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Abstract. Inference from individual streamflow records can be extremely misleading,
even for large samples. One is often tempted to trust information available from a
streamflow record rather than to exploit regional average statistics of those records. This
study documents that regional average streamflow statistics usually contain much more
information about the variability and persistence of streamflow at a particular site than
does the individual streamflow record for that site. Experiments are performed using time
series of annual streamflow at 1544 gauging stations across the continental United States.
We document that 18 broad water resource regions of the United States are homogeneous
in terms of the year-to-year persistence of streamflow, whereas much smaller regions are
required to obtain homogeneity in terms of the variability of streamflow. Classical
homogeneity measures ignore the serial correlation of streamflow. Instead, homogeneity is
quantified using the sampling properties of at-site estimates of the coefficient of variation
Cv and lag-one correlation r1 of annual streamflows. Additional experiments using the
Hurst coefficient reveal that the long-term persistence structure of historical annual
streamflow series is indistinguishable from the long-term persistence structure of either an
AR(1) or ARMA(1,1) process. If historical flow series are generated from either an
AR(1) or ARMA(1,1) process, then even given 1544 observed time series, we are unable
to distinguish between those two processes.

1. Introduction

Recent research in flood frequency analysis has documented
the remarkable value of using regional hydrologic information,
in addition to at-site data, for estimating the magnitude and
frequency of flood events. Research and practice in this area
have evolved to the point where practitioners now routinely
employ regional methods such as hydrologic regression [Jen-
nings et al., 1994]. Bobée and Rasmussen [1995] and Hosking
and Wallis [1997] review recent advances in regional hydrologic
methods applied to flood frequency analysis. Still, hydrologists
are reluctant to use regional methods for other problems such
as calibrating rainfall-runoff models, computing water bal-
ances, performing regional assessments, or investigating cli-
mate change. Before regional methods pervade other areas of
hydrologic engineering we must first improve our understand-
ing of the spatial and temporal structure of hydrologic data.

The primary goal of this study is to explore the regional and
stochastic structure of annual flow records with an emphasis on
characterizing the variability and persistence of those flow
records for use in regional stochastic streamflow models. Other
studies have examined the variability and persistence of
monthly [Bartlein, 1982; Guetter and Georgakakos, 1993; Lins,
1997] and annual flow records [Lins, 1985a, b] in the United
States using the multivariate statistical method known as prin-
cipal components analysis (PCA) or eigenvector analysis. Lins
[1985a, b] used PCA to evaluate the spatial and temporal
structure of 48 sequences of annual flows in the United States.
In those studies, PCA was used to identify the principal com-
ponents of streamflow that explain its spatial and temporal

structure. Lins [1985a, b] found that five principal components
were able to explain most of the gross variations in annual
streamflow across the United States and that most principal
component functions were well described by an AR(1) process.
In a more recent study, Lins [1997] used orthogonally rotated
PCA and 559 monthly streamflow records in the United States
to investigate the seasonal and persistence structure of stream-
flow. Lins [1997] documents that orthogonally rotated PCA
can provide a useful approach to classifying regions of stream-
flow homogeneity in terms of both its temporal and spatial
structure.

This study differs significantly from the studies cited above
because we attempt to explore the stochastic structure of the
annual flow series directly, rather than focus on the structure
of their principal components or eigenvectors. Regional exam-
inations of annual flow series allow us to select a suitable
regional stochastic model and simultaneously to obtain re-
gional estimates of statistics that characterize the variability
and persistence of the flow series. The goal of this study is to
provide an initial basis for the development of regional sto-
chastic time series models of annual streamflow for the con-
terminous United States.

There is significant literature which addresses methods for
assessing the homogeneity of streamflow records, with partic-
ular emphasis on estimation of flood quantiles [Hosking and
Wallis, 1997]. Since one of the objectives of this study is to
examine the stochastic structure of flow records, existing meth-
ods for evaluating homogeneity which assume independence
among individual flows [see, for example, Fill and Stedinger,
1995; Hosking and Wallis, 1997] could not be employed here.
Our approach is to begin with an experiment that evaluates the
regional and stochastic structure of streamflow persistence us-
ing a large database of historical streamflows for the United
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States. These experiments allow us to choose a suitable re-
gional stochastic structure of flow series. Subsequent experi-
ments exploit that regional stochastic structure to examine the
regional variability (homogeneity) of streamflow.

1.1. Database of Streamflow

The data set consists of records of average annual stream-
flow taken from a climate-sensitive database of 1569 stream
gage records available on CD-ROM and the World Wide Web
(http://wwwrvares.er.usgs.gov/hcdn_cdrom/1st_page.html)
from the U.S. Geological Survey (USGS) [Slack et al., 1993].
Dropping the records from Alaska, Hawaii, and Puerto Rico,
as well as all those sites with observed annual flows lower than
0.283 L/s, left us with 1544 sites. Annual flows are computed
using water years (October–September). The locations of
streamflow gauging stations within each of 18 major water
resource regions of the United States are illustrated in Figure
1. In 1970 the U.S. Water Resources Council defined 21 major
geographic areas, or regions, for the purpose of assessing the
state of water resources across the nation [U.S. Water Resources
Council, 1975]. Dropping Alaska, Hawaii, and Puerto Rico
leaves the 18 regions depicted in Figure 1.

The streamflow data set, termed the Hydroclimatologic
Data Network (HCDN), is made up of USGS streamflow
records which are relatively free of anthropogenic influences.
Since details of the data set are discussed elsewhere, we do not
repeat those discussions here [see Lins, 1997; Vogel and Wilson,
1996; Slack et al., 1993].

