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ABSTRACT: Estimates of annual streamflow volumes are needed in many different types of hydrologic studies.
Usually a streamgauge is unavailable at the location of interest, hence regional methods that relate streamflow
to readily measured geomorphic and climate characteristics provide a practical solution. Hydrologic, geomorphic,
and climatic characteristics of 1,553 undeveloped watersheds across the United States are used to develop
regional regression equations that relate the first two moments of annual streamflow to readily measured basin
and climate characteristics. These relations are summarized for each of 18 major U.S. water resource regions.
The relationships are remarkably precise, with adjusted R2 values ranging from 90.2–99.8% and an average
value of 96.2% across the continent. The usefulness of these relationships is evaluated by deriving their infor-
mation content in terms of equivalent record length. These results indicate that regional models of annual
streamflow, including runoff maps, are less accurate than suggested by traditional goodness-of-fit statistics. We
also provide estimates of precipitation and temperature elasticity of streamflow, by region.
INTRODUCTION

Estimates of annual watershed runoff volumes are required
in preliminary studies relating to water supply, irrigation, hy-
dropower, navigation, recreation, and watershed management.
Typically, the watershed of interest is ungauged and hence a
flow record is unavailable. Thus a means of estimating the
water yield or a streamflow trace from available data is
needed.

Review: Models of Annual Streamflow for
Individual Watersheds

Methods for estimation of annual watershed runoff that do
not exploit regional information tend to involve some type of
deterministic rainfall-runoff relationship. Such relationships
tend to be either empirical or theoretical. For example, Duell
(1994) and Revelle and Waggoner (1983) use multivariate re-
gression procedures to develop empirical relationships be-
tween annual streamflow in a given year and temperature and
precipitation during that year, for basins in the western U.S.
Risbey and Entekhabi (1996) show that such multivariate (at-
site) models can be misleading because they tend to show
greater senstitivity to temperature than either observations or
more physically detailed modeling approaches suggest.

Dooge (1992) suggests the use of the expectation of the
continuity equation

m = m 2 m (1)Q P E

where mQ, mP, and mE represent the mean (long-term) runoff,
precipitation, and evapotranspiration, respectively. Such an ap-
proach can be easily implemented if combined with a rela-
tionship between long-term actual and potential evapotran-
spiration such as those summarized by Dooge (1992). For
example, Yates (1997) and others have combined (1) with the
simple relationship introduced by Turc (1954) and Pike
(1964):
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Eq. (2) relates long-term actual evapotranspiration mE to long-
term potential evapotranspiration mPE and precipitation mP.
Turc (1954) used data from river basins all over the world to
validate (2). Kuhnel et al. (1991) summarize the historical de-
velopment of relations of the form given in (2). Combining
(1) and (2) leads to a model of long-term streamflow as a
function of long-term potential evapotranspiration and precip-
itation.

Other types of annual water balance accounting models
have been introduced by Fiering (1967) and Frind (1969). Ea-
gleson (1978), Milly (1994a,b), and others have developed
process-oriented annual runoff models with both theoretical
and empirical underpinnings. Fiering (1967) and Frind (1969)
introduced simplistic water balance models that enabled them
to derive important statistical properties of the modeled
streamflow.

Review: Regional Models of Annual Streamflow

Perhaps the simplest regional approach for estimating an-
nual runoff is to transfer streamflow from a nearby catchment
by assuming the runoff per square mile is constant. As is
shown in this and many other studies (see Thomas and Benson
1970, for example) drainage area alone does not explain re-
gional differences in annual streamflow. Additional informa-
tion on land use, geomorphology, and climate is required.

Several regional approaches have attempted to incorporate
streamflow information from many sites in the neighborhood
of a particular watershed. Perhaps the most common regional
approach to estimating watershed runoff is through the use of
runoff maps, which report average annual runoff depth in
inches or other units (Busby 1963; Gebert et al. 1987; Bishop
and Church 1992; Arnell 1995) or runoff maps that report
annual runoff as a fraction of normal runoff for particular wa-
ter years (Busby 1963; Langbein and Slack 1979). Milly
(1994a,b) also developed maps of average annual runoff using
an analytic water balance model, which compared favorably
with the maps produced by Gebert et al. (1987) and generated
from actual runoff data.

Other regional approaches exploit spatial relationships
among annual average streamflow, climate, land use, and ge-
omorphology. Langbein (1949) introduced graphical relation-
ships between average annual streamflow, temperature, and
precipitation for the United States. Orsborn (1974) documents
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a graphical relation between the average annual flow, precip-
itation, and drainage area for stations near Vancouver, Wash-
ington. Investigators have more often used multivariate re-
gression procedures to develop empirical equations relating
mean annual streamflow to readily measured drainage basin
characteristics. Such multivariate regional statistical relation-
ships between climate, geomorphology, and streamflow have
been developed by many investigators for the purpose of es-
timating floodflows and lowflow statistics at ungauged sites.
For example, such regional relationships are so well developed
for floodflows that a computer program is now available to
implement them for all regions in the United States (Jennings
et al. 1994). Multivariate regional regression models that relate
the average annual streamflow to geomorphic and climate
characteristics have been developed by Thomas and Benson
(1970) for three selected regions in the western, central, and
southern U.S., by Hawley and McCuen (1982) for the western
U.S., by Vogel et al. (1997) for the northeastern U.S., by Ma-
jtenyi (1972) for areas of South Dakota, and by Lull and Sop-
per (1966) and Johnson (1970) for the New England region.
The above list of studies in the United States is not exhaustive.
Multivariate regression models have been developed by re-
gional offices of the U.S. Geological Survey for other regions
as well. Regional regression models of annual streamflow have
received considerable attention from a global perspective, as
evidenced by the books of Kalinin (1971), McMahon et al.
(1992), and Finlayson and McMahon (1992).

