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Estimates of mean annual watershed sediment discharge, derived from long-term measurements of sus-
pended-sediment concentration and streamflow, often are not available at locations of interest. The goal
of this study was to develop multivariate regression models to enable prediction of mean annual sus-
pended-sediment discharge from available basin characteristics useful for most ungaged river locations
in the eastern United States. The models are based on long-term mean sediment discharge estimates and
explanatory variables obtained from a combined dataset of 1201 US Geological Survey (USGS) stations
derived from a SPAtially Referenced Regression on Watershed attributes (SPARROW) study and the Geo-
spatial Attributes of Gages for Evaluating Streamflow (GAGES) database. The resulting regional regression
models summarized for major US water resources regions 1–8, exhibited prediction R2 values ranging
from 76.9% to 92.7% and corresponding average model prediction errors ranging from 56.5% to 124.3%.
Results from cross-validation experiments suggest that a majority of the models will perform similarly
to calibration runs. The 36-parameter regional regression models also outperformed a 16-parameter
national SPARROW model of suspended-sediment discharge and indicate that mean annual sediment
loads in the eastern United States generally correlates with a combination of basin area, land use pat-
terns, seasonal precipitation, soil composition, hydrologic modification, and to a lesser extent,
topography.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Suspended-sediment, nutrients, detritus, and other organic
matter delivered at appropriate concentrations are critical to the
health of river and stream ecosystems. In excess, suspended-sedi-
ment discharge can inhibit respiration and feeding of stream biota,
diminish the transmission of light needed for plant photosynthesis,
and reduce reservoir storage capacity (USEPA, 1986; Vorosmarty
et al., 2003). Conversely, low suspended-sediment discharges,
which often occur downstream of river modifications such as
dams, can result in the loss of native fish species and riparian
ecosystems, subsidence and loss of wetlands, and decreased nutri-
ent delivery to coastal estuaries (USEPA, 2003; Syvitski et al.,
2005). In addition, many contaminants including pesticides, met-
als, and polycyclic aromatic hydrocarbons (PAHs) readily sorb to
sediments and are able to resist degradation (USEPA, 2000).
Contaminated sediments can cause detrimental effects to the
ll rights reserved.

: +1 617 627 3994.
man), richard.vogel@tufts.e-

n Street, Suite 317, Brookline,
surrounding ecosystem including conversion from sensitive to pol-
lution-tolerant species (e.g., phytoplankton to cyanobacteria) and
by providing a source of contaminants to the aquatic food chain
(USEPA, 2004). According to US Environmental Protection Agency
(USEPA) National Water Quality Inventory Reports to Congress,
sediment/siltation was listed among the top five leading causes
of impairment to assessed rivers and streams in 1998, 2000, and
2002.

In order to manage suspended-sediment related water quality
issues in fluvial systems, it is important to accurately quantify sed-
iment transport at desired river locations. However, the vast
majority of rivers in the US have either no or sparse suspended-
sediment data. Larsen et al. (2010) report that the number of
daily-record sediment-monitoring stations operated by the USGS
declined from 364 to less than 100 between 1981 and 2005 due
in part to increases in sediment-monitoring costs. If a local
watershed manager, agency, or researcher has interest in reliable
records of long-term mean sediment discharge for a given site,
they must implement a rigorous and costly multi-year sediment
and river discharge monitoring program. Another solution to this
problem is to develop regional regression models that predict
long-term mean annual suspended-sediment discharge from read-
ily obtained basin characteristics. Though not a substitute for data
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collection, such models would enable estimation of suspended-
sediment discharge at most ungaged river locations. For example,
models of this form could be used to predict the loading of a
reservoir to arrive at an estimate of fill time or to develop an
approximate dredging schedule.

Regional regression models for predicting hydrologic statistics
at ungaged sites are not new, and are widely used for estimating
flood, average, and low river discharges (USGS, 2010). For example,
Vogel et al. (1999) developed regional multivariate regression
models for estimation of the mean and variance of annual stream-
flow at ungaged sites in the United States as a function of basin
area, mean basin precipitation and mean basin temperature. Those
relations developed for the mean annual streamflow for each of 18
US water resource regions resulted in adjusted R2 values ranging
from 90.2% to 99.8% and an average value of 96.2% across the con-
tinent. Analogous regional hydrologic models for predicting low-
flow and flood-flow statistics have been developed for all regions
of the US for most states by the USGS and have been in common
usage for the last decade (e.g., StreamStats; Reis et al., 2008). It is
hoped that the types of regional suspended-sediment models
introduced here will find similar use for broad regions of the US
and that in the not too distant future, all offices of the USGS will
routinely develop and update regional models of suspended-sedi-
ment discharge, in much the same way they now perform similar
analyses for flood and low-flow statistics. It should be noted that
this paper is focused on the estimation of suspended-sediment dis-
charge and does not consider bed load.