The experiments that follow involve comparisons among
estimates of coefficient of variation Cv, lag-one correlations r1,
and the Hurst coefficient H taken from these flow records. For
estimation of H we employ the longest continuous record at
1544 of the HCDN sites. However, for the statistics Cv and r1,
we employ a fixed streamflow record length of n 5 40 years to
ensure that differences in sampling variability observed for
each flow statistic do not result from differences in record
lengths. Our goal was to include as many flow records m , each
with as long a record length n , as possible. Maximization of the
product mn for this database resulted in 885 sites out of the
original 1544 sites with record lengths of 40 years or more. The
first 40 years of record were used for each site which had at

least 40 years of record. The number of sites in each region
with n $ 40 is listed in Table 1.

1.2. The Assumed Stochastic Structure of Annual
Streamflow

Markovic [1965], Vogel and Wilson [1996], and others sum-
marize hypothesis tests and goodness-of-fit evaluations of var-
ious probability distributions to sequences of annual stream-
flow in the continental United States. On the basis of those
evaluations, Markovic [1965] and Vogel and Wilson [1996] con-
clude that sequences of annual streamflow are well approxi-
mated by either a Gamma or two-parameter lognormal distri-
bution. As anticipated, various three-parameter distributions
such as the lognormal, log Pearson, or Pearson distributions
are also suitable yet probably unnecessary. In this study we
assume that annual streamflow sequences xt, t 5 1, z z z , n
arise from an autoregressive lognormal process termed an
AR(1)-LN model defined by

yt 5 m y 1 r y,1~ yt21 2 m y! 1 « ts yÎ1 2 r y,1
2 (1)

where yt 5 ln( xt) and the moments of x are related to the
moments of y via

m y 5 lnS m

1 1 Cv
2D (2)

s y 5 Îln~1 1 Cv
2! (3)

r y,1 5
ln~r1~esy

2

2 1! 1 1!

s y
2 (4)

Cv 5
s

m
(5)

Here m, s, and r1 are the mean, standard deviation, and lag-
one serial correlation, respectively, of the flows and my, sy,
and ry ,1 are the mean, standard deviation, and lag-one serial
correlation, respectively, of the natural logarithms of the flows.
Experiments are performed later in this study to evaluate the
goodness of fit of this model to annual flows in the United
States. Lins [1985a, b] assumed a lognormal model of annual

Figure 1. Locations of streamflow gauges [from Slack et al., 1993] within each of the 18 major U.S. water
resource regions.
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streamflow in his studies of the interannual streamflow vari-
ability of streamflow in the United States.

2. Regional Short-Term Persistence of
Streamflow

Analogous to the previous section, we now explore the the-
oretical and empirical structure of some simple measures of
persistence. The most common index of short-term persistence
is the lag-k correlation coefficient rk, which is defined as

rk 5
Cov@ xi, xi1k#

Var@ x#
(6)

It is a measure of short-term persistence because beyond a few
lags k , the coefficient usually decays to noise. The most com-
mon index of short-term persistence, r1, only quantifies the
correlation between successive values of a random variable, as
opposed to long-term measures of persistence such as the
Hurst coefficient, discussed in a later section. One common
estimator of the lag-k serial correlation coefficient rk is

rk

5

O
i51

n2k

xi xi1k 2
1

n 2 k O
i51

n2k

xi O
i51

n2k

xi1k

FO
i51

n2k

xi
2 2

1
n 2 kSO

i51

n2k

xiD2G1/ 2FO
i51

n2k
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2 2

1
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i51

n2k

xi1kD2G1/ 2

(7)

In this section we concentrate on the serial correlation of the
logarithms of streamflow ry ,k because the sampling properties
of an AR(1) normal process are available. The at-site estima-
tor of ry ,k, termed ry ,k, is obtained from (7) by replacing x with
y . To evaluate the properties of at-site estimates of ry ,k, we use
the biased estimator in (7) because Tasker [1983] approxi-

mated its probability density function (pdf), assuming an
AR(1) normal process, so that

f~ry,1ur! 5
~1 2 ry,1

2 !~1/ 2!~T21!~1 1 c2 2 2cry,1!
2~1/ 2!T

b@1
2
, 1

2
~T 1 1!#

(8)

where T 5 n 2 2 and c 5 ry ,1 2 [(1 1 ry ,1)/(n 2 3)]. We
could have also used the exact pdf given by Leipnik [1947];
however, that result is for another biased estimator of ry ,1

whose small-sample properties have not been investigated. For
large n , Leipnik’s pdf is equivalent to Tasker’s pdf; however,
for n 5 40, the pdfs are different.

The estimator of r1 in (7) is used with (8) to derive the
frequency distribution of estimates of r1 in each region. To
obtain unbiased estimates of r1, we employ the estimator of r1

given by equation (3) of Wallis and O’Connell [1972], which,
like (7), is downward biased and, in particular for k 5 1, has
approximate expectation

E@r1# 5 r1 2
1 1 4r1

n (9)

so that an unbiased estimator r*1 can be derived from (9),
resulting in

r*1 5
nr1 1 1
n 2 4 (10)

Stedinger [1981] shows that r*1 is a nearly unbiased estimator of
r1 even for an AR(1)-LN model.

