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for the moment, consider two reservoir systems having an equal steady-state
probability of a failure, q, in a given year, one being a system dominated by
exclusively over-year behavior and the other dominated exclusively by within-year
behavior. During an N-year period, one would expect Nq failures. However, for the
within-year system those failure sequences will typically last only a few days or
months, whereas for the over-year system, a typical failure may last years (if no new
water is imported and demand curtailment programs are not implemented).

A prerequisite to the proper operation, management, and design of over-year
reservoir systems is a thorough understanding of the likelihood, duration, and
magnitude of potential reservoir system failure sequences. For this purpose, the
storage-reliability-yield (S-R- Y) relationship is one important ingredient. However,
reliability statements alone do not convey information regarding the consequences
of failure (system vulnerability) or the ability of a system to recover from failure
(system resilience). This study formulates an approximate, yet general approach for
understanding the overall behavior of over-year reservoir systems focusing attention
on both the S-R- Y relationship and the frequency, magnitude, and duration of
reservoir system failures.

Storage reservoirs tend to be large and complex systems requiring equally
complex mathematical models to simulate their behavior. Historically, one modelling
approach has been replaced by, or appended to, another more complex one to deal
with such issues as the Hurst phenomenon, model parameter uncertainty, optimal
operations, spatial and temporal disaggregation schemes, etc. What is lacking are
simple, reasonably accurate "back-of-the-envelope type" methods which give insight
into a wide range of reservoir storage system characteristics and reliability indices
before one embarks on a complex modelling expedition. Such "back-of-the-envelope"
methods would also be useful for the education of water supply analysts.

Most current textbooks in the U .S. recommend the simulation of water supply
system behavior using either the historical record or synthetic streamflow traces, in
conjunction with the sequent peak algorithm (see for example Loucks et al., 1981).
Yet such exercises do not always impart much knowledge of overall reservoir system
behavior other than the desired S-R- Y relationship. What is needed are simple, yet
accurate expressions which can be easily exploited to describe the resiliency and
vulnerability, as well as the S-R- Y relationship, so that, for example, one could
illustrate the frequency, magnitude, and duration of reservoir system failure
sequences. Otherwise, one is often lost in the myriad of computer output from more
complex reservoir system simulation exercises.

The goal of this study is to develop a set of simple expressions which both;>,,~
enhance our understanding of the behavior of water supply systems and provide a~c~~~\
explanation of over-year reservoir system behavior. A related study by Vogel(~987),';:,
uses a two-state Markov model of reservoir storage states to derive and vahdat~;c;}."'
relationships among N-year no-failure reliability, p, and steady-state reliability o£;;~;
failure, q, for reservoir systems dominated by within-year behavior. However, that}\;}i"
study does not connect reliability and resiliency indices to other system parameter~~~
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having either large values of 4, or a, or both. Similarly, reservoirs with values of
m near or above unity are more likely to refill once empty, Therefore, such systems
are more likely to exhibit within-year rather than over-yearbehavior.

Since resilient reservoir systems (large resiliency index m) tend to have either
small demand levels a or small coefficients of variation, one expects that regions with
low streamflow variability will contain more resilient reservoir systems than regions
with high streamflow variability, for a fixed demand level. Similarly, demands levels
generally increase over time, thus one expects a general reduction in the overall
resiliency of reservoir systems over time.

GENERAL STORAGE-RELIABILITY-YIELD RELATIONSHIPS

When one attempts to develop the S-R- Y relationship for an actual reservoir system,
stochastic streamflow models are often employed in combination with a reservoir
simulation model developed for the system in question. For reservoir systems
dominated by over-year storage requirements, a variety of generalized analytical S-R-
Y relationships are available for providing a preliminary estimate of the S-R- Y
relationship. Klemes (1987), Vogel and Stedinger (1987), Votruba and Broza(1989),
Phatarfod(1989), and Buchberger and Maidment (1989) provide recent reviews of the
literature relating to the development of analytical S-R- Yrelationships.

Storage-Reliability-Yield Relationship for Normal Inflows

Buchberger and Maidment (1989) show that for independent normal inflows the
relationship between the steady-state probability of failure q, the storage ratio K, and
the resilience index m is given by

q = 81(m, K) + 82(m, K) (2)

where el and e2 are functions of m and K too lengthy to report here. The storage
ratio K is the ratio of the reservoir capacity S to the standard deviation of the inflows
O".