Hawley and McCuen (1982) cite numerous advantages to
the use of regional regression methods over runoff maps for
estimating annual streamflow. Regional regression methods,
unlike maps, produce objective equations that are easily pro-
grammed into comprehensive watershed planning procedures.
Regional regression equations that relate annual average
streamflow (or some other streamflow statistic) to geomorphic,
land use, and climatic basin characteristics are easily integrated
into and implemented using geographic information systems.
Regression methods offer the opportunity to document the ac-
curacy and uncertainty associated with water yield estimates,
including estimation of confidence intervals and information
content, as is shown here. Regression equations document the
relationship between climate, geomorphology, and streamflow;
hence they may be used to evaluate the impacts of climate
change on water yield. Perhaps the most important advantage
documented in this study is that regional models may be de-
veloped to quantify both the mean and variance of annual
streamflow, thus providing the complete probability distribu-
tion of streamflow for any watershed in a region. Given the
success of other studies by Hawley and McCuen (1982), Vogel
et al. (1997), and others to develop regression equations for
mean annual streamflow for selected regions in the United
States, it is our goal to develop regional models for all regions
of the country and to assess the accuracy of the resulting mod-
els on a nationwide basis. By developing regional regression
models for all regions of the United States, we quantify the
hydrology of the entire nation at an annual level.

Vogel and Wilson (1996) found that the gamma and log-
normal distributions provide a good fit to the distribution of
annual streamflow throughout the continental United States.
This study is a sequel to that study, because we approximate
the first two moments of the distribution of annual streamflow
for any watershed greater than about 2 km2 for all regions of
the U.S. Another goal is to assess the precision of the resulting
regression equations by deriving the information content as-
sociated with each equation in terms of the number of equiv-
alent years of streamflow record that would be required to
duplicate the regression equations. Although goodness-of-fit
statistics suggest that regression equations for annual stream-
flow are remarkably accurate, particularly in the more humid
JOURNAL OF
FIG. 1. Location of HCDN Stations and Water Resources
Regions in United States

regions of the country, this study documents that for many
western regions of the United States the equations are only
equivalent to a few years worth of streamflow data. The re-
gional regression equations used here are based on more than
drainage area alone, as is the case for annual runoff maps;
hence, the regression equations introduced here can provide
more accurate estimates of annual streamflow volumes at un-
gauged sites than can runoff maps. Runoff maps provide com-
parable accuracy to a regional regression when variables other
than drainage area are not included in the regression analysis.

REGIONAL DATABASES

Our approach is empirical, and our ability to relate annual
streamflow to climate and geomorphology results from exten-
sive use of regional data for the United States, so we begin
by describing those information resources. All annual stream-
flow and climate records are based on calendar years.

Streamflow Database

The streamflow dataset consists of records of average daily
streamflow at 1,553 sites located throughout the continental
United States (see Fig. 1). This dataset, termed the hydrocli-
matologic data network (HCDN), was developed by the U.S.
Geological Survey (Slack et al. 1993) for the purpose of study-
ing surface-water conditions throughout the land. The dataset
is available on CD-ROM from the U.S. Geological Survey and
is accessible on the World Wide Web at the following URL:
http://www.rvares.er.usgs.gov/hcdnocdrom/1stopage.html.

The development of the HCDN was a large undertaking that
included screening the data in a variety of ways. Data spe-
cialists at the U.S. Geological Survey (USGS) district offices,
as well as data specialists at the national headquarters, re-
viewed records on the basis of the following criteria: (1) Avail-
ability of data in electronic form; (2) record lengths in excess
of 20 years unless site location is underrepresented; (3) ac-
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TABLE 1. List of Climate and Geomorphic Basin Characteris-
tics

curacy ratings of records are at least ‘‘good’’ as defined by
USGS standards; (4) no overt adjustment of ‘‘natural’’
monthly streamflows by flow diversion, augmentation, ground-
water pumping, or other forms of regulation; and (5) only
measured discharge values are tabulated, reconstructed, or es-
timated records are not used. Sites included contained periods
of record that ranged from 6 to 115 years, with an average
record length of 45.5 years per site.

With all of the efforts at developing a database free of an-
thropogenic influences, the streamflows will still exhibit
trends. Lettenmaier et al. (1994) use Mann-Kendall tests to
document that significant trends in both annual and monthly
streamflows are apparent for broad regions of the United
States. They document the fact that annual streamflow in the
Northwest has tended to decrease while annual streamflow in
the Midwest has tended to increase. This study treats annual
streamflows as if they arise from a stationary process, even
though Lettenmaier et al. (1994) and Lins (1985) observe that
annual streamflows are probably not stationary time series.

Geomorphic Characteristics

Table 1 lists the geomorphic characteristics used in this
study. Drainage areas are obtained from the HCDN. Each
basin was also outlined using the standard algorithms avail-
able in the geographic information system Arcview 3.1
(‘‘Arcview’’ 1998) along with a 1 km digital grid elevation
map (DEM) for the continental U.S. Average spatial estimates
of the geomorphic characteristics (other than drainage area)
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listed in Table 1 are obtained using standard algorithms within
the Arcview 3.1 Spatial Analyst (Arcview 1998).