Figure 2 illustrates box plots of the unbiased estimator r*1, of
annual streamflow, for each of the 18 water resource regions.
The lag-one correlations are generally higher in the more tem-
perate regions where groundwater outflow causes greater year-
to-year persistence in streamflow. In arid and semiarid regions
the lag-one correlations are nearly zero, indication that
groundwater outflow plays much less of a role in producing
surface water runoff.

Table 1. Summary of Regional Statistics of the Lag-One Serial Correlation of Annual Streamflow in the Continental
United States

Region

Number of
Streamflow

Records
(m)

Number
of

Records
n $ 40

Average
Record
Length

(n# )

Regional
Mean of

Logs
(r# y1)

Regional
Mean

of Flows
(r*1)

Regional
Mean

of Flows
(r*2)

1 71 43 46.0 0.206 0.197 0.068
2 167 114 47.2 0.247 0.264 0.116
3 193 104 41.3 0.278 0.269 0.090
4 57 35 45.8 0.383 0.361 0.144
5 108 87 51.4 0.251 0.283 0.040
6 44 27 48.5 0.270 0.271 0.051
7 126 101 50.7 0.349 0.350 0.082
8 23 14 42.8 0.181 0.193 0.028
9 32 14 38.5 0.225 0.149 0.055

10 140 70 39.9 0.259 0.218 0.112
11 87 42 39.5 0.237 0.219 0.048
12 83 37 38.5 0.222 0.110 0.081
13 22 8 37.4 0.119 0.114 0.039
14 44 17 40.9 0.134 0.146 0.045
15 16 9 41.4 0.099 0.070 0.018
16 32 14 41.8 0.250 0.261 0.131
17 189 100 41.6 0.084 0.051 0.187
18 110 49 41.5 0.098 0.032 0.105

All regions 1544 885 43.0 0.22 0.198 0.080
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An examination of Figure 2 led us to conjecture that each of
the 18 water resource regions are homogeneous in terms of r1.
The goal of this section is to explore whether differences in
estimates of r1 within a region are a result of sampling vari-
ability or due to real differences in the physical processes that
lead to streamflow persistence.

In the following experiments the lag-one correlations are
based on the logarithms of streamflow, because the pdf’s in-
troduced by Leipnik [1947] and Tasker [1983] correspond to
AR(1) normal inflows. Figure 3 compares histograms of esti-
mates of ry ,1 for each region with the theoretical probability
density function f(ry ,1ury ,1) given in (8). In each region the
true value of ry ,1 is assumed equal to an unbiased estimate of
its regional mean value computed using the record length
weighted estimator

r# y,1 5

O
i51

m

nir*y,1~i!

O
i51

m

ni

(11)

where ni and r*y ,1(i) are the record length and unbiased esti-
mate, respectively, of ry ,1 at site i , and m is the number of sites
in the region. The regional mean value r#y ,1 in (11) is based on
the complete set of 1544 streamflow records summarized ear-
lier in Table 1.

The plots in Figure 3 document that it is entirely possible
that the differences in estimates of ry ,1 within each region
could be due to sampling alone. What appear at first to be
rather large variations in short-term persistence within each
region could be the result of sampling variability rather than
differences in physical processes. This result emphasizes the
importance of using regional information to understand phys-
ical processes such as short-term persistence, because each
individual record is really only one realization from an ensem-
ble of realizations from that region.

Figure 3 also reports results for the entire United States.
Interestingly, if the regional mean value of ry ,1 is assumed to
be 0.228 for the entire United States, then it is entirely possible

that the observed variability in sample estimates of the lag-one
correlation, across the entire nation, is due to sampling alone.
This is not a surprising result because in 11 of the 18 regions of
the United States, the regional value of ry ,1 reported in Tables
1 and 2 ranges from 0.181 to 0.278. It is only the north central
regions 4 and 7 that exhibit significantly higher regional mean
values of ry ,1, values and the southwestern regions 13, 14, 15,
and 18 and northwestern region 17 that exhibit significantly
lower regional mean values of ry ,1. We conclude that it is
probable that there are roughly three different regions of
roughly homogeneous short-term persistence. There is very
low persistence in the southwestern and northwestern regions,
high persistence in the north central region, and moderate
persistence in all other regions of the United States.

3. The Regional Variability of Streamflow
The most common index of variability is the coefficient of

variation Cv defined in (5). This section explores the regional
homogeneity of Cv by comparing the theoretical behavior of
sample estimates of Cv with the observed behavior of sample
estimates of Cv for broad regions of the United States. Prior to
such experiments it is necessary to understand the theoretical
sampling properties of estimates of Cv. To our knowledge,
there is no literature which examines the properties of esti-
mates of Cv for correlated processes, and hence we begin by
introducing and comparing several estimators.

It is common practice to estimate Cv using the ratio estima-
tor

Ĉv1 5
s
x# (12)

where

x# 5
1
n O

i51

n

xi s2 5
1

n 2 1 O
i51

n

~ xi 2 x# !2

are standard sample estimators of the mean and variance.
Kirby [1974] documents that Ĉv1 is bounded above and Vogel

Figure 2. Box plots of the unbiased lag-one serial correlation coefficient r1 for the 18 water resource regions.
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Figure 3. Comparison of histogram of r1 with the theoretical probability density function of r1.
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Figure 3. (continued)
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and Fennessey [1993] document that this estimator is remark-
ably downward biased, with that bias increasing as the skew-
ness increases and/or sample size decreases. An alternative
estimator is based on (3), which can be rearranged to obtain

Cv 5 Îexp~s y
2! 2 1 (13)