1.1. Review of previous regional regression models of suspended-
sediment discharge

In comparison to regional hydrologic models of flow statistics
described earlier, there are surprisingly few studies that have
sought to model mean annual river suspended-sediment discharge
on a regional scale. We were unable to find any previous regional
regression models of sediment transport developed strictly for ba-
sins in the eastern US; however, Hindall (1975) did develop regio-
nal regression models of average suspended-sediment yield for
Wisconsin using an array of independent variables including
topography, soils, land use, stream hydraulics, and climate condi-
tions. The resulting average model prediction error of estimate
for the models ranged from 28% to 38%.

Several global regression models of sediment discharge are
summarized below as well as the more complex SPAtially Refer-
enced Regression On Watershed attributes (SPARROW) model
developed for the conterminous United States.

1.1.1. Global regression models
Holeman (1968), Curtis et al. (1973), Milliman and Meade

(1983), and others have reported that a positive relation exists
between average annual sediment discharge and drainage area.
Milliman and Syvitski (1992) developed simple global models of
sediment discharge for watersheds in each of five different relief
classes of the form:

Q s ¼ cAd ð1Þ

where Qs is mean annual suspended-sediment discharge in kilo-
grams per second (kg/s), A is drainage area in square kilometers
(km2), and c and d are model coefficients. For these models,
Milliman and Syvitski (1992) reported coefficients of determination
ranging from R2 = 70% to R2 = 81%. Mulder and Syvitski (1996) con-
densed the five relief classes into a single maximum relief variable
R, expressed in kilometers (km), resulting in:

Q s ¼ aA1:41R1:3 ð2Þ
where a is a constant of proportionality. They reported an R2 = 67%
for the model in (2) based on a global database of measured sus-
pended-sediment discharge for 292 rivers.

To account for climatic variations in sediment discharge, Syvit-
ski et al. (2003) developed a mean basin temperature variable com-
puted from basin location (latitude, longitude) and the adiabatic
lapse rate. Multivariate regression models were then developed
using an updated global dataset of 340 river basins for each of
the major hemispheric climate regions (polar, temperate, and tro-
pic) of the form:

Qs ¼ a3Aa4 Ra5 ekT ð3Þ

where the a and k values represent regression coefficients and T is
average basin temperature in �C. They reported coefficients of
determination ranging from R2 = 54% to R2 = 76% for the area/re-
lief/temperature (ART) model (3).

The most recent and successful global model was developed by
Syvitski and Milliman (2007) using a database of 488 rivers. Their
model accounted for 63% of the land surface draining to the global
ocean and 66% of the predicted sediment discharge. That model
takes the form:

Qs ¼ xBQ :31A:5RT for T � 2 �C ð4aÞ

Qs ¼ 2xBQ :31A:5R for T � 2 �C ð4bÞ

where x = 0.02, Q is discharge (streamflow) in cubic kilometers per
year (km3/year). They report a coefficient of determination of
R2 = 95% for the model in (4) when applied to the global database
of 488 rivers. Much of the improvement in (4) over the previously
cited global models results from the B term, defined as:

B ¼ ILð1� TEÞEh ð4cÞ

where I is a glacier erosion factor, L is an average lithology factor
ranging from soft to hard, TE is the trapping efficiency of lakes
and human-made reservoirs, and Eh is a human-influenced soil ero-
sion factor. Without the B term in (4) the variables Q, A, R, and T only
accounted for 65% of the overall variance of the sediment discharge
observations. Syvitski and Milliman (2007) provide a detailed
explanation and derivation of B.

1.1.2. SPARROW national model of suspended-sediment
SPARROW is a watershed modeling tool developed by the US

Geological Survey intended for regional interpretation of water-
quality monitoring data. It uses a hybrid statistical/process based
approach to estimate pollutant sources and contaminant transport
in watersheds and surface waters (Smith et al., 1997) and has been
spatially represented by the Enhanced River Reach File 2.0 (E2RF1)
reach network; a database of 62,776 interconnected stream reach
segments comprising the surface water drainage system for the
United States (Nolan et al., 2003). For detailed information on
SPARROW modeling techniques see Schwarz et al. (2006) and
USGS (2009).

Schwarz (2008) utilized the SPARROW model to predict long-
term mean annual suspended-sediment discharge for watersheds
in the conterminous United States. The analysis was based on sed-
iment flux estimates compiled from 1828 long-term monitoring
stations operated by the USGS during the period 1975–2007, each
with at least 15 concentration measurements and standard errors
(associated with resulting mean annual discharge estimates) that
did not exceed 80% of the flux estimate. The SPARROW model
inputs include source coefficients (land-use classes and reach
length), land-to-water delivery factors (reach slope, soil permeabil-
ity, soil erodibility, precipitation, and streamflow), and stream
attenuation factors (reach travel time and reservoir settling
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velocity). The results indicate that agricultural land sources and the
stream channel are major sources of watershed sediment discharge
delivery, whereas reservoirs are major sites for sediment attenua-
tion. The SPARROW model achieved an overall R2 of 71.1% and a
root mean square error (RMSE) of 1.4 (e.g., the predicted sediment
flux in any given reach has an error of approximately 140%) using
data from the 1828 gaged sites located throughout the contermi-
nous United States.