Climate Characteristics

Slack et al. (1993) include a file containing some climate
and watershed characteristics for each of the basins; however,
that computer file is now several decades old and the only
climate variables it includes are average minimum January
temperature, average annual precipitation, and intensity of 24-
h, 2-year storm. Since climate plays such an important role in
the hydrologic cycle, a special effort was made to obtain es-
timates of climate characteristics that are as accurate as pos-
sible using the current state of the art. Table 1 summarizes the
climate characteristics computed for this study. Spatially
weighted estimates of each climate characteristic in Table 1
are derived using a digital elevation map (DEM), a digital grid
for each climate characteristic, and a geographic information
system (GIS). The DEM is used to outline the boundaries of
all 1,553 drainage basins. The climate characteristics are es-
timated for the 1,553 watersheds from 2.5-min digital grids
using the PRISM (Daly et al. 1994, 1997) climate analysis
system. Table 1 reports the file names for each PRISM grid
used in our analyses. We used standard algorithms available
in the spatial analyst of Arcview 3.1 to estimate each climate
characteristic over each basin using the PRISM digital climate
maps. The climate datasets used here are based on the period
1961–90 with a 2.5-min (;4 km) resolution grid encompass-
ing the lower 48 states. The observational data consisted of
approximately 7,000 National Weather Service and cooperator
precipitation stations, 500 SNOTEL stations (USDA Soil Con-
servation Service 1988), and 2,000 additional data points from
state and local climate networks. The precipitation dataset was
generated using the PRISM modeling system (Daly et al. 1994,
1997). PRISM (parameter-elevation regressions on indepen-
dent slopes model) is a climate analysis system that uses point
data, a digital elevation model (DEM), and other spatial in-
formation to generate gridded estimates of annual, monthly,
and event-based climatic parameters. It has been designed to
accommodate difficult climate mapping situations in innova-
tive ways. These include vertical extrapolation of climate well
beyond the lowest or highest observation, reproducing gradi-
ents caused by rain shadows and coastal effects, and assessing
the varying effects of terrain barriers on precipitation. Origi-
nally developed in 1991 for precipitation estimation, PRISM
has been generalized and applied successfully to temperature,
snowfall, growing degree-days, and weather generator param-
eters, among others (Taylor et al. 1997). The precipitation da-
taset and other digital PRISM products are available on the
World Wide Web at http://www.ocs.orst.edu/prism/prismo
new.html.

Summary of Annual Streamflow Characteristics

Using the same HCDN database of streamflow used here
(Slack et al. 1993), Vogel and Wilson (1996) employed L-
moment diagrams to document that annual streamflow is well
approximated by either a Gamma or a lognormal distribution
throughout the continental United States. Markovic (1965)
also documented that the Gamma and lognormal distributions
provide good approximations for modeling annual streamflows
based on chi-square goodness-of-fit evaluations at 446 basins
in the western U.S. Since a two-parameter probability density
function is adequate to define the likelihood of annual stream-
flow, only the mean m and standard deviation s of the annual
flows are used here to summarize their pdf. Estimates of m
and s2 are obtained using the standard sample estimators q̄ =

qi /n and = (qi 2 q̄)2/(n 2 1), respectively.n 2 n( s (i=1 q i=1
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MULTIVARIATE REGIONAL REGRESSION ANALYSIS

This section summarizes multivariate relationships among
the streamflow statistics q̄ and , and the basin characteristics,2sq

including drainage area A, mean basin precipitation mP, mean
basin temperature mT, and the other basin characteristics listed
in Table 1. Initially, we attempted to fit a single model for the
entire continental U.S.; as expected such models performed
poorly. To reduce prediction errors, models for smaller regions
are developed.

In 1970, the (now defunct) U.S. Water Resources Council
defined 18 major regions in the continental U.S., shown in
Fig. 1, for the purpose of assessing the state of water resources
across the nation. Lins (1997) argues that these 18 regions,
which are based on the location of natural drainage divides,
do not necessarily reflect regions of uniform within-year
streamflow variability. However, Vogel et al. (1998) document
that the persistence, and to a lesser extent the year-to-year
variability, of streamflow is relatively homogeneous within
each of the 18 regions illustrated in Fig. 1.

We used ordinary least squares (OLS) and weighted least
squares (WLS) regression procedures to obtain an equation for
each of the dependent variables u = q̄ (m3/s) and u = (in2sq

m6/s2), where

b b b b0 1 2 mu = e ?X ?X ? ? ? X ?n (3)1 2 m

for each of the 18 regions. Here Xi, i = 1, . . . m = basin
characteristics; bi, i = 1, . . . m = model parameters; and n =
lognormally distributed model errors. The model in (3) is
termed a log-linear model because taking natural logarithms
yields

ln(u) = b 1 b ? ln(X ) 1 b ? ln(X ) 1 . . . 1 b ln(X ) 1 ε0 1 1 2 2 m m

(4)

where now the residuals ε = ln(n) are normally distributed with
zero mean and variance .2sε

Our goals in model development are to, first, maximize the
adjusted R2, second, minimize the prediction error measured
by , and third, include both geomorphic and climate char-2sε

acteristics while keeping the number of basin characteristics
used to a minimum. We used variance inflation factors to as-
sure that none of the models exhibits multicollinearity. The
influence statistic Cooks D (Cook and Weisberg 1982) was
employed to identify and remove sites that are known to ex-
hibit an unrealistic amount of influence on estimates of model
coefficients. We used the probability plot correlation-coeffi-
cient hypothesis test to assure that the model residuals ε are
approximately normally distributed. The model prediction er-
rors are quantified in terms of the standard deviation of each
estimated dependent variable u. If our interest were in ln(y)
we could then report the prediction error using an estimate of
the standard deviation of ε; however, our interest is in the
dependent variable u, not ln(u), and hence it is necessary to
estimate the standard deviation of u using the fact that
the errors n in (1) are lognormally distributed. Since the errors
n in (1) do not have a mean of zero, it is customary to re-
port their coefficient of variation as the average model pre-
diction error, where Cv(n) = SE = , which is2exp(s ) 2 1Ï ε

simply the relationship between the variance (in log space) of
a lognormal variable and its coefficient of variation (in real
space). The total variance of a model prediction is made2sε

up of three components—model error, sampling error, and
measurement error. Measurement errors are ignored here. Ste-
dinger and Tasker (1985) describe procedures for estimating
the model and sampling error component of the total predic-
tion variance. For each regional regression equation, the av-
erage model error is computed as the variance of the residuals
in the estimated model and the average sampling error is2se
JOURNAL OF
computed as , where p is the number of model parameter2ps /me

estimates and m is the number of sites in the region. Therefore
the average standard error of a prediction is estimated as

2SE = exp[s (1 1 p/m)] 2 1 (5)Ï e

where se = standard error of the residuals resulting from each
regression.