A natural sample estimator which results from (13) is

Ĉv2 5 Îexp~v y
2! 2 1 (14)

where

v y
2 5

1
n O

i51

n

~ yi 2 y# !2 y# 5
1
n O

i51

n

yi

with yt 5 ln( xt). However, even Ĉv2 will be biased, because
the estimator vy

2 is known to be biased, especially for serially
correlated variables. Kendall [1954] derived the expectation of
vy

2 for an AR(1) normal process

E@v y
2# 5 s y

2F 1 2
1
n 2

2
n O

k51

n21 F 1 2
k
nG r y,kG (15)

where ry ,k is the lag-k autocorrelation of the y series. The
downward bias associated with estimators vy

2 and Cv1 results,
in part, from the correlation of the time series. Since this study
attempts to understand the regional behavior of Cv, an unbi-
ased estimator of Cv is needed, and hence we derive one here.
The correlogram of an autoregressive process is ry ,k 5 ry ,1

k ,
where ry ,k denotes the lag-k autocorrelation of y . Substitution
of ry ,k 5 ry ,1

k into (15), using the fact that (15) is an arithmetic
power series, and dropping the rn terms yields

E@v y
2# > s y

2F 1 1
1
n 1

2@r y,1~n 1 1! 2 n#

n2~1 2 r y,1!
2 G (16)

so an approximately unbiased estimate of sy
2 for an autore-

gressive process is

v y*2 5
v y

2

F 1 1
1
n 1

2@r y,1~n 1 1! 2 n#

n2~1 2 r y,1!
2 G 5

v y
2

u
(17)

Note that for an independent process (17) reduces to the
expected result vy*

2 5 (n/(n 2 1))vy
2. A nearly unbiased

estimator of Cv for an autoregressive lognormal process is then

Ĉv3 5 Îexp~v y*2! 2 1 (18)

Prior to application of these estimators on actual streamflow
samples, we investigate their sampling properties using Monte
Carlo experiments. Such experiments should assist us in sepa-
rating out real physical differences in Cv from variations
caused by sampling.

3.1. Sampling Properties of Estimators of the Coefficient
of Variation

A Monte Carlo experiment was performed to compare the
bias associated with the estimators Ĉv1, Ĉv2, and Ĉv3. The
experiment involved generating 50,000 samples of length n 5
40 and 100,000 samples of length n 5 20 from the AR(1)-LN
model given in (1) for various values of Cv and r1. Figure 4
illustrates the bias associated with Ĉv1, Ĉv2, and Ĉv3, where
bias (Ĉv) 5 Cv 2 E[Ĉv]. In general, both estimators Ĉv1 and
Ĉv2 are downward biased, and that bias increases as n de-
creases, as Cv increases, and as r1 increases. The estimator Ĉv3

is generally unbiased, and for this reason it is used in the
remainder of this study to obtain an unbiased estimate of
regional mean values of Cv. Note that Ĉv3 is only unbiased
when the true value of ry ,1 is known, as was assumed in these
experiments. As is shown in the previous section, unbiased
regional estimates of ry ,1 provide a very good approximation
to the true value of ry ,1, and hence, for the purposes of this
study, Ĉv3 turns out to be a very appropriate and useful esti-
mator. However, for other purposes, it may be preferable to
employ Ĉv2, which exhibits larger bias yet lower variance than
Ĉv3.

Table 2. Summary of Regional Statistics of the Coefficient of Variation of Annual Streamflow in the Continental United
States

Region

Number of
Streamflow

Records
(m)

Average
Record
Length

(n# ) C# v

Median
Cv

Theoretical (Cv(Ĉv3))
(From Equation (13))

Sample
Estimate

(Cv(Ĉv3))

Regional
Mean
(r# y1)

1 71 46.0 0.277 0.285 0.126 0.159 0.206
2 167 47.2 0.316 0.315 0.130 0.240 0.247
3 193 41.3 0.415 0.369 0.137 0.387 0.278
4 57 45.8 0.293 0.278 0.143 0.373 0.383
5 108 51.4 0.386 0.370 0.133 0.455 0.251
6 44 48.5 0.280 0.273 0.130 0.179 0.270
7 126 50.7 0.635 0.594 0.157 0.428 0.349
8 23 42.8 0.472 0.498 0.132 0.258 0.181
9 32 38.5 1.799 1.188 0.231 0.507 0.225

10 140 39.9 0.840 0.720 0.161 0.686 0.259
11 87 39.5 0.792 0.711 0.156 0.546 0.237
12 83 38.5 1.323 1.093 0.194 0.389 0.222
13 22 37.4 0.703 0.602 0.142 0.350 0.119
14 44 40.9 0.382 0.356 0.126 0.229 0.134
15 16 41.4 0.786 0.740 0.147 0.325 0.099
16 32 41.8 0.651 0.551 0.147 0.470 0.250
17 189 41.6 0.331 0.299 0.122 0.393 0.084
18 110 41.5 0.980 0.765 0.160 0.947 0.098

All regions 1544 43.0 0.59 0.22
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Another goal of this study is to explore the sampling distri-
bution of Ĉv3 so that we can evaluate whether estimates of Cv

in a region are due to sampling variability or due to real
differences in hydrology. One approach to examining the vari-
ability of estimates of Cv is to derive an analytical expression
for the Var[Ĉv3]. Stuart and Ord [1987, equation 10.19] derive
a first-order approximation to Var[Ĉv1] for an independent
normal process. Fill and Stedinger [1995] derive a first-order
approximation to Var[Ĉv1] for any distribution. A first-order
approximation to Var[Ĉv3] for an AR(1)-LN process is de-
rived in the appendix, resulting in

Var@Ĉv3# >
@~1 1 Cv

2!ln~1 1 Cv
2!#2

2n~uCv!
2 F 1 1 r y1

2

1 2 r y1
2 G (19)

where

u 5 F 1 1
1
n 1

2@r y,1~n 1 1! 2 n#

n2~1 2 r y,1!
2 G .

