0.03 0.08 3.28 2.29 1.87 4.61
(3.18) (3.23)
Sample Size n = 50
0.25 0.03 0.00 0.00 0.34 0.39 0.39 (1
(0.03) (0.34)
1 0.14 —-0.01 -0.03 0.45 0.54 0.45 0
(0.14) (0.46)
3 0.72 -0.10 -0.32 1.01 1.35 1.06 0.6
(0.70) (1.06)
5 i.84 0.20 -0.28 2.00 i.75 i.24 9.0t
(1.66) (1.92)

*Values in parentheses are those reported by Wallis et al. [1974b).

tPercentage of samples rejected because |G,] > 9. A total of 20,000 were generated, not including the rejected samples, except for the

case y = 5, when 30,000 samples were generated.

tion of flood flow design quantiles [Bobee, 1975; Kite, 1975].
In addition, Kirby [1974] showed that G is bounded so that

{(n—2)

|Gf5(n__l‘)—|/_2

(20)
Interestingly, this bound does not depend upon ¥; hence the
bias associated with G (Bias[G] = y — E[G]) increases
rather dramatically for large y and small n. Due to the
potentially large uncertainty associated with the sample
skew estimator G, IACWD [1982] recommend the use of a
weighted skew estimator which is the weighted average of
the at-site skew estimator G, and a generalized skew coef-
ficient obtained from a map. Chowdhury and Stedinger
[1991] and Tasker and Stedinger [1986] provide a review of
the use of such weighted skew estimators.

The significant attention in the literature given to estima-
tors of y for the P3 distribution, in combination with our
observations in Figure 1 regarding the strong association
between the PPCC test statistic r and v, led us to investigate
the properties of a probability plot correlation estimator of
the skew coefficient which we term G,. The estimator G, is
defined as that value of y which maximizes the PPCC test
statistic r. Again the PPCC test statistic » is defined by (14)
with the M; estimated using (7), (8) and (10) with o = 0.375.
Table 1 and Figure 4 summarize Monte Carlo experiments
which were performed to compare the bias and root mean
square error (RMSE) associated with the three estimators G,
G,, and G, for sample sizes n = 10 and 50, and for skews
v=0.25, 1, 3, and 5. Samples which led to estimates of G,
outside the interval [—9, 9] were rejected since Kirby's
inversion formula is only accurate inside that interval. A
total of 20,000 samples were generated for each combination
of n and ¥, not including the rejected samples. For compar-
ison, the bias and RMSE associated with G obtained from
Wallis et al. [1974a, b] are provided in parentheses in Table
I. For the cases when ¥ = 3 and 5, Table 1 documents that

a small percentage of samples had to be rejected; hence our
estimates of the bias and RMSE associated with G differ
slightly from those of Wallis et al. [1974a. b} in those
situations.

Overall one observes from Table 1 and Figure 4 that G,
has lower RMSE than G, for all cases considered and that
both G, and G, are nearly unbiased when compared with the
biased estimator G. The dramatic increase in RMSE associ-
ated with G for large values of vy results from the large bias
introduced by its bound given in (20). Since G, is unbounded
(except for the bounds introduced by Kirby’s approximation
to K;) it is an especially attractive estimator of y for highly
skewed samples as evidenced by its low RMSE for y = 5.
For example, G, may be an attractive estimator for samples
which appear to exhibit outliers. Furthermore, in terms of
RMSE, G, is always a more attractive estimator than its
unbiased competitor G .

Figure 5 displays the relationship between the probability
plot correlation coefficient, », and the assumed skew coeffi-
cient for four different population skews y = —1, 1, 3, and 6.
Each curve in Figure 5 is based on an individual sample
generated from a P3 distribution with population skew y and
n = 50. The particular samples used in the construction of
Figure 5 had estimates of G, = v, that is, the maximum
value of r for each sample is based on an assumed skew
coefficient which is approximately equal to the population
skew v. Figure 5 shows how sensitive the linearity of a P3
probability plot is to the value of the assumed skew.

