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quantities of water. Such procedures were advocated by Maass, et al.
(19). The use of a stochastic streamflow model in conjunction with Rippl's
method or its automated equivalent sequent peak algorithm leads to a
storage-reliability-yield relationship. Generalized analytic storage-reli-
ability-yield relationships are now available (33,34) that do not require
implementation of a stochastic streamflow model. Derived storage-reli-
ability-yield relationships must be used cautiously, as evidenced by the
substantial variability associated with design storage, yield, or reliability
estimates based upon even relatively long hydrologic records (15,16,33,35).

Although stochastic streamflow models have been available for ~ few
decades, the most common approach in U.S. practice has been to base
estimates of the required capacity of a storage reservoir upon application
of the 'sequent peak algorithm (or Rippl's mass curve) to the historical
streamflow record. While this approach is still advocated in recent text-
books (22,27,30,31), it ignores the reliability associated with the resulting
reservoir design capacity .Other textbooks (17,18) discuss the application
of stochastic streamflow models in conjunction with the sequent peak
algorithm to generate the cumulative distribution function (cdf) of re-
quired reservoir storage capacity S, corresponding to a fixed planning
period of length N years. The cdf of S describes the relationship between
the required storage capacity to meet a stated yield and the probability
of failure-free reservoir operation p over an N-year planning period. Thus
p is a measure of the reliability with which a reservoir of size S will
provide failure-free operation over an N-year period.

It is the task of the water resource engineer to determine the reservoir
storage capacity sufficient to meet the objectives of decision makers and
society .In these situations, the engineer is often asked to convert state-
ments of reliability over ~n N-year planning period to equivalent state-
ments of annual reliability Ra , or vice versa. Relationships between the
annual reliability and the reliability over an N-year planning period as-
sociated with the design of flood control structures were developed by
Thomas (29) and further analyzed by Gumbel (6) and Yen (37). Those
nonparametric relationships depend upon the fundamental assumption
that the annual peak streamflows are independent and identically dis-
tributed random variables. These relations are in widespread use as evi-
denced by their inclusion in many textbooks on hydrology (2,8,18).

The relationship between ,annual reservoir system reliability Ra and
the probability of failure-free reservoir operations p over an N-year plan-
ning period is more complex than for flood events because the sequence
of reservoir surplus and failures is characterized by a depepdent process.
Klemes (12,13} derived reliability indices for the complex structure of
sequences of reservoir surplus and failures that arise from reasonable
assumptions regarding the character of the inflow and demand pro-
cesses. Although the work of Klemes may be theoretically correct, the
expressions that result are extremely complex and thus difficult to im-
plement. The reliability indices developed by Klemes are difficult to im-
plement because reservoir system states ar~ modeled by an m-state Mar-
kov chain; e.g., Klemes (13) used m = 10 states of the reservoir system
contents in his numerical example.

The primary objective of this study is to develop reliability indices for
water supply systems that are easily implemented, yet characterize the
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likelihood of reservoir system failures, analogous to the relationships de-
veloped for flood events now in widespread use. To accomplish this
task, the m-state Markov chain model formulation employed by Klemes
(13), Moran (20), and others must be simplified considerably at the po-
tential expense of misrepresenting the complex structure of reservoir
system failures. Hirsch (9) and Stedinger, et al. (26) have employed a
two-state Markov model to characterize sequences of water supply sys-
tem surplus and failures. Jackson (11) also employed a two-state Markov
chain to represent sequences of drought lengths (failure durations). The
two-state Markov chain formulation of the sequence of reservoir system
surplus and failures advocated by Stedinger, et al. (26) and Hirsch (9)
is employed in this study to develop new indices of reservoir system

performance.

A TWO-STATE BERNOULLi MODEL OF RESERVOIR SYSTEM STATES

In a given year, a reservoir system may be in either one of two states:
(1) Failure; or (2) regular operation. Here a failure year is considered one
in which the stated yield could not be met, and a regular year is one in
which the stated yield is provided or exceeded. The assumption of only
two reservoir system states dictates that the reservoir system must be
able to pass from one state to the other in any given year. Consider, for
example, a reservoir system whose storage capacity is greater or equal
to the annual system demand. If such a reservoir system were full at
the end of one year, a failure in the following year would be impossible
even during an extremely dry year. However, many reservoir systems
are subject to failure in every year, and it is these systems that are of
interest here.