(Figure A1 also documents that the approximation in (19)
compares favorably with Var[Ĉv3] estimated using a Monte
Carlo experiment.)

3.2. Experiment 1: Regional Homogeneity of Streamflow

An experiment is performed to determine whether or not
the 18 major water resource regions in Figure 1 are homoge-
neous in terms of the year-to-year variability of streamflow. We
address this issue by determining whether or not it is possible
that Cv is fixed (except for sampling variability) in each of the
18 regions in Figure 1. Estimates of Ĉv3 are obtained for each
of the 1544 basins in Figure 1. Figure 5 summarizes box plots
of sample estimates of Ĉv3 for each region using solid lines.
For comparison, we also illustrate in Figure 5 (using dashed
lines) theoretical box plots based on the assumption that Ĉv3

follows a lognormal distribution with Var[Ĉv3] given by (19)
and the mean value of Ĉv3 given by (20), below. To compute
Ĉv3 at each site, and Var[Ĉv3] for the region, the true value of
ry ,1 is required. We use the unbiased estimates of the regional
mean value of ry ,1 in (11) (denoted r# y1), which are summa-
rized in Tables 1 and 2. The box plots of the sample estimates

of Ĉv3 in Figure 5 are all based on estimates of Ĉv3 derived
from samples of equal length n 5 40. For the theoretical box
plots illustrated in Figure 5 and the regional mean values
reported in Table 2, we use all streamflow samples in the
region to estimate the regional mean value of Ĉv3, denoted
C# v, computed using the record length weighted estimator

C# v 5

O
i51

m

niĈv3~i!

O
i51

m

ni

(20)

where ni and Ĉv3(i) are the record length and unbiased esti-
mate of Cv, respectively, at site i , and m is the number of sites
in the region. The average regional values of Cv and ry ,1

reported in Table 2 are based on the complete set of 1544
basins. Also shown in Table 2 are the number of sites in each
region m and the average record length n# in each region for
the sites used to compute the regional mean values of Cv and
ry ,1 and the median value of Cv for each region.

Table 2 also compares the theoretical and observed coeffi-
cient of variation of the estimated values of Ĉv3. Here the
coefficient of variation of Ĉv3 was computed as Cv(Ĉv3) 5
=Var[Ĉv3]/C# v, with the theoretical value of Var[Ĉv3] com-
puted using (19) and the sample estimate of Cv[Ĉv3] obtained
using Ĉv1[Ĉv3]. A comparison of the values of Cv(Ĉv3) in
Table 2 reveals that the observed values of Cv are uniformly
more variable than one would expect due to sampling alone.
This same result may be viewed graphically in Figure 5, which
illustrates that the theoretical box plots are generally less vari-
able than are the box plots of the observed at-site sample
estimates. In fact, Figure 5 illustrates that only regions 1, 6, and
possibly 14 are nearly homogeneous in terms of Cv because the
theoretical and observed box plots are nearly equivalent.
Therefore we conclude, similar to Lins [1997], that the 18
water resource regions are not homogeneous in terms of the
year-to-year variability in streamflow.

Figure 4. Bias associated with Ĉv1, Ĉv2, and Ĉv3 for an AR(1)-LN process.
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In Figure 6 we explore whether or not breaking the 18
regions into smaller subregions yields more homogeneity in
Cv. Figure 6 compares theoretical and observed box plots of
Ĉv3 for selected subregions within regions 1, 4, 10, and 18.
Here subregions are defined using the standard 222 subregions
defined by the U.S. Water Resources Council [1975]. While, in
general, Figure 6 documents that splitting regions into smaller
subregions leads to more homogeneity in terms of Cv, the
results are still inconclusive. When splitting regions into
smaller subregions, there were often too few sites left in each
region to obtain reliable box plots. For example, the observed
box plots shown in Figure 6 are based on between 4 and 14

sites, with an average of only six sites per subregion. In very
heterogeneous regions such as 4, 10, and 18, Figure 6 docu-
ments that splitting into subregions leads to much greater
homogeneity of each subregion. Unfortunately, there are not
enough data in each subregion to draw conclusions any more
definitive than this.

4. Regional Long-Term Persistence of
Streamflow

Ever since Hurst [1951] introduced a methodology for ex-
ploring the long-term persistence of geophysical records, nu-

Figure 5. Comparison of observed and theoretical box plots of estimates of Cv for 18 water resource
regions.