When a regression equation is used to estimate the mean or
variance of annual streamflow at an ungauged site, the actual
prediction error will also depend on how far removed the in-
dependent variables are from the mean values used in devel-
oping the regression. In other words, (5) only approximates
the average prediction error. Hardison (1971) and Stedinger
and Tasker (1986) document expressions that may be used to
estimate the variance of a prediction at an ungauged site. OLS
regression procedures ignore the cross-correlation among the
annual flow traces in a region as well as the variation in the
record lengths in a region. Stedinger and Tasker (1986) doc-
ument how generalized least squares (GLS) procedures can be
used to account for both of these additional factors.

With OLS regression procedures, each basin is treated
equally, implying that all observations of the dependent vari-
able are ‘‘equally reliable.’’ Tasker (1980) introduced WLS
regression to account for the fact that each basin has a different
streamflow record length leading to estimates of the dependent
variable with varying degrees of reliability. Using WLS re-
gression, Tasker (1980) shows that the weight wj assigned to
each set of observations of the dependent variable and its as-
sociated independent variables is proportional to the reciprocal
of the variance of an estimate of the dependent variable. Ig-
noring model error, the reciprocal of the variance of the de-
pendent variable q̄ (a sample estimate of the dependent vari-
able mq) is given by var21(q̄) = n/s2. Since the reciprocal of
the variance of the dependent variable is proportional to the
record length, we use the simple weighting scheme

ni
w = (6)mi

njO
j=1

where wi = weight for site i; ni = length of streamflow record,
in years, for site i; and m = number of sites in region. Eq. (6)
places a weight on each dependent variable in proportion to
the record length used to estimate those variables. A similar
approach is employed for the dependent variable .2sq

Results

One goal is to develop regional regressions for use in cli-
mate change investigations. Hence, our initial models employ
the independent variables drainage area A, mean annual tem-
perature mT, and mean annual precipitation mP. These regional
regression models for the mean and variance of annual stream-
flow are summarized in Tables 2 and 3, respectively. The ta-
bles report the model coefficients along with their t-ratios (in
parentheses), the maximum variance inflation factor (VIF) for
each model, the average prediction error (SE ), and the adjusted
R2. Note that in each Table, 2 and 3, two sets of regression
equations are reported for each region. The first regression
equation corresponds the regression with drainage area alone,
and the second regression includes the explanatory variables
precipitation and temperature. The adjusted R2 values for the
regressions for the mean annual streamflow based on drainage
area alone vary from 27.3 to 99.1%, with an average value of
only 71.4%. When mean annual temperature and precipitation
are added to these models, the R2 values range is 85.2–99.7%
with a mean of 94.5%. Clearly climate information is required
to obtain an accurate estimate of either the mean or variance
of annual streamflow.
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TABLE 2. Regression Models for Mean Annual Streamflow = e aAbmP
cmT

dm̂Q

Region
(1)

a
(2)

b
(3)

c
(4)

d
(5)

Maximum
VIF
(6)

Standard
error
(7)

Adjusted
R 2

(8)

Average record
length

(9)

1 23.9207 (261.7) 1.00537 (94.9) 0.15 99.1% 45.7
29.4301 (29.5) 1.01238 (138.7) 1.21308 (12.5) 20.5118 (24.0) 1.6 0.09 99.7%

2 23.8891 (245.4) 0.95184 (68.0) 0.28 96.8% 46.7
22.7070 (22.6) 0.97938 (145.2) 1.6251 (15.6) 22.0510 (219.0) 1.2 0.12 99.4%

3 24.0556 (236.5) 0.96561 (62.7) 0.33 95.7% 41.0
210.1020 (28.4) 0.98445 (119.5) 2.2599 (22.5) 21.6070 (29.5) 1.1 0.17 98.9%

4 23.4073 (211.6) 0.84183 (19.9) 0.32 87.9% 48.2
25.6780 (23.3) 0.96519 (41.6) 2.2889 (12.1) 22.3191 (28.4) 1.3 0.16 97.1%

5 24.1073 (228.7) 0.97165 (48.3) 0.32 96.1% 51.9
24.8910 (24.0) 0.99319 (134.8) 2.32521 (24.7) 22.5093 (213.8) 1.0 0.12 99.4%

6 22.9702 (216.8) 0.86864 (30.9) 0.27 95.3% 48.5
28.8200 (23.6) 0.96418 (57.7) 1.3581 (11.9) 20.7476 (22.0) 1.5 0.14 98.7%

7 24.7378 (221.8) 0.9588 (35.2) 0.45 88.4% 51.4
211.8610 (214.1) 1.00209 (121.6) 4.5596 (33.7) 23.8984 (218.4) 2.5 0.14 98.8%

8 24.2883 (214.4) 1.01724 (25.1) 0.22 96.7% 42.8
0.98399 (32.3) 3.1570 (4.3) 24.1898 (25.1) 2.3 0.15 98.5%