Now consider a reservoir system with independent annual inflows.
Yevjevich (38) found that the no-persistence hypothesis could not be
rejected at the 5% significance level for more than 80% of 446 annual
streamflow records in western North America. Therefore, independence
of the annual inflows for many reservoirs in the western U.S. is a plau-
sible assumption. Now, if such a reservoir system refills every year and
inflows are independent, then a failure in a given year occurs only if
the demand exceeds the seasonal inflow plus the fixed storage capacity .
Therefore, for a fixed demand, each year becomes a Bernoulli trial with
a fixed probability of a failure. The trials are independent, and a fixed
probability of a failure exists in any given year. The Bernoulli failure
model does not acknowledge any persistence in sequences of reservoir
system surplus and failures. In practice, large reservoir systems do not
always refill after failures, and annual inflows often exhibit serial cor-
relation; thus a more realistic model would exhibit persistence of the
failure sequence,s.

A TWO-STATE MARKOV MODEL OF RESERVOIR SYSTEM STATES

Acknowledgment of the persistence of sequences of reservoir system
failures requires a model that is more complex than the Bernoulli failure
model. To keep the analysis simple, a two-state Markov chain represents
the next level of complexity, requiring one more parameter. More so-
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system state in the preceding year y -1; more complex models are pos-
sible.

As y increases, Xy reaches a steady-state, and the solution to Eq. 2
becomes

~~Xy= l~,~J (3)

A derivation of this result may be found in Jackson (11). Thus, in the
long run, the probabilities that the reservoir system will be in the failure
or regular state are I/(r + f) and r/(r + f), respectively, regardless of
the initial state of the reservoir system. Thus r/(r + I) is the steady-state
probability of regular operation or the annual reliability Ra .

In general, reservoir system failures are persistent phenomena; there-
fore the probability that the system remains in the regular state from
one year to the next, 1 -I, must be greater than the annual reliability ,
Ra = r/(r + I>. Similarly, persistence dictates that (1 -r) > I/(r + I>.
This can only occur if (r + f) < 1. In fact, if (r + f) = 1, then I = (1 -
r), r = (1 -f), and the two rows of the probability transition matrix in
Eq. 1 are identical. In this case I and r are, respectively, the probabilities
of failure and regular operatiot:l in each and every year .

When the sequent peak algorithm is employed to determine the small-
est reservoir system design capacity required to assure regular or failure-
free operation over an N-year planning period with probability p, then
p becomes a steady-state probability .This is due to the fact that the se-
quent peak algorithm wraps the streamflow record around which gen-
erates the steady-state solution to the problem posed. If this double-
cycling of the streamflow record is not performed, the resulting solution
would not necessarily be a steady-state solution.

Now suppose we choose a reservoir capacity equal to Sp , using the
sequent peak algorithm. Then the steady-state probability of regular
(failure-free) operation over an N-year planning period, p, equals the
probability of normal operation the first year r/(r + f) times the prob-
ability that subsequent years remain free of failures:

p = ~ (1 -t>(N-l) (4)

r+1

The critical parameters of this model that must be estimated are r and
I since p and N are usually taken as fixed values. Stedinger, et al. (26)
describes the relationship between Ra , r, and I for the cases p = 0.5 and
N = 20, 50. They conclude that knowledge of p and N are not sufficient
to determine Ra unless one also knows the value of r or f. They note
that in practice, p is not really known either, further complicating the

problem.
For the two-state Markov model in Eq. 2, the average length of a res-

ervoir system failure is simply l/r. This result is discussed in the next
section. Given knowledge of the average length of a reservoir system
failure, l/r, I may be obtained from Eq. 4, since p and N are usually
specified. The resulting values of r and I may be expressed as the system
annual reliability Ra = r/(r + I). Stedinger, et al. (26) show that the range
of estimates of Ra corresponding to a reasonable range of the mean length
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of a re~ervoir system failure is large. Thus Eq. 4 is only useful for esti-

mating Ra from p and N when accurate estimates of r or I can be ob-

tained. This is unlikely to be the case in practice.