Vogel (1985) developed analytical approximations to the relationship among
probability of no-failure operations over an N-year planning period, p, resilience
index, m, storage ratio, K, and the lag-one serial correlation of annual flows, p, for
AR(l) normal inflows. His approximation

K = f(m, p, p) (3)

takes the form of a set of regression equations too lengthy to report here. Similarly
Pegram (1980) reports relations among K,m, and q in tabular form.~
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Storage-Reliability- Yield Relationships for Lognormal Innows

Vogel and Stedinger (1987) developed approximate multivariate relationships for
lognormal inflows of the form

K = g(m, p, Cy, p, N) (4)

where
K = standardized storage ratio = S/O"
m = resiliency index = (l-Ct)J1./O"
Cy = coefficient of variation of inflows = 0"/ p.
p = lag-one correlation of inflows
p = probability of no-failure reservoir operations over an N-year period
N = planning period

with the function 9 in ( 4) is based on a set of regression equations too complex to
reproduce here. Similarly Pegram (1980) provides tabular results of the S-R- Y
relationship for correlated and uncorrelated lognormal inflows for selected cases.

APPLICABILITY OF GENERAL STORAGE-RELIABILITY-YIELD
RELATIONSHIPS

Most general analytical S-R- Y relationships are inadequate for design purposes
because they cannot be general and at the same time account for complexities such
as the seasonal nature of evaporation, precipitation, streamflow, and operating rules.
Pbatarfod (1989) recommends using Monte-Carlo simulation methods for handling
specific r~servoir design problems and using general analytical S-R- Y relationships
for obtaining qualitative results and for obtaining insight into the mathematics of
reservoir operations. Monte-Carlo simulations of reservoir systems using monthly or
even daily time steps are so detailed that it is easy to miss general, yet important,
features of the reservoir operations. For example, significant attention in the
literature has been devoted to the development and application of monthly stochastic
streamflow models for use in reservoir operations studies, yet few studies have
evaluated the general relationships among reservoir system reliability, resilience, and
vulnerability. Similarly few studies have addressed which definition of refiability to
use and more importantly what level of reliability is suitable for the proper design
and/or operation of a reservoir system.

Many investigators dispense with general over-year S-R- Y relationships
immediately since they are thought to be too simplistic to capture the overall
complexity of real water supply systems. For example, Vogel and Hellstrom (1988)
showed that for the Quabbin Reservoir system which provides the water supply for
much of eastern Massachusetts, an annual simulation of the system was almost
indistinguishable from a monthly simulation of the system. This is expected since the
quoted firm yield of 300 mgd for this system corresponds to Ct = 0.915 and 4 =
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0.34, hence m = 0.25. As long as m remains in the range 0 S m S 1, the system
will be dominated by over-year behavior and seasonal variability of operations and
hydrologic processes becomes moot in terms of the overall reservoir system behavior.

A 1WO-STATE MARKOV MODEL OF RESERVOIR SYSTEM STATES

Storage-reliability-yield equations are useful for describing certain aspects of reservoir
system behavior, yet such relationships are unable to describe the system resilience
and vulnerability in terms of the duration and magnitude of reservoir system failures.
For this purpose we consider a two-state Markov model.

A two-state Markov model allows us to relate system storage, reliability, and
yield to the frequency, magnitude, and duration of reservoir system failures. In
addition, the two-state Markov model allows us to relate steady-state reliability 1-q,
to the N-year no-failure system reliability p. Another advantage of the two-state
Markov model is its simplicity and therefore its ease of manipulation. Others have
successfully exploited a two-state Markov model for representing sequences of
reservoir surplus and failures (see Klemes, 1967; Jackson, 1975; Hirsch, 1979;
Stedinger et.al, 1983; and Vogel, 1987). However, those studies have not provided
a direct link between the two-state Markov model and a simple reservoir system
model.

Klemes (1969) employed a multi-state Markov chain model in an effort to
describe the complex structure of sequences of reservoir surplus and failures that
arise from reasonable assumptions regarding the character of inflow and demand
processes. Since a primary objective of this study is to derive relatively simple
expressions to aid in the understanding of reservoir system behavior, the m-state
Markov chain model formulation employed by Moran (1954), Klemes (1969), and
others must be simplified considerably at the potential expense of misrepresenting
the complexity of reservoir surplus and failure sequences. Vogel (1987) documents
that a two-state Markov model can accurately represent within-year reservoir systems
and we extend those results here to a wide class of over-year reservoir systems.