1.2. Study purpose

A review of the literature revealed only one previous regional
regression model that predicts long-term suspended-sediment
yield and three previous global multivariate regression models re-
ported in (2), (3), and (4) that predict long-term suspended-sedi-
ment discharge using watershed characteristics. This is notable
given the large amount of readily accessible sediment and wa-
tershed data currently available, especially in the US. The global
models are shown later (Section 3.1) to be unsuitable for regional
prediction of sediment discharge within the US. One goal of this
preliminary study was to evaluate the potential for developing re-
gional models of suspended-sediment discharge using basin char-
acteristics similar to those identified by Syvitski et al. (2003) and
Syvitski and Milliman (2007). An alternative approach is to develop
a regional SPARROW model; however, such basin-wide character-
istics are not easily identified in the context of a spatially refer-
enced model (although it may be possible to develop spatially
referenced analogs of these metrics). Also, the methodology
adopted in this study is amenable to the study of suspended-
sediment frequency of occurrence statistics; an analysis that is
not easily implemented in the mass balance method used by
SPARROW. Finally, regionalization of a SPARROW model has the
potential problem that any individual region may lack the number
of sampling sites or sufficient spatial variation of the explanatory
variables to obtain statistically significant estimates for all model
coefficients. This concern is specifically addressed in recent work
by Schwarz et al. (2011).

The primary purpose of this study was to develop readily ap-
plied regional regression models of long-term river suspended-
sediment discharge for water resource regions 1–8, located within
the eastern United States. The resulting regional models may be
used to predict the long-term mean annual sediment discharge
of rivers as a function of readily available basin characteristics,
including morphology, topography, climate, hydrology, anthropo-
genic influences, soils, and land use at any river location with avail-
able upstream basin characteristics data. A secondary purpose of
this study was to provide guidance for future studies that seek to
improve upon the types of regional statistical models developed
here for other regions of the US. This was accomplished by explor-
ing (1) the homogeneity of suspended-sediment discharge and (2)
the primary drivers of watershed-based suspended-sediment dis-
charge in the eastern United States.
2 A USGS Water Year is defined as the 12-month period October 1, for any given
year through September 30, of the following year.
2. Methods and database

The development of regional regression models requires exten-
sive datasets gathered from multiple sources as described below.

2.1. Suspended-sediment discharge estimation

Estimates of long-term mean annual suspended-sediment
discharge for this study were computed from observations of sus-
pended-sediment (USGS water quality parameter 80154; Edwards
and Glysson, 1988; Guy, 1969) and discharge (streamflow) by
Schwarz (2008) using a standardized approach coded into the
Fluxmaster computer program (Schwarz et al., 2006), which imple-
ments the maximum likelihood regression approach developed by
Cohn (2005). The Fluxmaster program computes unbiased esti-
mates of detrended, long-term mean annual sediment discharge
at individual monitoring stations. The detrended estimates use
1992 as the common base year for all stations, this year falling in
the middle of the time period water-year2 (WY) 1975–2007 when
the suspended-sediment data used in the study were collected. Com-
plete details of the approach are outside the scope of this paper. See
Schwarz et al. (2006), Schwarz (2008), and Cohn (2005) for further
information on sediment discharge estimation methods and detrend-
ing techniques.

2.2. Suspended-sediment concentration and water discharge data

Following Schwarz (2008), of the 2242 monitoring sites on the
E2RF1 stream network for which USGS suspended-sediment con-
centration and daily streamflow data are available, 1828 were se-
lected with at least 15 suspended-sediment concentration values
during the period WY 1975–2007 and a standard error of the esti-
mated long-term mean annual suspended-sediment discharge (see
Cohn, 2005, and Schwarz et al., 2006) was less than 80%.

2.3. Basin characteristics data

The primary source of basin characteristics, including morphol-
ogy, topography, climate, hydrology, anthropogenic influence, and
soils characteristics were obtained from the Geospatial Attributes
of Gages for Evaluating Streamflow (GAGES) database developed
by Falcone et al. (2010). GAGES includes data compiled from USGS
streamgages and their upstream watersheds within the contermi-
nous United States with at least 20 complete years of uninter-
rupted streamflow records over the period 1950–2007. Several
hundred watershed and site characteristics were derived from na-
tional data sources for each of the 6785 streamgages included in
GAGES. Land use variables from 1992 were gathered from the Sch-
warz (2008) SPARROW study by accumulating upstream attributes
of each E2RF1 reach segment in accordance with the reach
network.

2.4. Combined dataset

The 1828 stations containing SPARROW long-term mean annual
suspended discharge estimates and land use data were merged
with the 6785 stations containing basin characteristics obtained
from GAGES to form a combined dataset of 1201 matched stations
sorted by the major water resources regions shown in Fig. 1. See
Table 2 for a count of stations used in each of the eight major east-
ern US water resources regions.