Without knowledge of the average length of a reservoir system failure,

l/r, Eq. 4, derived by Stedinger, et al. (26), is difficult to implement. In

this study, Eq. 4 is simplified by conditioning the entire analysis upon

the occurrence of regular or nonfailure reservoir operations during the

first year. The two-state Markov chain model in Eqs. 1 and 2 and the

steady-state solution in Eq. 3 remain unchanged. Now, the steady-state

probability of regular operation over an N-year planning period, p, con-

ditioned upon regular reservoir operations in the first year, equals the

probability that all years, subsequent to the first year, remain free of

reservoir system failures:

p= (1-f)(N-l) (5)

Here p no longer depends upon r, and Eq. 5 may be solved directly for

I, without resorting to a numerical algorithm as is required in the so-

lution of Eq. 4 as follows:

1=I-p[l/(N-l)] (6)

Furthermore, I is completely specified by our knowledge of p and N and

does not require assumptions regarding the value of r .

In the following sections, the two-state Markov model in Eq. 2 and

the relationship among p, I, and N in Eqs. 5 and 6 are employed to

derive expressions for the probability mass functions for the time to the

first reservoir system failure, the duration of a reservoir system failure,

and the number of failures in an N-year planning period.

PROBABILITY DISTRIBUTION OF DURATION OF RESERVOIR SYSTEM FAILURE

From ihe two-state Markov chain model in Eqs. 1 and 2, one may

derive the probability mass function for the duration of a reservoir sys-

tem failure. Once the reservoir system is in the failure state, the prob-

ability that it will remain in the failure state for exactly one year is just

the probability of one transition from the failure to the regular state r,

In general, the probability that a reservoir system failure lasts L years is

just the probability of (L -1) transitions from the failure state to the

failure state, (1 -r)(L-l), times the probability of a transition from the

failure to the regular state r in the last year. The probability mass func-

tion for L becomes

P[L = I] = r(1 -r)l-l; for 1 ~ 1 (7)

Thus L is a geometric rando~ variable with mean

1
~L = (8)

r

and variance

1- r
O't = -:;:- (9)

r
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TABLE 1.- The Mean, Standard Deviation and Coefficient of Variation of Duration
of Reservoir System Faiiure, L, as Function of ProbabIlity that Year of Reguiar
Operation Follows FaIlure Year, r

r IJ.L O"L CL
(1) (2) (3) (4)

1.0 1.00 0.00 0.00
0.8 1.25 0.56 0.45
0.50 2.00 1.41 0.71
0.33 3.00 2.45 0.82
0.25 4.00 3.46 0.87
0.20 5.00 4.47 0.89
0.10 10.00 9.49 0.95
0.04 25.00 24.49 0.98

A derivation of Eqs. 8 and 9 may be found in texts on probability theory ,
e.g., see Ross (24).

Thus the coefficient of variation of the duration of a reservoir system
failure is

(J'L ..~ .
CL=-= vl-r (10)

JLL

Table 1 reports JLL, (J'L, and CL for a range of r values. Knowledge of the
transition probability r completely specifies the distribution of L. Table
1 shows that the variability of L, as summarized by CL , increases as r
decreases. The variability of L is substantial.

AVERAGE RETURN PERIOD OF RESERVOIR SYSTEM FAILURE

In association with flood studies dealing with sequences of peak an-
nual streamflows, Gumbel (6) and Thomas (29) defined the return period
as the interval between flood events, where a flood event is defined as
an annual peak flow above some threshold. Alternatively, the return
period may be thought of as the number of years until the occurrence
of the first flood event. Since Thomas (29), the meaning of the return
period has changed. For example, Haan (8) defines the return period as
the average elapsed time between occurrences of a flood event. Thus
the return period was initially defined as the random time to an event,
yet its meaning has changed to become the expected value of that ran-
dom variable. This study distinguishes between these two definitions by
using the terms return period and average return period.