9 26.4370 (24.8) 0.9432 (5.3) 1.80 48.4% 36.3
0.81629 (17.6) 6.4222 (21.0) 27.6551 (224.2) 1.1 0.36 95.7%

10 22.8316 (25.9) 0.59199 (9.5) 1.61 40.2% 40.7
210.9270 (26.8) 0.89405 (27.7) 3.2000 (22.8) 22.4524 (29.3) 1.3 0.58 86.4%

11 23.6498 (24.3) 0.7657 (6.6) 1.96 27.3% 39.9
218.6270 (213.7) 0.96494 (36.4) 3.8152 (37.6) 21.9665 (27.2) 1.7 0.30 96.2%

12 23.1838 (25.4) 0.59662 (8.0) 1.53 41.3% 38.0
0.84712 (21.6) 3.8336 (16.9) 24.7145 (218.5) 1.4 0.56 86.9%

13 23.0703 (23.8) 0.5129 (4.0) 1.39 38.9% 39.5
0.77247 (10.9) 1.9636 (6.9) 22.8284 (28.5) 2.7 0.51 87.4%

14 23.2483 (29.5) 0.76625 (15.5) 0.63 84.9% 42.0
29.8560 (22.6) 0.98744 (24.6) 2.4690 (7.8) 21.8771 (23.9) 1.5 0.42 93.5%

15 24.5617 (25.0) 0.6964 (6.2) 1.21 72.0% 42.6
0.8663 (8.1) 2.5065 (2.9) 23.4270 (23.7) 1.4 0.81 85.2%

16 22.7240 (24.9) 0.57681 (6.3) 1.23 56.0% 43.0
0.83708 (16.5) 2.1672 (9.9) 23.0535 (211.5) 1.6 0.50 89.6%

17 22.4177 (26.1) 0.75318 (13.4) 1.54 52.9% 42.2
210.1800 (27.3) 1.00269 (53.6) 1.86412 (39.7) 21.1579 (24.9) 1.2 0.35 95.6%

18 25.2420 (212.8) 1.13814 (16.5) 1.59 67.5% 41.4
28.4380 (23.6) 0.97398 (33.7) 1.99863 (22.5) 21.5319 (24.6) 1.2 0.48 94.7%
A final attempt was made to obtain the best possible mul-
tivariate regression for the mean annual streamflow for each
of the 18 regions, using the independent variables in Table 1.
For this analysis, we employed both forward and backward
stepwise regression procedures to select the independent var-
iables from Table 1 having the greatest explanatory power.
Table 4 summarizes the final multivariate models for estimat-
ing the mean annual streamflow mQ. In all cases, the models
listed in Table 4 are an improvement over the models in Table
2, which are based on the independent variables A, mP, and
mT; however, the improvement is often only marginal.

Though the goodness-of-fit of the regression equations re-
ported in Tables 2–4 is remarkably good overall, improvement
is always possible. In an effort to identify the type of infor-
mation required to improve these relations, Fig. 2 illustrates
the standard error for each model computed from (5) versus
the dryness ratio, defined as actual annual evapotranspiration
(ET) divided by annual precipitation. Actual ET was computed
as the difference between precipitation and runoff. Annual pre-
cipitation for each region was obtained from the PRISM grid
described in Table 1. Long-term runoff is obtained for each of
the watersheds within the 18 regions using the regression equa-
tions based on A, mP, and mT in Table 2. Fig. 2 documents
quite clearly that regional models with higher standard errors
correspond to regions with high dryness ratios. Large dryness
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ratios correspond to the arid and semiarid regions. Therefore,
improvements in the models are likely to come from improve-
ments in our ability to describe watershed aridity, because Fig.
2 documents that it is differences in watershed aridity that
seem to explain the differences in goodness-of-fit of the re-
gional models.

Climate Elasticity of Streamflow

For the log-linear models developed here, it can be shown
that the model coefficients reported in Tables 2–4 represent
streamflow elasticities. For the regression models for the mean
annual streamflow, mQ = . Defining precipitation elas-b c daA m mP T

ticity as εP = [dmQ /dmP](mP /mQ), one can show that for this
simple model εP = c. Similarly, the coefficients b and d rep-
resent the elasticity of streamflow to drainage area and tem-
perature, respectively. For example, the coefficients for the
scale term (drainage area) in Table 2 are always very nearly
unity, showing that a 1% increase in scale leads to an approx-
imately 1% increase in streamflow. Similarly, the precipitation
elasticities are all positive and often quite large, indicating the
highly nonlinear response of streamflow to precipitation. As
expected, all coefficients for the temperature terms are nega-
tive, indicating that increases in temperature tend to increase
evapotranspiration, leading to decreases in streamflow.
JUNE 1999



TABLE 3. Regression Models for Variance of Annual Streamflow = e aAbmP
cmT

d2ŝ Q

Region
(1)

a
(2)

b
(3)

c
(4)

d
(5)

Maximum
VIF
(6)

Standard
error SE

(7)

Adjusted
R 2

(8)

1 210.0772 (270.4) 1.9175 (80.4) 0.33 98.9%
226.3900 (27.4) 1.97748 (75.9) 1.4482 (4.2) 0.9450 (2.1) 1.6 0.29 99.2%

2 210.1572 (296.2) 1.87622 (108.9) 0.36 98.6%
1.86987 (106.2) 0.4181 (2.2) 22.1064 (29.8) 1.2 0.28 99.2%

3 210.7839 (258.0) 2.01066 (78.0) 0.62 96.8%
241.9100 (216.5) 1.98535 (114.7) 3.3542 (15.9) 1.1217 (3.2) 1.1 0.40 98.6%