2.5. Multivariate regional regression analysis

Ordinary Least Squares (OLSs) regression procedures were used
to obtain regional equations for mean annual suspended-sediment
discharge Qs (kg/s):

Qs ¼ ebo Xb1
1 Xb2

2 � � �X
bn
n m ð5Þ

where X1 through Xn are basin characteristics, b0 through bn are
model coefficients, and m represents lognormally distributed model
errors. Taking natural logarithms yields:

lnðQsÞ ¼ bo þ b1 lnðX1Þ þ b2 lnðX2Þ þ � � � þ bn lnðXnÞ þ e ð6Þ



Fig. 1. Location of the 1201 matched GAGES/SPARROW stations in relation to major water resources regions in the conterminous United States.
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where the residuals, e = ln(m) are normally distributed with zero
mean and constant variance r2

e .
MINITAB3 Release 15 statistical software package (Minitab, 2007)

was used to perform a combination of backward elimination and for-
ward selection stepwise regression procedures and best subsets
regression to initially identify basin characteristics (predictors) that
best describe Qs. In order to avoid over parameterization, the number
of variables in each model was limited to a maximum of 6. Both
stepwise and best subsets regression are screening methods and
may not identify the optimal model. Accordingly, after identifying
potential models from the screening procedures, the variables and
coefficients making up the models were carefully examined to en-
sure that they physically made sense (e.g., a model was not accepted
if it predicted a decrease in sediment load due to increasing drainage
area). Regional models were selected that maximized the prediction
R2 and Nash Sutcliffe Efficiency (NSE) and minimized average model
prediction error (SE), while keeping the number of basin character-
istics used in each model to a minimum.

The prediction R2 is computed through use of the prediction
sum of squares (PRESS) metric, a validation type estimator of error
which, rather than splitting the dataset in half, iteratively develops
the regression equation with n � 1 observations and estimates the
value of the left out observation (Helsel and Hirsch, 2002). The pre-
diction R2, unlike R2, will generally not increase when adding addi-
tional explanatory variables to a multivariate regression model.
The NSE, commonly used in hydrology, provides a measure of both
the variance and root mean square error of the model. The value of
NSE may vary between negative infinity and 1 (Nash and Sutcliffe
1970). Variance inflation factors were used to ensure that none of
the models exhibited multicollinearity (Marquardt, 1970) and
Cook’s D was employed to identify influential observations (Belsley
et al., 1980). It is not advisable to remove influential sites without a
compelling reason, so sites identified as influential using the value
of Cook’s D were only removed if the standard error of their annual
suspended-sediment discharge exceeded 70%, following the rea-
soning that this was close to the standard error removal cutoff
specified earlier. Normal probability plots were created to ensure
that model residuals (e) were approximately normally distributed.
Finally, cross-validation was performed on the regression models
3 Any use of trade, firm, or product names is for descriptive purposes only and does
not imply endorsement by the US Government.
to evaluate their ability to adequately predict suspended-sediment
discharge in practice. Refer to Section 3.4 for additional details.
Helsel and Hirsch (2002) provide in-depth discussion of good-
ness-of-fit diagnostics and validation methods for multiple linear
regression methods.

The regression models were estimated in log space as shown in
(6); yet to implement the models, retransformation to real space is
needed, resulting in (5). Resulting discharge estimates exhibit
retransformation bias, which can be corrected by multiplying the
regression by the bias correction factor (BCF):

BCF ¼ exp
r2

e
2

� �
ð7Þ

introduced by Ferguson (1986) where r2
e is the variance of the

residuals in (6). The BCF in (7) was used in this study, though other
more complex approaches are often advocated (see Cohn, 2005, for
further discussion).

3. Results and discussion

3.1. Spatial extent of models

Initially, the combined SPARROW/GAGES dataset was used to
develop a single multivariate regression model to estimate long-
term mean annual suspended-sediment discharge for the entire
conterminous United States, but the model performed poorly with
an R2 of only 64%. This poor national result contrasts with previous
global suspended-sediment modeling efforts by Syvitski and Milli-
man (2007) that reported much higher values of R2. The national
model was compared with the models developed by Syvitski and
Milliman (2007) by employing the combined SPARROW / GAGES
dataset, which covers the conterminous United States, to fit a mod-
el of the form given by Syvitski and Milliman (2007) in (4). The
resulting model exhibited an R2 of just 28%. The poor performance
of the Syvitski and Milliman model on the US dataset is likely due
to the fact that their model was based on many large basins such as
the Amazon, Congo, and Mississippi. The mean drainage area and
sediment discharge reported in the global database are 25 and
45 times larger than those reported in the combined GAGES/SPAR-
ROW dataset, respectively. Additionally, the model developed by
Syvitski and Milliman (2007) was developed with the intent of
predicting suspended-sediment discharge in coastal zones rather
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than at any ungaged river location within a watershed, as is the
case here. These initial comparisons led us to develop regression
models of suspended-sediment discharge for the eastern US at
finer regional (spatial) scales.

3.2. Sediment discharge models for the eastern US

Table 1 summarizes the variables found to correlate with sus-
pended-sediment discharge in the study regions. The B term, de-
fined previously in (4c) and given in Syvitski and Milliman
(2007), was approximated using variables from the GAGES and
Schwarz (2008) SPARROW data sources.