Figure 6. A comparison of observed and theoretical box plots of estimates of Cv for all subregions within
regions 1, 4, 10, and 18.
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merous investigators have used his approach to explore the
stochastic structure of streamflow, climate, and other geophysi-
cal records. The Hurst coefficient H is defined as follows:
Given a streamflow series { x1, x2, z z z , xn} with sample mean
x# and sample variance sx

2, the adjusted partial sums are

Sk 5 O
t51

k

xt 2 kx# k 5 1, · · · , n (21)

and the range is

Rn 5 @max~S1, S2, . . . , Sn! 2 min~S1, S2, . . . , Sn!#
(22)

Hurst [1951] found that

EFRn

sx
G}nH (23)

The exponent H , termed the Hurst coefficient, was found to
vary between 0.69 and 0.80, whereas independent normal vari-
ables are known to have H 5 0.5. Even a simple AR(1) model
will exhibit H 5 0.5 for very large n . These findings led many
investigators to speculate and introduce more complex sto-
chastic models, which purport to reproduce the Hurst phenom-
enon. For example, Mandelbrot and Van Ness [1968] intro-
duced a fractional Brownian noise model, which can produce
stationary streamflows with a specified Hurst coefficient. After
these findings by Hurst [1951] and Mandelbrot and Van Ness
[1968], there emerged a considerable debate in the water re-
source literature regarding the implications of the Hurst phe-
nomenon. Klemes [1974] argued that our understanding of
long-term persistence, and even stochastic hydrology in gen-
eral, is (was) at about the same stage as the Ptolemaic plane-
tary model prior to the introduction of Kepler’s laws of plan-
etary motion. On the one hand, Wallis and O’Connell [1973, p.
363] suggest that “to emphatically state that hydrologic records
do not exhibit long-term persistence demands either a very
naı̈ve understanding of statistics or a monumentally large da-
tabase.” On the other hand, Klemes et al. [1981, p. 737] argue

that in spite of all our knowledge gained from the 1970s liter-
ature on the Hurst phenomenon, “the replacement of short-
memory models with long-memory models in reservoir analy-
ses cannot be objectively justified.” It seems fitting that we
should at least attempt to resurrect this debate by using the
large database used in the previous sections of this study [Slack
et al., 1993] to explore the behavior of the Hurst coefficient of
annual streamflow traces in the continental United States.

4.1. Estimation of the Hurst Coefficient

Montanari et al. [1997] review numerous methods for esti-
mation of the Hurst coefficient H and numerous sources of
literature relating to the detection of long memory. Hurst
[1951] suggested simply plotting the logarithm of the computed
values of the rescaled range Rn/sx versus the logarithm of the
sample size n , and computing the Hurst coefficient as the slope
of the resulting empirical relation. Mandelbrot and Wallis
[1995] describe the deficiencies of this approach. Mandelbrot
and Wallis [1969, 1995] suggested repeating this graphical ap-
proach for many subsamples of size k # n from the same
record of length, leading to a pox diagram. A pox diagram is
simply a log-log plot of the rescaled range Rn/sx versus sub-
sample length. An estimate of H is then derived as the slope of
the pox diagram. Mandelbrot and Wallis [1995] provide many
examples of pox diagrams along with a discussion of their
properties. In this study, pox diagrams for each of the 1544
sites were constructed, and the resulting estimates of H ob-
tained via regression for each site are summarized in Figure 7
as a function of the record length associated with each record
available in the Slack et al. [1993] database. The locally
weighted scatterplot smooth (LOWESS) shown in Figure 7
illustrates the well-known effect of record length on estimates
of the Hurst coefficient. Small sample upward bias associated
with estimates of H illustrated in Figure 7 is a well-
documented phenomenon [Wallis and Matalas, 1970]. The up-
ward bias in estimators of H increases as n decreases and as r1

increases and is generally larger for normally distributed vari-
ables than for nonnormal variates [Wallis and Matalas, 1970].

Figure 7. Estimates of Hurst coefficients of annual streamflow from 1544 historical records in the conti-
nental United States.
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4.2. The Implications of the Hurst Phenomenon
and Estimates of H

There is still considerable controversy and debate regarding
the implications of the Hurst phenomenon. Although many
investigators have computed Hurst coefficients for actual
streamflow and other geophysical records (see Mandelbrot and
Wallis [1995] and Montanari et al. [1997] for summaries and
citations), there is considerable literature that questions the
meaning of computed values of H . For example, Potter [1979]
documents that nonhomogeneity of hydrologic records can
lead to inflation of estimated autocorrelation functions and
Hurst coefficients. Similarly, Klemes [1974] shows that obtain-
ing values of H . 0.5 is not necessarily an indication that the
process has infinite memory. Klemes shows that the Hurst
phenomenon can result from nonstationarity or from storage
processes which arise in many natural systems.

Using a set of 1009 streamflow records developed by Wallis
et al. [1991], Lettenmaier et al. [1994] document that strong
trends exist for a large number of these basins, many more than
would be expected due to chance. Lins [1985a] also documents
that annual streamflow in the United States is probably not
stationary. This study uses a different database of streamflow
[Slack et al., 1993] with records over the period 1874–1988. We
expect that the estimates of H in Figure 7 are due, in part, to
nonstationarity and even nonhomogeneity of the flow records.
The extensive literature on the properties of the Hurst coeffi-
cient and the Hurst phenomenon demonstrates that the esti-
mates of H . 0.5 in Figure 7 do not constitute evidence of
long-term persistence. Without definitive proof that flow
records are stationary and homogeneous, it is impossible to use
H to infer properties regarding the long-term persistence
structure of time series. Instead, we use H as a goodness-of-fit
measure in an attempt to select a stochastic structure which
resembles the historical flow series.