4 210.5840 (217.5) 1.83559 (21.0) 0.73 88.6%
1.91153 (19.5) 1.8639 (2.6) 23.9008 (24.5) 1.3 0.51 93.9%

5 210.9644 (251.3) 1.99251 (66.5) 0.52 97.7%
244.7100 (215.1) 1.98998 (110.4) 2.7482 (11.9) 2.3381 (5.2) 1.0 0.29 99.2%

6 29.3426 (225.1) 1.83746 (31.2) 0.59 95.5%
2.02185 (34.6) 2.0462 (5.2) 24.0546 (28.3) 1.5 0.34 98.4%

7 210.9258 (229.7) 1.89786 (41.3) 0.84 91.6%
244.4000 (214.8) 1.94925 (66.2) 3.3290 (6.9) 1.7264 (2.3) 2.5 0.50 96.5%

8 29.8317 (227.0) 1.9747 (39.7) 0.26 98.7%
1.96504 (32.9) 21.33998 (222.3) — 1.0 0.24 98.9%

9 213.1340 (26.7) 1.8238 (6.9) 4.45 62.9%
1.6545 (14.3.) 8.8103 (11.6) 211.2298 (214.2) 1.1 0.97 92.2%

10 29.0091 (210.7) 1.4427 (13.2) 7.27 56.4%
1.82874 (18.4) 3.8524 (9.7) 26.0639 (212.5) 1.3 1.70 85.3%

11 28.9230 (26.5) 1.6120 (8.5) 9.29 38.9%
237.3990 (212.1) 1.89742 (31.4) 5.9209 (25.6) 22.1974 (23.6) 1.7 0.82 93.2%

12 27.0913 (27.9) 1.2314 (10.8) 4.14 55.4%
1.6033 (25.2) 5.7729 (15.7) 27.4473 (218.0) 1.4 1.01 89.3%

13 27.7400 (25.8) 1.1021 (5.3) 3.85 53.8%
1.5137 (13.1) 2.9978 (6.5) 24.8379 (29.0) 2.7 1.13 86.7%

14 28.7850 (217.6) 1.54046 (21.2) 0.98 91.9%
1.78314 (21.7) 1.9821 (4.3) 23.9825 (27.0) 1.5 0.72 95.3%

15 29.9420 (25.2) 1.3897 (5.9) 10.16 66.5%
1.7282 (7.4) 5.0770 (2.7) 27.0460 (23.5) 1.4 2.52 86.3%

16 28.0534 (29.9) 1.3481 (10.2) 2.64 74.3%
1.72656 (23.6) 3.1127 (9.8) 25.0781 (213.2) 1.6 0.70 95.2%

17 27.9331 (213.0) 1.57582 (18.2) 4.15 66.1%
1.91574 (48.6) 2.86024 (28.8) 25.0060 (236.5) 1.2 0.63 96.1%

18 29.6617 (217.9) 1.95287 (21.5) 2.80 78.1%
1.7064 (29.6) 2.0952 (12.8) 23.6283 (220.9) 1.2 1.04 92.7%
Comparisons of Models at National Scale

Fig. 3 compares estimates of the mean annual streamflow
obtained from each of four different regional models with ob-
served streamflows. Figs. 3(a–c) compare estimated and ob-
served flows corresponding to the regressions developed here
with the following predictor variables: (1) A only; (2) A, mP,
and mT; and (3) all variables. Similarly, Fig. 3(d) compares
observed and estimated mean flows, using equations (1) and
(2), which were developed by others. Here, annual average
potential evapotranspiration mPE in (1) is estimated using an
equation developed by Turc (1954) which is mPE = 300 1
25mT 1 0.05 . Kuhnel et al. (1991) cite numerous studies3mT

that validated (1) and (2) for over a thousand catchments
worldwide. Our regional regression equations appear to be a
significant improvement over such empirical relationships in
the U.S. Another significant advantage of regional regression
equations is that one can estimate the standard error of esti-
mate that allows us to quantify the information content of each
regression, as is done in the following section.

EFFECTIVE RECORD LENGTH FOR
REGIONAL MODELS

In this section we derive expressions that approximate the
information content of each of the regional regressions. Infor-
JOURNAL O
mation content is defined as the effective record length that
would be required at a gauged site to estimate either q̄ or 2sq

with the same accuracy as the regional regression for that re-
gion. For this purpose, we assume that annual streamflows
arise from an AR (1) lognormal process (see Vogel and Wilson
1996; Vogel et al. 1998). Assuming that a sample of n annual
streamflow observations, qt, t = 1, . . . , n, arises from an AR
(1) lognormal model, then the mean and variance of those
samples are described by

2m = exp(m 1 s /2) (7)q y y

and

2 2 2s = exp(2m 1 s )[exp(s ) 2 1] (8)q y y y

where y = ln(q); mq and = mean and variance of flows; and2sq

my and = mean and variance of natural logarithms of flows.2sy

If q is AR (1) lognormal, then y = ln(q) is AR (1) normal, so
that

2y = m 1 r (y 2 m ) 1 y s 1 2 r (9)Ït y y t21 y t y y

where yt are normally distributed with zero mean and unit
variance, and ry is the lag-one serial correlation of the loga-
rithms. The serial correlation in log space ry is related to the
serial correlation in real space rq via
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TABLE 4. Regression Models for Mean Annual Streamflow Using All Basin Characteristics mQ = e a(1st Predictor)b(2nd Predic-
tor)c(3rd Predictor)d(4th Predictor)e(5th Predictor)f

Region
(1)

a
(2)

b
(3)

c
(4)

d
(5)

e
(6)

f
(7)

Maximum
VIF
(8)

Standard
error SE

(9)

Adjusted
R 2

(10)