Drawing an analogy to the average return period of a flood, the av-
erage return period of a reservoir system failure may be defined as the
expected value of the return period, where the return period is the num-
ber of years before the occurrenc;.:e of the first reservoir system failure.
Let Z be the year in which the first failure occurs. Then the steady-state
probability of the first failure occurring in the Zth year is equal to the
probability of regular operation in the first year, followed by Z -2 years
of regular operation and ending with a failure year. The probability mass
function (pmf) of Z becomes
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= l/r, equal to 1, 3, and 10 years and solving Eq. 4 for the values of I
corresponding to combinations of N and p. Since Eq. 4 is a nonlinear
function of I, a Newton-Raphson algorithm was employed. The com-
puted values of! and the assumed values of r were then substituted into
Eq. 12b to obtain T. Interestingly, the average return period of a reser-
voir system failure is relatively insensitive to the average length of a
reservoir system failure fJ.L .In practice the average length of a reservoir
system failure is usually less than five years, in which case the dashed
lines in Fig. 2 are representative of most realistic situation (i.e., fJ.L =
l/r = 3 yrs). In summary, use of Eqs. 4 and 12b with fJ.L = 3 provides
a reasonable approximation to the relationship between T, p, and N.

Fig. 2 may be used to determine which nonexceedance probability p,
associated with N-year failure-free operation, is appropriate for use in
design applications. Clearly, reservoir design capacities based upon the
upper quantiles of the distribution of required storage (i.e., p ~ 0.8) and
large planning periods lead to extremely large average return periods.
Reasonable designs with average return periods approximately equal to
the planning period (N = T) correspond to use of Sso (p = 0.5) as the
design capacity .In practice, our estimates of Sp contains a substantial
amount of sampling variability leading to a design capacity with an av-
erage return period different fr,?m that shown in Fig. 2. Vogel (33) ex-
amines the impact of sampling variability in estimates of Sp on the re-
sulting variability in the average return period of a reservoir system failure.

Eqs. 11, 12, and 13 can be simplified considerably by conditioning the
entire analysis upon the occurrence of regular or nonfailure reservoir
operations during the first year, as was done in the derivation of Eqs.
5 and 6. The probability that the first reservoir system failure occurs in
the Zth year, conditioned upon regular reservoir operations in the first
year, now equals the probability of Z -2 years of regular operation,
followed by a failure year. The pmf of the conditional time to the first
failure Z* becomes

* --f 0 if z = 1
P[Z -z] -It(I-f)z-2 if z~2 (14)

where now the conditional average return period for a reservoir system
failure is

* 1+!T = fJ.zo = (15)
I

which may be combined with Eq. 5 to obtain

2 -p[l/(N-l)]T* = 1- p[l/(N-l)] (16)

Similarly, one obtains from Eq. 14 the variance of Z* simply as

I-!
{J'~0=~ (17)

I

which is identical to the variance of the unconditional return period of
a reservoir system failure <1~ given in Eq. 13 when the annual reliability
Ra is equal to one.



TABLE 2.-Comparison of Unconditional Average Return Period, T, with Average
Return Period T*, Conditioned upon Regular Operation In First Year

T
p N Cz. T* ~L = 1 ~L = 3 ~L = 5
(1) (2) (3) (4) (5) (6) (7)

0.5 20 0.95 29 29 30 31
0.5 40 0.97 58 58 59 60
0.5 100 0.99 144 145 146 147

0.75 20 0.98 68 70 75 80
0.75 40 0.99 137 140 144 149
0.75 100 1.00 346 348 353 358

0.95 20 1.00 372 390 427 464
0.95 40 1.00 762 780 817 854
0.95 100 1.00 1,932 1,950 1,987 2,024

The coefficient of variation of Z* is

I-f
Cz.=- (18)l+f .

Table 2 documents T* and Cz. over a range of values of the probability
of N-year failure-free reservoir operation normally encountered in prac-
tice. The conditional return period Z* exhibits the unique property that
its mean T* is in most practical situations approximately equal to its
standard deviation O'z. .

Table 2 also compares the conditional average return period T* with
the unconditional average return period T given by Eq. 12 for IJ.L = 1,
3, and 5 years. The values of T* are generally equal to, or slightly less
than, the values of T. For all practical purposes, the estimator of T* given
by Eq. 16 is recommended here for use in determining the average re-
turn period of a reservoir system failure due to its simplicity and general
compatibility with the more complex estimator T. The expression for T*
in Eqs. 15 and 16 is a dramatic simplification since it does not require
use of a numerical method such as the Newton-Raphson algorithm as
is required in the determination of T from Eqs. 12 and 4.