CONCLUSIONS

On the basis of power studies, Filliben [1975] showed that
a probability plot correlation coefficient (PPCC) test for the
normal distribution compares favorably with seven other
standard hypothesis tests. As a result, PPCC hypothesis
tests have been extended to a variety of other two-parameter
and three-parameter distributional hypotheses (see introduc-
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Fig. 4. A comparison of the bias and root mean square error (RMSE) associated with the biased moment skew
estimator G, the unbiased moment skew estimator G, and the unbounded probability plot correlation skew estimator

G,.

tion for citations). Since the Pearson (P3) and log Pearson
type 3 (LP3) distributions do not exhibit a fixed shape
parameter, the construction of a probability plot and asso-
ciated hypothesis test requires an estimate of the skew
coefficient to invert the cumulative distribution function.
Using Monte Carlo simulation we developed a relationship
between a measure of the linearity of the probability plot, the
skewness and the sample size for P3 samples. On the basis of
that relationship we reached the following conclusions:

1. Probability plots for the P3 and LP3 distribution based
on an estimate of the sample skew will, in general, appear
more linear then they should. Essentially, the estimated
sample skew acts to adjust the probability scale to make the
sample, when plotted, appear more linear than it would if the
true skew had been used to construct the plot. Since the true
skew is never known in practice, and use of the sample skew
to construct P3 or LP3 probability paper leads to plots which
appear more linear than they should, probability plotting
procedures for these distributions are not recommended for

1.1
1.04
0.9
081
0.74
]_f' 0.8/
0.5
044
0.9
0.2
0.14
0.0 v ¥ . ———————r ————
-3 -2-10 1 2 8§ 4 5 8 7 8 9
Assumed Skew Coefficient

Fig. 5. Relationship between the probability plot correlation
coefficient, r, and the assumed skew coefficient used to construct
the probability plot over a range of population skews, .

evaluating whether an individual sample arises from an
alternative distribution. In effect, samples from any distri-
bution which resembles the P3 (or LP3) alternative will
appear P3 (or LP3) when the sample skew is used to
construct the plot. This conclusion is supported by the
relationship between rg o5, v and n, given in Figure 1 and the
power studies summarized in Figures 2 and 3.

2. The power studies summarized in Figure 2 document
that PPCC hypothesis testing procedures could be useful in
regional studies which seek to determine whether an at-site
estimate of the skew coefficient is significantly different from
an assumed regional skew coefficient. Similarly, Chowdhury
et al. [1991] found PPCC tests compared favorably with
other goodness-of-fit procedures for testing whether or not
the shape parameter of at-site data differs from the assumed
regional shape parameter associated with the regional gen-
eralized extreme value hypothesis.

3. In terms of the linearity of a P3 or LP3 probability
plot, there does not appear to be a significant difference
between the use of a biased or an unbiased plotting position,
even when the population skew is known. We have not
investigated the impact of using the sample skew to estimate
an unbiased plotting position for the P3 distribution, and we
do not recommend future investigations along these lines.

4. If a sample which is assumed to be P3 or LP3 exhibits
an outlier and/or an estimate of G near the bound given in
(20), then we recommend the use of our unbounded proba-
bility plot correlation skew estimator G, instead of either G
orG,.

Construction of probability paper for the P3 and LP3
distributions requires an estimate of the skew coefficient;
hence general probability paper is unavailable as it is for the
uniform, exponential, normal, lognormal, Weibulil, and
Gumbel distributions, all of which can be transformed to
exhibit a fixed shape parameter. Since probability paper for
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the P3 and LP3 distribution is generally unavailable, practi-
tioners often construct probability plots for the P3 and LP3
distribution using other readily available probability paper
for the normal, lognormal or Gumbel distributions. Such
procedures generally lead to fitted P3 or LP3 curves which,
again, appear to fit the data better than the two-parameter
alternatives. If goodness of fit is the only criterion by which
to select a specified distribution, then distributions with
three or more parameters will usually provide a much better
fit than two-parameter alternatives.

In spite of the flexibility of the P3 and LP3 distributions to
fit a wide range of at-site flood samples, recent studies have
indicated that use of regional procedures such as the index
flood method can lead to significantly lower root mean
square errors associated with design quantiles than at-site
procedures [Potter and Lettenmaier, 1990]. Hence future
work related to hypothesis testing for P3, LP3 and other
distributions in hydrology should focus on the primary
assumption associated with such index flood type proce-
dures, that a normalized regional index flood distribution
provides an adequate description for the region of interest.
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