1 Area mP Solar P-November
— 1.0129

(182.0)
1.0177

(6.0)
21.51261

(215.7)
0.2937

(2.4)
— 4.2 0.08 99.8%

2 Area Tmax P-July P-May
5.0515
(5.2)

0.980224
(150.0)

22.7114
(221.3)

0.8361
(6.4)

0.9352
(6.9)

— 1.9 0.12 99.4%

3 Area mP Annual
evaporation

Snow P-June

217.7550
(215.3)

0.986557
(119.3)

2.0653
(20.1)

20.6620
(23.1)

0.04297
(3.2)

0.2264
(2.2)

6.7 0.16 99.0%

4 Area mP Cool D
215.0090
(212.3)

0.96809
(42.9)

1.8888
(11.0)

20.35926
(28.9)

— — 1.2 0.15 97.3%

5 Area mP P-January Tmax
3.9260

(2.5)
0.997939
(152.8)

1.0030
(4.5)

0.7647
(6.9)

22.8710
(215.5)

— 7.4 0.11 99.5%

6 Area mP T-January-
minimum

211.359
(29.5)

0.96266
(61.1)

1.3746
(12.2)

20.4196
(22.4)

— — 1.4 0.14 98.8%

7 Area mP Cool D
226.5585
(246.0)

1.01256
(132.4)

3.80518
(38.9)

20.65629
(220.5)

— — 1.5 0.13 98.9%

8 Area mP sP P-May % Snow
220.9350
(26.8)

1.03835
(50.6)

2.2359
(3.9)

21.5733
(22.9)

1.7960
(3.6)

20.05195
(22.8)

4.2 0.09 99.5%

9 Area Annual
evaporation

P-September

— 0.84672
(19.5)

25.5864
(228.3)

3.3743
(19.8)

— — 2.6 0.31 96.8%

10 Area P-November Slope P-September
213.4592
(225.1)

0.92511
(35.9)

0.7742
(6.1)

0.50816
(7.5)

1.3205
(6.8)

— 6.6 0.45 91.7%

11 Area Heat D mP

238.4060
(225.3)

0.94032
(38.2)

0.8481
(7.8)

3.8781
(38.1)

— — 1.8 0.29 96.4%

12 — Area P-November P-October T-August
0.92543
(25.8)

1.5788
(7.6)

1.6319
(3.4)

22.8288
(212.0)

— 5.4 0.48 90.2%

13 A/Perimeter P-March
216.8060
(214.9)

1.4481
(13.7)

1.2833
(10.6)

— — — 1.1 0.44 90.5%

14 Area Snow
215.2070
(212.6)

0.94765
(26.4)

1.6706
(10.0)

— — — 1.3 0.38 94.5%

15 Area P-October P-August T-January
239.1670
(26.9)

0.78736
(12.9)

6.9176
(9.2)

24.0588
(27.1)

4.4457
(4.7)

— 2.3 0.55 96.8%

16 mP Area Elevation
232.1610
(26.9)

2.2588
(8.7)

0.8861
(16.2)

1.6641
(2.8)

— — 1.6 0.49 90.2%

17 Area mP Slope
216.1816
(243.8)

0.99076
(54.9)

1.65398
(34.1)

0.33273
(6.2)

— — 1.4 0.33 96.0%

18 Area May
evaporation

P-January P-June mT

— 0.93609
(35.3)

21.4303
(24.9)

1.5008
(13.5)

0.17065
(3.4)

21.1532
(25.5)

3.0 0.43 95.7%
2ln(1 1 r C )q v
r = (10)y 2ln(1 1 C )v

where Cv = sq /mq. Appendix I uses a Taylor-series approxi-
mation to (7) and (8) to derive an approximation to the vari-
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ance of an at-site maximum likelihood estimate (MLE) of mq

and , respectively, leading to2sq

2 2 22m ln(1 1 C ) 1 1 r 1 1 rln(1 1 C )q v y yvVar[m̂ ] > 1 (11)q F F GG2n 1 2 r 2 1 2 ry y
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FIG. 2. Relationship between Standard Error of Regressions
and Dryness Ratio

and

4 22m ln(1 1 C ) 1 1 rq v y2 2Var[ŝ ] = 2Cq vF F Gn 1 2 ry

21 1 ry2 2 21 [1 1 2C ] ln(1 1 C )v v F GG21 2 ry (12)

In general, the variance of an at-site sample estimate of the
mean or variance increases as Cv and rq increase and as n
decreases.

Hardison (1971, Table 3) and Moss and Karlinger (1974)
reported equations that summarize the effective record length
associated with a regression equation, when the dependent var-
JOURNAL OF
iable is an annual mean flow or the standard deviation of the
annual flow. However, their equations assume that the annual
flows are independent and normally distributed. In this study
we account for the dependence and nonnormal structure of the
annual flows that have been observed (Vogel and Wilson 1996;
Vogel et al. 1998).

The coefficient of variation of a regression estimate of the
mean or variance of annual streamflow can be determined
from (5). Rearranging (5) one obtains the variance of a re-
gression estimate of the mean of = and the2 2Var[m̂ ] m SER q

variance of a regression estimate of the variance as =2Var[ŝ ]R

, where SE 2 is defined in (5). Now equating these values2 2s SEq

with the variance of the sample estimates of mq and given2sq

in (11) and (12) leads the following relations for the average
effective record length associated with a regression estimate
of mq and :2sq

22 21 1 r 1 1 rln(1 1 C ) ln(1 1 C )y yv v
n > 1 (13)m̂ F F GG2 2R SE 1 2 r 2 1 2 ry y