OTHER INDICES OF RESERVOIR SYSTEM PERFORMANCE

The average return period of a reservoir system failure T is simply the
average number of years prior to the first reservoir system failure. In
this section it is shown that T = IJ.z is not indicative of the distribution
of the time until the first reservoir system failure. Perhaps a more rea-
sonable statistic would be to report the "likely recurrence interval," which
is defined here to be that interval of time over which reservoir system
failures are likely to occur 90% of the time.

The qth percentile of the distribution of the year in which the first
reservoir system failure occurs, Zq , may be obtained by choosing the
largest value of Zq such that
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FIG. 3.-Box Plots Showing Distribution of Time to First Reservoir System Failure
Z for Probabilities of 40-Year Failure-Free Reservoir Operation (p = 0.25,0.50, and
0.75) and Average Lengths of Reservoir System Failure, fJ.L = l/r, Equal to One
and Five Years

2'1
2: P[Z = z] .$: q (19)
z=l

where the pmf of Z is given in Eq. 11. The distribution of Z is shown
in Fig. 3, using box plots, for the cases N = 40 and p = 0.25, 0.50, and
0.75. In each case two distributions are depicted, one with the average
failure length IJ.L equal to c;>ne year and the other with IJ.L = 5 years. This
range of IJ.L should capture the range of practical interest. When p = 0.75,
the distribution of Z is not very sensitive to the value of IJ.L , whereas
when p = 0.25, the lower quantiles of the distribution of Z (q < 0.25)
are rather sensitive to the assumed value of IJ.L .However, given the
extreme variability associated with Z in Fig. 3, the issue of which value
of IJ.L to use becomes moot.

It is evident from Fig. 3 that the distribution of Z is extremely variable
and use of the average return period T, which is simply the expectation
of Z, in no manner represents that variability .If one is forced to use a
point estimate summarizing the distribution of Z, then it might be more
illustrative and informative to choose a lower quantile of Z, e.g., ZlO (q
= 0.10).

Again, estimation of Zq in Eq. 19 can be dramatically simplified by
conditioning the entire analysis upon the occurrence of regular or non-
failure reservoir operations during the first year. The conditional qth per-
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centile of the distribution of the year in which the first reservoir system
failure occurs, Z: ' is obtained by substituting the probability mass func-
tion for Z* given by Eq. 14 into Eq. 19 which yields

*Zq i

Lf(1-f)Z-2~q (20)
z=2

This approach is much simpler than using the unconditional approach
because Eq. 20 may be solved for Z: :

* -In (1 -q)
Zq- +1 (21)

In (1 -f)

where f is uniquely determined from Eq. 6, given values of p and N.
Since the pmf of Z* and Z are identical when the annual reliability is
equal to one, one may expect the pmf of Z* to approximate the distri-
bution of Z when Ra is close to one, as is often the case in practice.

ApPLICATION

The reliability indices derived in this study are based upon a two-state
Markov chain model of res~rvoir system surplus and failures. Complex
reservoir systems exist for which the Markov assumption and/or the
two-state representa~on may be oversimplifications. Nevertheless, the
reliability indices developed here have potential for providing insight
into the relationship.s among annual reservoir reliability, reservoir sys-
tem reliability over an N-year period, and the average return period of
a reservoir system failure analogous to expressions now in widespread
use in flood frequency analysis. Given the potential associated with the
two-state Markov model formulation described here and in Jackson(ll),
Hirsch (9), and Stedinger, et al. (26), future research should determine
exactly which reservoir systems result in failure sequences that are well-
approximated by a two-state Markov model. The following case study
examines how well the two-state Markov chain approximates the dis-
tribution of reservoir system failures for one particular system, the Pa-
cific Northwest hydroelectric system.