Regression models for mean annual suspended-sediment dis-
charge of the form given in (5) were estimated for water resources
regions 1–8 and are summarized in Table 2. For example, sediment
discharge in kg/s is predicted in region 1 by:

Q s ¼ e�9:14DA1:07%Ag:265 ð8Þ

Note that model coefficients reported in Table 2 can be inter-
preted as elasticities; meaning that a 1% change in magnitude of
any of the independent explanatory variables results in a percent
change in sediment discharge given by its model coefficient, on
average, holding all other variables constant. For example, the
coefficient on drainage area, DA, in (8) is interpreted as follows:
A 1% increase in drainage area leads to a 1.07% increase in mean
annual sediment discharge, on average, holding the impacts of
agricultural land use, %Ag, constant. Elasticities have been used
in other areas of hydrology to interpret model coefficients (e.g.,
Sankarasubramanian et al., 2001).

3.2.1. Model goodness of fit
Across the eight regions considered Table 2 reports prediction R2

values that range from 75.9% to 92.7%, while NSE values range from
78.1% to 93.9%. The average prediction error (SE) of the models
ranges from 56.5% to 124.3%, confirming the inherent inaccuracies
Table 1
List of explanatory basin characteristics included in regression models to predict suspend
meters (m), centimeters (cm), inches per hour (in./h), millimeters (mm), and people (ppl).

Variable name Description

Geomorphic/topographic/hydrologic variables
DA Drainage area
ElevMean Mean watershed elevation
StrahlerMax Maximum Strahler stream order in watershed

Land use variables (1992)
%Wet Wetland, includes woody and emergent herbaceous wetlan
%Ag Agricultural land, includes cultivated crops, pasture, and ha
%Urb Urban land, includes low/high intenstiy residential land an

Climatic variables (period of record 1971–2000)
P-Feb, P-May, P-Jun Mean monthly precipitation for February, May, and June
P-Seas Precipitation seasonality index, ranges from even monthly

month (1)

Soils variables
%No200 Average value of percent by weight of soil material less tha
%No10 Average value of percent by weight of soil material less tha
%Sand Average value of sand content
Perm Average permeability

B Term
B IL(1 � TE)Eh, see Syvitski and Milliman (2007) and Roman (

I Glacial erosion factor (1 + .09Ag), where Ag is the percentag
L Dominant lithology factor, ranges from hard (.5) to weak (3
TE Upstream reservoir trapping efficiency, ranges from no sedim

calculated by the Brune Equation following Syvitski et al., 2
V = total upstream reservoir storage volume before 1990 (k
.5 km3 were not evaluated), and Q = average long-term mea

Eh Anthropogenic erosion factor, ranges from population dens

Note: Many other explanatory variables were considered than those included in this tabl
correlate with suspended-sediment discharge in the 8 study regions. Land use variables
associated with modeling suspended-sediment discharge identified
in previous studies (Schwarz, 2008; Syvitski and Milliman, 2007).
Regional regression models developed for estimating other hydro-
logic statistics, such as mean annual streamflow generally perform
better. For example, the prediction error of 10 streamflow statistics
including flood, daily discharge, and low-flow were estimated using
regional regression techniques in the Potomac River Basin by Tho-
mas and Benson (1970). The resulting models exhibited prediction
errors ranging from less than 10% for average annual flow to greater
than 100% for 20-year 7-day low-flow, with an average prediction
error of roughly 35%. Thus estimation of mean annual suspended-
sediment discharge using regional regression methods appears to
result in models with average prediction errors that are similar to
those developed for low-flow statistics.

Fig. 2 illustrates model goodness of fit by comparing the perfor-
mance of (A) the eight individual regional models plotted on a sin-
gle graph to (B) the semi-national model (labeled as ‘‘1–8’’ in Table
2) containing all 8 regions. Results indicate that the individual re-
gional suspended-sediment discharge models are more meaningful
and accurate than the single, semi-national model based on overall
reported NSE values of 86.7% and 80.7%, corresponding to the re-
gional and single semi-national plots, respectively, in Fig. 2. The
disparity in the model results depicted in Fig. 2 is due in part to
the wide range of variables that comprise the regional models.
For example, sediment discharge in region 1 is adequately ex-
plained using only drainage area and agricultural land use area,
whereas sediment discharge in region 3 requires a different set
of explanatory variables including drainage area, average May pre-
cipitation, and average soil permeability.

3.2.2. Guidance on application of resulting models
All models developed in this study are multivariate statistical

models and extrapolation outside the bounds of the explanatory
variables used to develop the models is not recommended. For
example, caution should be exercised when using the regional
ed-sediment discharge. Unit abbreviations are as follows: square kilometers (km2),
GAGES data are from Falcone et al. (2010); SPARROW data are from Schwarz (2008).