2 1 1 r2 ln(1 1 C ) yv 2
2n = 2C Gŝ vF F4 2R 1 2 rC SE yv

21 1 ry2 2 21 [1 1 2C ] ln(1 1 C )v v F GG21 2 ry (14)

where SE 2 is given (5).
Fig. 4 reports effective record lengths computed using (13)

and (14) for each of the regression equations summarized in
Tables 2–4. Regional mean values of Cv and ry are obtained
from Vogel et al. (1998) and values of SE correspond to each
of the regression equations. The effective record length rep-
resents the length of record that would be equivalent to use of
the regression equation at a (typical) ungauged site. Fig. 4
documents that use of scale alone (drainage area) to predict
mean annual runoff is only equivalent to at most a few years
of streamflow information, and usually much less, especially
in the semiarid western regions. The figure also documents the
enormous increases in the effective record lengths obtained by
FIG. 3. Comparison of Estimated and Observed Mean Annual Streamflow Using Regression (a) with A Only; (b) A, P, and T; (c) All
Variables; and (d) Pike Relationship in (1) and (2)
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FIG. 4. Comparison of Effective Record Lengths Associated
with Regression Estimates of Mean and Variance, Using Scale
Only (A Only) versus Using Scale and Climate (A, P, and T ) and
All Variables

the inclusion of both precipitation and temperature into the
regression equations. Inclusion of both scale and climate in-
formation produces regression equations that are equivalent to
several years or sometimes even decades of streamflow infor-
mation. The increases in information that result from inclusion
of all variables in Table 1 is only marginal, in comparison with
the gains resulting from inclusion of average annual temper-
ature and precipitation.

CONCLUSIONS

This study has sought to develop general relationships be-
tween climate, geomorphology, and annual average streamflow
for the conterminous United States. Regression relationships
for the mean and variance of annual streamflow as a function
of drainage area, A, mean basin precipitation mP, mean basin
temperature mT, and other basin characteristics are developed
for each of the 18 water resource regions depicted in Fig. 1.
The resulting regional regression relationships exhibit adjusted
R2 values ranging from 90.2 to 99.8%, with an average value
of 96.2%. Tables 2 and 3 and Fig. 2 documented significant
increases in the precision of regional regression equations
when climate is added to scale to predict mean annual stream-
flow. The use of drainage area alone often led to regressions
with equivalent record lengths of only a few years or less,
whereas when precipitation, temperature, and other variables
are included in the models their precision dramatically im-
proves.

The regional relations introduced here provide significant
improvements over the use of runoff maps, because these re-
lationships account for variations in climate that cannot be
accounted for when using a runoff map. Furthermore, the re-
lationships introduced here have the added advantage that their
information content can be quantified using the concept of
effective record length. Future research seeks to develop im-
provements in the structure of regional models of annual
streamflow through the use of models that are more physically
based. Although physical models may lead to more reliable
and precise predictions, it may not be possible to quantify the
156 / JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING / MAY
equivalent record length associated with such models, as was
the case for the statistical models introduced here.

The goodness-of-fit of regional hydrologic models of annual
streamflow seems to depend significantly upon the dryness ra-
tio. These results indicate that improvements in our ability to
describe basin aridity should lead to improvements in our abil-
ity to estimate mean annual streamflow at ungauged sites. The
regional regression relationships introduced here are also
shown to be an improvement over previous empirical annual
models developed by Turc (1954), Pike (1964), and others
based on thousands of river basins worldwide.

APPENDIX I. DERIVATION OF (11) AND (12)

The following section documents first-order Taylor-series
approximations to the variance of MLEs for an AR (1) log-
normal model using the standard method of first-order vari-
ance estimation (Tung 1996).

Derivation of and . Approximating (7)2Var[m̂ ] Var[ŝ ]q q

and (8) with a first-order Taylor series about my and , and2sy

applying the variance operator, leads to
2 2

m̂ m̂q q 2Var[m̂ ] > Var[m̂ ] 1 Var[ŝ ]q y yF G F G2m sy y

m̂ m̂q q 21 2 ? Cov[m̂ , ŝ ]y yF G F G2m sy y (15)

and
2 22 2ŝ ŝq q2 2Var[ŝ ] > Var[m̂ ] 1 Var[ŝ ]q y yF G F G2m sy y

2 2ŝ ŝq q 21 2 ? Cov[m̂ , ŝ ]y yF G F G2m sy y (16)

where the estimators and are obtained from (7) and (8),2m̂ ŝq q

respectively, replacing my and with the estimators and2s m̂y y

in those functions. The necessary partial derivatives in (15)2ŝy

and (16), evaluated at my and , are2sy

2m̂ sq y
= exp m 1 (17)yF G

m 2y

2m̂ s1q y
= exp m 1 (18)yF G2s 2 2y

2ŝq 2 2= 2C exp(2m 1 s ) (19)v y y
my

2ŝq 2 2= [2C 1 1]exp(2m 1 s ) (20)v y y2sy

The logarithms of streamflow y follow an AR (1) normal pro-
cess, in which case Loucks et al. (1981 Appendix 3C) docu-
ment that

2 ns 2r (1 2 r )ny y y
Var[m̂ ] = 1 1 2 (21)y F F GG2n n (1 2 r ) (1 2 r )y y

4 22s 1 1 ry y2Var[ŝ ] > (22)y F G2n 1 2 ry

and
2Cov[m̂ , ŝ ] = 0 (23)y y

Eq. (21) can be simplified by noting that for most situations
encountered in this study, the term is neg-n 2(1 2 r )/(1 2 r )y y

ligible in comparison to n/(1 2 ry), so that
2 2s 2r s 1 1 ry y y y

Var[m̂ ] > 1 1 = (24)y F G F Gn 1 2 r n 1 2 ry y
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Substitution of (17)–(24) into (15) and (16) leads to the results
in (11) and (12).
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