Pacific Northwest Hydroelectric System.-The following example
evaluates the ability of the two-state Markov modet to represent failure
sequences generated from the Pacific Northwest hydroelectric power
system. The resources used to supply electric power loads in the Pacific
Northwest (Washington, Oregon, Idaho, and western Montana) are pre-
dominately hydroelectric. The firm energy load that the Pacific North-
west hydroelectric power system is able to meet is assumed to be the
maximum amount of energy thatthe system would be able to generate,
without failure, if the historical streamflows were to recur. Recently Dean
and Polos (3) of the Bonneville Power Administration in cooperation with
S. J. Burges and D. P. Lettenmaierof the University of Washington em-
ployed a stochastic streamflow model in combination with a simulation
model of the Pacific Northwest hydroelectric system to examine the like-
lihood that the system will fail to meet its firm loads. Utilizing the 101-
year historical streamflow record available for the Columbia River at The
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Dalles, Oregon, S. J. Burges and D. P. Lettenmaier fit a monthly sto-
chastic streamflow model, which was then employed to generate 1,000
sets of 100-year streamflow traces. Each 100-year streamflow trace was
routed through a complex simulation model that mimics the regulation
of the existing hydroelectric power system. The details of the simulation
model of the hydroelectric power system are too involved to report here;
the reader is referred to the work of Dean and Polos (3).

One of the failure statistics reported by Dean and Polos was the num-
ber of failures that occurred in each of the 1,000 sets of 100-year system
simulations. Here a failure is defined as the inability of the system to
meet its firm load. In this section the simulated probability mass func-
tion of the number of failures over a 100-year period is compared to the
theoretical distributions derived from the two-state Markov and the two-
state Bernoulli models.

Let X be the number of failures in an N-year period. Again the entire
analysis is conditioned upon normal operation in year zero followed by
N years of operation in which the system may either fail or perform
normally. To obtain an approximate but simple analytic expression for
the probability mass function for X, under the two-state Markov model,
it is assumed that normal operations also occur in year N. Then

P[X=O]=(l-f)N-l (22a)

and for x ~ 1

P[X = x] = (1 -r)X(l -f)N-x-l ~ ( x ~ 1 \ I N ~ 11-x \ 'Yj+l. (22b)
}=0 \ J J \ J + J

where 'Y = fr /(1 -f)(l -r).
For the two-state Bernoulli failure model, each year represents an in-

dependent Bernoulli trial with probability of a failure equal to 6. Under
this simple model the number of failures X in an N-year period is dis-
tributed binomial:

0.35

0.30 I. Simulated I

I Inn) Theoretlc~1 I
0.25

0.20

P[X-x)
0.15

0.10

0.05

0.00
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Number or FaIlures In 100 Years, x

FIG. 4.-Comparison of Simulated and Theoretical Probability Distributions for

Number of Failures in 100-Year Period, X, for Pacific Northwest Hydroelectric Sys-

tem

575



TABLE 3.-Comparison of Cumulative Distribution Functions of Number of Fail-
ures in 100-Year Period for Pacific Northwest Hydroelectric System

Number of P[X ~ x]

failures, x Simulation Two-state Markov model Two-state Bernoulli model
(1) (2) (3) (4)
1 0.670 0.670 0.910
2 0.481 0.499 0.699
3 0.340 0.364 0.425
4 0.240 0.259 0.215
5 0.173 0.182 0.090
6 0.126 0.126 0.032
7 0.095 0.087 0.010
8 0.070 0.059 0.0027
9 0.053 0.040 0~00066

10 0.042 .0.027 0.00014
11 0.028 0.018 0.000031
12 0.025 0.012 0.0000080
13 0.015 0.0086 0.0000039
14 0.011 0.0062 0.0000032
15 0.008 0.0046 0.0000031

Note: The cumulative distribution function of X for the simulation experiment
is based upon 1,000 replicate 100-year simulation runs.

P[X=x]= (~)6X(1-6)N-X (23)

Dean and Polos reported 2,400 failures over the 100,000 years of sim-
ulated system operation. Therefore the steady-state probability of a fail-
ure is equal to 0.024. Thus for the Bernoulli failure model 6 = 0.024,
while for the Markov failure model f/(r + /) = 0.024. Similarly, out of
1,000 sets of 100-year system simulations, Dean and Polos reported 330
of those 1;000 sets had no failures. Therefore from Eq. 5 we obtain P[X
= 0] = (1 -/)99 = 0.33, which yields f = 0.01114. Since f/(r + /) = 0.024,
we obtain r = 0:4529. This yields the two parameters of the two-state
Markov model of reservoir system failures in the Dean and Polos Pacific
Northwest hydroelectric system model. Fig. 4 shows the agreement be-
tween the simulated distribution of X and the theoretical distribution of
X given in Eq. 22. The agreement is in general excellent. Table 3 com-
pares the simulated cumulative distribution of X with the theoretical cu-
mulative distribution functions derived for the Markov and Bernoulli
failure models. Here we observe that the two-state BernouI1i failure model
does not adequately represent the likelihood of future reservoir system
failures.