Units Data source

km2 GAGES
m GAGES
Unitless GAGES

ds Percent SPARROW
y Percent SPARROW

d commercial/industrial/transportation land Percent SPARROW

cm GAGES
precipitation (0) to all precipitation falls in a single Unitless GAGES

n 3 in. in size and passing a No. 200 sieve (.074 mm) Percent GAGES
n 3 in. in size and passing a No. 10 sieve (2 mm) Percent GAGES

Percent GAGES
cm/hr GAGES

2010) for additional calculation details Unitless GAGES/
SPARROW

e of the drainage basin covered with pernnial ice/snow Unitless GAGES
) Unitless GAGES
ent trapping (1) to majority of sediment is trapped (1),
003 such that TE ¼ 1� ð:05=Ds0:5

r Þ; where Dsr = V/Q,
m3) (Note: reservoirs with storage volumes of less than

n annual discharge (km3/year)

Unitless GAGES/
SPARROW

ity > 200 ppl/km2 (.3) to <200 ppl/km2 (1) Unitless GAGES

e (i.e., temperature, dam density, and others). This list represents variables found to
were computed as a percentage of total basin drainage area.



Table 2
Regression models for estimation of mean annual suspended-sediment discharge (expressed in kilograms per second) by region.

Variable Region

1 2 3 4 5 6 7 8 1–8

Intercept �9.14 �16.44 �12.95 �39.25 �1.94 �14.00 �25.26 �16.17 �20.10
(�22.96) (�13.26) (�9.03) (�5.98) (�1.63) (�15.08) (�13.62) (�6.06) (�30.71)

DA 1.07 1.07 .832 .988 1.25 1.17 1.10 1.06
(20.33) (22.21) (18.81) (17.75) (18.69) (14.64) (7.91) (36.61)

MeanElev �1.21
(�4.64)

%Wet �.614 �1.68
(�5.51) (�6.11)

%Ag .265 .344 .680
(3.78) (4.01) (4.85)

%Urb .820 .321
(6.70) (6.48)

P-Feb 4.67
(4.18)

P-May 3.38 3.60 2.44
(6.04) (4.52) (9.18)

P-Jun 6.67
(4.70)

P-Seas .341
(4.96)

%No200 2.01 2.19 1.77
(5.69) (6.14) (16.01)

%No10 3.60
(3.51)

%Sand .893 1.13
(2.77) (4.93)

Perm �0.48
(�9.28)

B .538 .346 .419 .199
(5.38) (3.53) (2.70) (4.62)

StrahlerMax 5.81
(11.28)

n 30 96 161 54 101 41 78 23 590
Adj-R2 93.4% 88.2% 79.1% 80.3% 77.4% 93.0% 80.8% 87.0% 80.5%
Pred-R2 92.7% 87.4% 78.5% 78.0% 75.9% 91.1% 79.3% 80.3% 80.2%
NSE 93.9% 88.6% 79.5% 81.8% 78.1% 93.7% 81.8% 90.0% 80.7%
RMSE 0.526 0.830 0.928 0.839 0.876 0.528 0.774 0.533 0.966
SE 56.5% 99.7% 116.8% 101.0% 107.4% 56.7% 90.5% 57.3% 124.3%
BCF 1.134 1.393 1.522 1.380 1.446 1.132 1.325 1.119 1.587

Note: The table reports model coefficients (b’s in Eqs. (5) and (6)) along with their t-ratios (in parentheses), the number of stations used to develop the regression models in
each region (n), adjusted and prediction R2 (adj-R2 and pred-R2), Nash–Sutcliffe Efficiency (NSE), root mean square error (RMSE), Bias Correction Factor (BCF) and the average
prediction error, expressed as a percent of the prediction, (SE) for each model. A t-ratio is the ratio of the estimated model coefficient (b) to its standard error. All goodness of
fit statistics were computed and reported in logarithmic space except for the SE which was retransformed and computed in real space. All coefficients were significant at the
1% level. See Table 1 for variable definitions.
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regression models to predict suspended-sediment discharge at sta-
tions with upstream drainage areas smaller or larger than those
listed in Table 3 because the models were not estimated for water-
sheds outside the reported ranges. In such instances, the use of
process-based simulation methodologies such as GeoWEPP
(LESAM, 2010) is recommended. In addition, the regional regres-
sion approach used in this study relies on average basin values
upstream of each station. As a result, limitations inherent in this
approach include (1) spatial variation of variables within basins
(e.g., soil properties) and (2) the spatial arrangement of sediment
sources and sinks in each basin. Spatially-distributed models such
as SPARROW are able to directly address the effect of spatial vari-
ability directly by calculating suspended-sediment discharge on a
reach-by-reach basis.

3.3. Discussion of model results

The model explanatory variables quantified in Table 2 indicate
that suspended-sediment discharge in the eastern United States
generally correlates with a combination of drainage area, land
use, seasonal precipitation, soil composition, hydrologic modifica-
tion, and to a lesser extent, topography (e.g., mean elevation). Of
all explanatory variables considered, a unit change in monthly
average precipitation results in the greatest change in magnitude
of long-term suspended-sediment discharge. Significant in five of
the nine models, model coefficients associated with monthly aver-
age precipitation variables range from 2.4 to 6.7, indicating a
highly positive and non-linear response of sediment discharge to
monthly average precipitation. The highly non-linear sensitivity
to rainfall indicates that even a small increase in seasonal rainfall
can dramatically increase long-term suspended-sediment
discharge in many regions. Such a result may be quite important
in future studies that seek to evaluate the impact of climate change
on sediment delivery rates.