4.3. Experimental Design: Using H to Select a Stochastic
Structure for Annual Streamflow Records

In this section we describe experiments which use H to
determine which stochastic process best approximates se-
quences of annual streamflow in the United States. These

experiments consider both type I and type II errors. The first
set of type I experiments compares estimated Hurst coeffi-
cients obtained from the 1544 historical flow sequences with
estimated Hurst coefficients obtained from 1544 synthetic flow
sequences derived from each of four synthetic streamflow
models. The four synthetic models include the following
ARMA models: AR(0)-N, AR(0)-LN, AR(1)-LN, and
ARMA(1,1)-LN, where N denotes normal distribution and LN
denotes the lognormal distribution. Equation (1) is an
AR(1)-LN model. We include an AR(0)-N to evaluate the
influence of the marginal distribution on estimation of H .
Loucks et al. [1981] provide an introduction to ARMA models.
We employ the approach described by Lettenmaier and Burges
[1977] to generate flow sequences from an ARMA(1,1)-LN
model.

Our first set of experiments are type I experiments because
our null hypothesis, in each case, is that the historical flows
arise from that particular synthetic flow generator. These type
I experiments are analogous to examining type I errors in
hypothesis testing. Unfortunately, type II errors are also pos-
sible. Our second experiments evaluate type II errors; that is,
if the historical flows really do arise from an AR(1)-LN model,
as is hypothesized in (1), would we find an ARMA(1,1)-LN
model acceptable (type II error) and vice versa.

4.3.1. Type I experimental results. Initially, 1544 syn-
thetic flow sequences were generated from AR(0)-N, AR(0)-
LN, AR(1)-LN, and ARMA(1,1)-LN models, with model pa-
rameters defined by the 18 regional mean values of Cv, r1, and
r2. Unbiased estimators of Cv and r1 are obtained using Ĉv3 in
(18) and r*1 in (10), respectively. An unbiased estimator of r2

is derived in the appendix. The record length of each synthetic
flow sequence is equal to one of the historical records in that
region, so that across each region, the distribution of the
record lengths of the synthetic flow sequences is identical to
that of the historical records. Figure 8 compares box plots of
estimates of H obtained from the historical flow sequences and
the four synthetic flow generators. We conclude from a com-
parison of the box plots in Figure 8 that in terms of the
distribution of estimated Hurst coefficients, the historical flows
could not be distinguished from the synthetic AR(1)-LN and

Figure 8. Box plots illustrating the distribution of Hurst coefficients estimated from historical records and
from synthetic flow sequences generated by four different models.
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the ARMA(1,1)-LN flows. Figure 8 also illustrates that an
AR(0) model cannot reproduce the distribution of the histor-
ical estimates of the Hurst coefficient. Figure 8 further illus-
trates that the marginal distribution of the flows does not seem
to have a significant impact on the distribution of estimated
Hurst coefficients, because the results for the AR(0)-N and
AR(0)-LN models are identical.

Figure 9 illustrates the median value of H estimated for each
of the 18 regions of the United States shown in Figure 1.
Figure 9 documents, by region, that the AR(1)-LN and
ARMA(1,1)-LN models reproduce the historical median val-
ues of H in most regions. We conclude from these initial
graphical comparisons that the historical streamflow sequences
are indistinguishable, in terms of H , from the AR(1)-LN and
ARMA(1,1)-LN synthetic flow sequences.

4.3.2. Type II experimental results. It remains to deter-
mine whether the Hurst coefficient can be used to distinguish

between AR(1)-LN and ARMA(1,1)-LN processes. To answer
this question, the same experiment as above is repeated; how-
ever, now pseudohistorical flow sequences are created using
the synthetic flow models. The question we address is whether
we would accept flow sequences as being AR(1)-LN when they
are actually generated by an ARMA(1,1)-LN process and vice
versa.

Figures 10 and 11 are both identical to Figure 9 except that
the historical flow sequences are replaced by AR(1)-LN and
ARMA(1,1)-LN synthetic flow traces, respectively. Figure 10
documents that when pseudohistoric flow sequences are
AR(1)-LN, both the AR(1)-LN and the ARMA(1,1)-LN mod-
els, both reproduce the median Hurst coefficients estimated
from those AR(1)-LN flow sequences. This is expected be-
cause an AR(1) model is simply a special case of an
ARMA(1,1) model. What are interesting, however, are the
results in Figure 11 which document that even when

Figure 9. The median Hurst coefficient estimated from historic flow sequences and from four stochastic
streamflow models fit to each region.

Figure 10. The median Hurst coefficient estimated from pseudohistoric AR(1)-LN flow sequences and from
four stochastic streamflow models fit to those sequences.
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pseudohistoric flows are generated by an ARMA(1,1) model
structure, we are unable to discern whether those flows are
either AR(1) or ARMA(1,1); in fact, they could be either. We
conclude from these experiments that even if historical flows
were ARMA(1,1), we would be unable to distinguish their
stochastic structure from an AR(1) model, so that, in practice,
either model is acceptable. If either model is acceptable,
though, it is well-established practice to choose the more par-
simonious one. We conclude that an AR(1)-LN model pro-
vides an acceptable model of the structure of observed histor-
ical flow sequences because it is able to reproduce the observed
distribution of Hurst coefficients. Tsai [1997] provides more
definitive comparisons using quantitative hypothesis tests to
prove that the results reported in Figures 8–11 are truly rep-
resentative and not due to chance.