The two-state Markov model captures the differential persistence of
failures. That is, suppose failures are dependent. Then from Table 3 the
probability of no failures over a 100-year period is simply P[X = 0] =
0.33. On the other hand, if failures are independent, the probability of
10 or more failures is P[X ;2: 10] = 0.00014 from Table 3, whereas Dean
and Polos obtained P[X ;2: 10] = 0.042. Thus differential persistence makes
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it much more likely to go without failures (P[X = 0]) or to experience a
large number of failures (P[X ~ 10]).

Table 3 and Fig. 4 show the adequacy of the two-state Markov model
for representing the distribution of the number of failures in a 100-year
period for one existing complex water supply system. These results are
encouraging. It is hoped that future investigations will examine the ad-
equacy of the two-state Markov model to represent the structure of se-
quences of reservoir system surplus and failures for a wide class of water
supply systems.

SUMMARY

In the design of hydraulic structures for flood control, it has become
standard practice to employ the average return period of a flood as the
design event. This study developed an analogous index for the design
of a water supply system: the average return period of a reservoir sys-
tem failure. The average return period of a reservoir system failure is
derived from the probability distribution of the return period of a res-
ervoir system failure for a simple h'.jo-state Markov model. The resulting
expressions are simplified dramfl.tically by conditioning the entire anal- \

ysis upon regular (or nonfailure) reservoir system operations during the
first year. The resulting expressions for quantiles of the distribution of
return periods of reservoir system failures or the average return period
of a reservoir system failure are readily estimated from Eqs. 6, 15, and
21 for a given planning period N and probability of N-year failure-free
operation p.

The reliability indices derived in this study are based upon a two-state
Markov model of reservoir system states. More sophisticated models may
be appropriate for detailed studies; however, the simple two-state Mar-
kov model should provide insight into the relationships among annual
reservoir system reliability Ra , reliability over an N-year planning period
p, and the expected time T* until a failure, given that one is in a year
of regular (nonfailure) operations. The simple reliability indices derived
here are not intended to replace reliability indices derived from more
complex simulation studies. Rather they were developed to increase our
understanding of derived sequences of reservoir system surplus and fail-
ures and to assist in the development of explicit statements regarding
the likelihood of future reservoir system failures. Application of the two-
state Markov model to the Pacific Northwest hydroelectric power system
indicated that this simple model can represent the structure of sequences
of reservoir system surplus and failures that result from one very com-
plex water supply system. Although further research is required to spec-
ify a priori which water supply systems are well approximated by the
two-state Markov model formulation, this study describes a general class
of systems to which the derived reliability indices should apply. It is
hoped that future investigations will verify the adequacy of the two-state
Markov model for a wide class of water supply systems.

In a recent national assessment of our nation's water resources, the
Water Resources Council (36) concluded that 17 of the nation's 21 water
resource regions have or will have a serious problem of inadequate sur-
face-water supply by the year 2000. As increasingly marginal surface-
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water supply sites are pressed into service, target yields at both existing
and proposed sites can only increase. In many instances, increased de-
mands are being met by more efficient management and .utilization of
existing reservoir systems, rather than by construction of new facilities
[for an example of this recent phenomenon see Sheer and Flynn (25)
and Palmer, et al. (21)]. Whether new facilities are envisaged or the ex-
isting reservoir system is to be operated more efficiently, the storage-
reliability-yield relationship is a fundamental ingredient. The use of sto-
chastic streamflow models in conjunction with the sequent peak algo-
rithm may be used to develop the cumulative distribution function of
required reservoir system capacities and/or yields. The reliability indices
developed here show potential for developing explicit statements. re-
garding the likelihood of future reservoir system failures.
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