3.4. Model cross validation experiments

Cross-validation was performed on the regression models to
evaluate their ability to adequately predict suspended-sediment
discharge in practice. A repeated random sub-sampling validation
method was performed on each model by splitting each regional
dataset randomly into training (75%) and validation (25%) datasets.
A regression was performed on each training data set using the
independent variables comprising each regression model reported
in Table 2. This training regional regression model was then used
to estimate sediment discharge at all watersheds in the validation
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Fig. 2. Comparison of mean annual suspended-sediment discharge regression models using (A) 8 individual regions and (B) All 8 regions combined into a semi-national
model. Qs is mean annual suspended-sediment discharge, expressed in kilograms per second (kg/s), and NSE is the Nash–Sutcliffe Efficiency statistic. Observed Qs refers to the
values computed by Fluxmaster as discussed in Section 2.1, while Predicted Qs refers to values computed using the multivariate regression models presented in Table 2.

Table 3
Upstream drainage area statistics expressed in square kilometers (km2), by region
(see Fig. 1 for the definition of each region).

Region Min. Max. Median

1 25 25,050 574
2 19 47,364 641
3 20 49,802 1384
4 107 16,409 984
5 33 45,577 811
6 14 13,215 355
7 106 42,041 2811
8 131 13,843 2073
1–8 14 49,802 1126
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dataset. An issue inherent in random sub-sampling is that some
observations may never be selected in the validation sub-sample,
while other observations may be selected many times. The random
50%

60%

70%

80%

90%

100%

1 (30) 2 (96) 3 (161) 4 (54)

N
SE

Reg

75% Trainin

Fig. 3. Cross-validation showing average Nash Sutcliffe Efficiency (NSE) of 1000 random
The number of stations used to model each region is denoted as (n). For example, 72 si
sub-sampling procedures were repeated 1000 times to ensure that
any such disparities were kept to a minimum. Fig. 3 displays the
results from the 75% training, 25% validation split through compar-
ison of average Nash Sutcliffe Efficiency values obtained from the
1000 dataset splits. Fig. 3 demonstrates that in most cases, only
small reductions in model efficiency result when the validation
dataset is used, leading to the overall conclusion that the models
will be effective in predicting sediment discharge in practice, at un-
gaged sites where an average error of model prediction over 100%
is acceptable.

There is a large difference between the calibration and valida-
tion average NSE in region 8, which is likely due to the small
number of sites in that region (23 sites). There were only six sites
in each 25% validation sub-sample in that region, making validation
results suspect. Region 8 only achieved a prediction R2 of 53.3% after
three independent variables had been added to the regression. It
5 (101) 6 (41) 7 (78) 8 (23) 1-8 (590)

ion (n)

g 25% Validation

sub-sampling runs using a 75% training, 25% validation dataset split for each model.
tes were used for training and 24 were used for validation in region 2.
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Fig. 4. Comparisons of the Nash–Sutcliffe Efficiency (NSE) statistic between
regional regression models and predictions from the national SPARROW model
for suspended-sediment. Note that the 1–8 value plotted as ‘‘This Study’’ was
computed using all eight of the regional regression models rather than the semi-
national ‘‘1–8’’ model reported in Table 2.
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took five independent variables to achieve a prediction R2 of 80.3%,
which is a rather excessive number of variables to include in a mod-
el based on only 23 sites. It is recommended that any results ob-
tained from the region 8 model be treated with caution.
Fig. 5. Contour map of the coefficient of variation of
3.5. Regional regression model comparisons with SPARROW

The multivariate regression models developed as a part of this
study (see Table 2) employ sediment discharge estimates from
Schwarz (2008), which were computed using Fluxmaster for a na-
tional SPARROW sediment-discharge model. Thus, direct compari-
sons could be made between the two modeling approaches. Fig. 4
displays the computed NSE of the two competing models by region
in log space.

The uniformly larger NSE values shown in Fig. 4 indicate that
the multivariate regression models reported here generally predict
mean annual suspended-sediment discharge with greater accuracy
than the SPARROW model. It is likely that models developed here
performed better than the SPARROW model because the regional
models employ a combined 36 parameters to estimate sus-
pended-sediment discharge specifically for the eight eastern re-
gions of the US, whereas the SPARROW model uses only 16
parameters and was estimated for the entire conterminous United
States. For example, the R2 of the initial national regression model
discussed previously was 64% compared to an R2 of 71.1% for the
national SPARROW model. Future work will investigate regionali-
zation of the national SPARROW model for suspended-sediment
discharge predictions using recently developed methods for the
national nutrient SPARROW models (Schwarz et al., 2011); the
present analysis demonstrates the potential improvement in
estimated daily suspended-sediment discharge.