5. Conclusions
This study has sought to improve our understanding of the

spatial and temporal structure of historical annual streamflow
in the continental United States. Using a large database of
annual streamflows developed by Slack et al. [1993], we docu-
ment that the observed variability in estimates of the lag-one
serial correlation coefficient in each of 18 major water resource
regions could easily be due to sampling alone. This result
implies that large differences in estimates of r do not imply
large differences in the physical processes that give rise to
persistence, as is often assumed. Instead, the large differences
in at-site estimates of r are probably due to sampling alone.
These results emphasize the importance of exploiting regional
information regarding persistence rather than trusting at-site
data alone. However, the 18 broad geographic regions are not
homogeneous in terms of the coefficient of variation of annual
streamflow. To assure homogeneity in terms of the year-to-
year variability of streamflow, we document that the nation
must be broken into over 200 regions. This result is quite useful
for studies which seek to perform national or regional hydro-
logic assessments. Regional assessments based on only 18 wa-
ter resource regions may not be useful because most of those

regions are heterogeneous in terms of hydrologic variability.
Instead, at least 106 assessment subregions are required, as in
the second national assessment [U.S. Water Resources Council,
1975], or better yet, the 222 planning subregions introduced by
the U.S. Water Resources Council are required to assure hy-
drologic homogeneity.

In addition to these empirical results, this study also sum-
marized the sampling properties of estimates of Cv and r. An
unbiased estimator of Cv for an autoregressive lognormal
(AR(1)-LN) process was derived which depends on sample
size and lag-one correlation r. This estimator was used to
obtain unbiased estimates of regional mean Cv. As is often the
case, the unbiased estimator Ĉv3 introduced here had slightly
higher variance than either of the biased alternatives, yet still
it is recommended for applications such as this one, where
one’s interest is in obtaining an unbiased regional estimate of
Cv.

Finally, experiments were performed to evaluate whether
various simple stochastic streamflow models could generate
flow traces with Hurst coefficients which resemble historical
flow sequences. Our experiments document that both a log-
normal autoregressive (AR(1)-LN) and a lognormal autore-
gressive moving average (ARMA(1,1)-LN) model can repro-
duce the distribution of estimates of Hurst (H) coefficients
across the entire continental United States. We also document
that if the historical streamflows really were generated from an
ARMA(1,1)-LN process, estimates of H appeared identical to
those obtained from an AR(1)-LN model and vice versa. These
results indicate that even if natural flow records do exhibit
long-term persistence (an ARMA(1,1) model can exhibit infi-
nite memory), we are unable to distinguish that memory from
AR(1)-LN flow sequences which cannot exhibit long-term per-
sistence. These results only confirm our inability to discern the
complex long-term persistence structure of natural flow
records due to the fact that only short records are available.
Assessment of the long-term persistence structure of actual
flow records is further confounded by nonstationarity and non-
homogeneity of those flow records.

Figure 11. The median Hurst coefficient estimated from pseudohistoric ARMA(1,1)-LN flow sequences
and from four stochastic streamflow models fit to those sequences.
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Appendix

A1. Derivation of Var[Ĉv3] for an AR(1)-LN Process

Assuming streamflow x is from the AR(1)-LN process given
in (1), we derive the Var[Ĉv3], where Ĉv3 5 =exp(vy

*2)21.
Approximating Ĉv3 with a first-order Taylor series about the
true variance sy

2 leads to

Ĉv3 > Îexp~s y
2! 2 1 1

d Îexp~s y
2! 2 1

ds y
2 @v y*2 2 s y

2#

(A1)

Now using the variance operator leads to

Var@Ĉv3# > S d Îexp~s y
2! 2 1

ds y
2 D 2

Var@v y*2# (A2)

which can be simplified to

Var@Ĉ3# > F 1 1 Cv
2

2uCv
G 2

Var@v y
2# (A3)

where

u 5 F 1 1
1
n 1

2@r y,1~n 1 1! 2 n#

n2~1 2 r y,1!
2 G .

Since the logarithms of streamflow y follow an AR(1) normal
model, Loucks et al. [1981, equation 3C.9] document that

Var@v y
2# >

2s y
4

n F 1 1 r y1
2

1 2 r y1
2 G (A4)

Combining (A3) and (A4) and using the fact that sy
2 5 ln(1 1

Cv
2) leads to the result in (19). Figure A1 illustrates that the

theoretical approximation in (19) provides an excellent ap-
proximation to experimental estimates of the standard error of
the estimator Ĉv3 based on Monte Carlo experiments. Here
standard error (SE) is defined as SE(Ĉv3) 5 =Var[Ĉv3].

A2. Derivation of an Unbiased Estimator of r2

The estimator rk in (7) is a biased estimator of rk. Kendall
[1954] derived the expectation of rk for an AR(1) process:

E@rk# 5 r1
k 2

1
N 2 k H 1 1 r1

1 2 r1
~1 2 r1

k! 1 2kr1
kJ

(A5)

We used the same approach used by Wallis and O’Connell
[1972] to derive the following unbiased estimator of r2, which
we term r*2. Setting k 5 2 in (A5), replacing E[r2] in (A5) with
r2 obtained from (7), and then solving (A5) for r1** 5 r1

leads to

r**1 5
2 6 Î4 1 4~n 2 7!@1 1 ~n 2 2!r2#

2~n 2 7!
(A6)

Now an unbiased estimator of r2 is obtained by using the fact
that the correlogram for an AR(1) process is rk 5 r1

k; hence

r*2 5 ~r*1*!2 (A7)

Monte Carlo experiments documented that for short records
such as those used in this study, the smaller value of r*1 in (A6)
is preferred. The regional mean values of r*1 and r*2 are re-
ported in Table 1. The regional mean values of r*1 in Table 1
differ from the regional mean values of r*y ,1 in Table 1 because

they represent the lag correlations in real and log space, re-
spectively.
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