Table 4
Regression Goodness of Fit Based on Coefficient of Variation (CV) Classes, Goodness of
Fit statistics include prediction R2 (Pred-R2), adjusted R2 (Adj-R2), Nash–Sutcliffe
Efficiency (NSE), and average prediction error expressed as a percent of the prediction
(SE); n is the number of monitoring stations in each CV class. All coefficients reported
by these models are significant at the 1% level.

Model CV n Pred-R2 Adj-R2 NSE SE

1 0–5 269 87.7% 88.1% 88.4% 98.9%
2 5–10 160 84.9% 85.8% 86.3% 99.8%
3 >10 161 74.4% 75.3% 76.0% 110.8%
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model accuracy that may be realized through such a regional-scale
analysis. In fact, a recent SPARROW model of suspended-sediment
flux in the Chesapeake Bay watershed, which encompasses much
of region 2, reported a RMSE of 0.96 (Brakebill et al., 2010). This
is comparable to the average model prediction error reported for
the region 2 regional regression model seen in Table 2.

3.6. Influence of sediment discharge variability on regression precision

The definition of regions in this study is somewhat arbitrary be-
cause they were simply based on the major water resource regions.
Vogel et al. (1998) report that the persistence and year-to-year var-
iability of annual streamflow are relatively homogeneous within
each of the 2-digit US hydrologic regions. However, no studies have
evaluated the homogeneity of suspended-sediment discharge at a
regional or national scale. Variability was estimated using the coef-
ficient of variation, CV, of the daily discharge defined as the stan-
dard deviation divided by its mean. Fig. 5 illustrates a contour
map of values of CV for three different classes of CV: 0–5, 5–10,
and greater than 10.

The gross variations in CV of daily suspended-sediment dis-
charge illustrated in Fig. 5 indicate that unlike annual streamflow,
daily sediment discharge is not homogenous throughout regions
1–8. To test the impact that variations in sediment discharge have
on model precision, regression models were developed for the re-
gions associated with each of the three classes of CV. The results
(Table 4) indicate that improved regressions were obtained for
low CV stations (CV < 10) over regressions for all regions reported
as the ‘‘1–8’’ model in Table 2 (prediction R2 of 80.2%). Clearly, the
largest challenge to improving regional regressions in the future
will be discerning a better way to predict suspended-sediment dis-
charge for regions with highly variable suspended-sediment
discharge.

4. Conclusions

This is the first study we are aware of that has developed regio-
nal regression models for predicting mean annual sediment dis-
charge at ungaged river locations in the eastern US through use
of easily obtainable watershed characteristics. The resulting rela-
tions exhibit prediction R2 values ranging from 76.9% to 92.7%,
with an average value of 82.9% across the eastern US. The average
prediction error (SE) of the models ranges from 56.5% to 124.3%,
which is analogous to the errors associated with regional regres-
sion models for estimating low-flow statistics. These results dem-
onstrate the feasibility of predicting suspended-sediment
discharge from relatively simple regression equations of the type
used in other hydrologic regionalization studies for estimating
flood and low-flow statistics. The results of this study represent
an improvement in prediction accuracy over previous modeling ef-
forts, which sought to predict sediment discharge using worldwide
regression models and a national SPARROW model.

The models indicate that sediment discharge in the eastern US
is generally correlated with basin area, land use patterns, seasonal
precipitation, soil composition, hydrologic modification, and to a
lesser extent, topography. Among all basin characteristics consid-
ered, suspended-sediment discharge delivery across the eastern
US is most sensitive to changes in seasonal rainfall and soil
composition.

The regional regression models for estimating suspended-sedi-
ment discharge developed here are easy to apply once upstream
basin characteristics have been obtained, and have the potential
to be useful for a variety of applications by a variety of constituen-
cies including policy makers, environmental scientists, water re-
source engineers and managers, the agriculture industry, and
state and federal agencies. Cross validation of resulting models
confirmed that the models are expected to perform similarly to cal-
ibration runs. The exception to this is the region 8 model, which
performed poorly in cross-validation experiments, likely due to
poor spatial coverage of suspended-sediment and flow data within
southern portions of the region.

To advance this research further, the following steps are sug-
gested: (1) Determine the cause(s) of the high variations in sedi-
ment discharge depicted in some regions shown in Fig. 5. (2)
Develop indicators of homogeneous suspended-sediment behavior
and use those indicators to identify regions in the United States in
which the variability of sediment discharge is homogenous. (3) Ex-
pand the combined GAGES/SPARROW database with a richer class
of explanatory variables identified in this study that are expected
to be correlated with sediment discharge. (4) Develop a suite of
models that predict the mean and variance of annual suspended-
sediment discharge as a function of basin characteristics for the
entire nation based on identified homogeneous regions of sus-
pended-sediment discharge behavior, while constraining models
to each include a single variable from each identified watershed
characteristics class (e.g., drainage area, land use, soils, precipita-
tion, and topography). Estimates of both the mean and variance
of suspended-sediment discharge will enable one to develop a
more complete description of the stochastic properties of sediment
discharge at ungaged sites.
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