Klemes (1977) showed that the number of discrete storage states required to
assess the reliability of a storage reservoir with a desired level of accuracy is usually
well above two states. It is usually infeasible for an over-year reservoir system to
pass from full to empty in one year hence most investigators have employed more
than two states to model reservoir state transitions. However, if one defines one
state as the failure state and another as the nonfailure state, we show that such a
two-state Markov model of reservoir state transitions provides an adequate
description of the frequency and magnitude of reservoir system failure durations for
systems with m > 0.2. Figure 1 illustrates the two-states in the Markov model.
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steady-state system reliability, 1-q, can be related to the two-state Markov model
using 1-q = r/(r+f) or

r fq = 1 --= -(8)
r+f r+f

Equation (8) provides the link between the two-state Markov model and S-R- y
relationships based upon a steady-steady probability of failure.

To fully specify the two-state Markov model, we require estimates of r and f
in (8). Estimation of the transition probability r is accomplished by first recalling its
definition as the probability that the reservoir system transfers from the failure
(empty) state to the normal (nonempty) state. The failure state is defined as the
condition when the water storage plus the inflow for that period Qt , is less than the
demand (Xp.. Once a failure has occurred, r becomes the conditional probability

r = P{~+l ~ (XI.L I ~ < (XI.L} (9)

As long as the inflows are independent (p = 0), the conditional probability
statement in (9) becomes

r.= P{Q ~ (XI.L} (10)

which reduces to r = cI>(m) for independent normal inflows. Similarly for
independent lognormal inflows (10) reduces to r = 1- cI>«(ln((Xp.)-p.y)/ay) where
y = In(Q). Either index, r or m, may be considered representative of the resilience
of a reservoir system.

Once r is determined, f is found by rearranging (8) to obtain

f = r [ ~ ] (11)

l-q

Note that systems with r near unity (m large) correspond to within-year
systelns. Hence one may consider using the index r to distinguish between systelns
dominated by over-year (r small) behavior from systelns dominated by within-year
(r large) behavior.

The Duration of a Reservoir System Failure

Vogel(1987) shows that the probability mass function for the length of a reservoir
system failure for a two-state Markov model is given by

P{L = A} = r (I -r)~-l ; for A ~1 (12)
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where L is the length of a failure sequence. Since L is geometrically distributed it
has mean, E[L] = l/r, variance Var[L] = (l-r)/r, and coefficient of variation Cv[L]
= (l-r)l/2.

A UNIFIED VIEW OF RESERVOIR SYSTEM RELIABILITY

In general there are two approaches to the determination of the yield or storage
capacity of a reservoir system. One approach used in the U .S. is to determine the
no-failure yield (often called the firm yield) which can be met over a particular
planning period with a specified reliability. An approach used elsewhere is to
determine the yield which can be delivered with a specified steady-state reliability 1-
q. Unfortunately, these two approaches are often seen as unrelated and
disconnecte.d. Both of these schools of thought can be linked using a two-state
Markov model, leading to completely consistent estimates of the reliability of
reservoir systems regardless of which school of thought one happens to follow.

When the sequent peak algorithm (see Loucks et.al., 1981) is used to
determine the smallest reservoir system design capacity S, required to assure regular
or failure-free operation over an N-year planning period with probability p, then p
is a steady-state probability over that planning period. This is because the sequent
peak algorithm wraps the streamflow record itself, thus generating the steady-state
solution to the problem posed. If we employ the two-state Markov model, the
steady-state probability of regular (failure-free) operation over an N-year period, p,
is simply 1he steady-state probability of normal operations in the first year 1-q, times
the probability that subsequent years remain free of failures:

p = (1 -q) (I -f)N-l (13)

Equation (13) relates the index of reliability commonly used in the U.S. (the
probability of failure-free operation over an n-year period p) to the index of
reliability commonly used elsewhere (the steady-state system reliability 1-q). Hence
one can employ the two-state Markov model to compare S-R- y relationships
developed using completely different interpretations of system reliability.

M O NTE-CARW EXPERIMENTS

All of the experiments follow the same general procedure. First 100 million
independent normal inflows with 11. = 1, u= 0.2 and p = 0.0 were generated. Similarly
100 million independent lognormal inflows were generated with skewness or = 0.25,

0.5, and 1.0.
Assuming a full reservoir capacity equal to S at the begimrlng of each 100

million year simulation, the experiment proceeds by determining the amount of water
in storage in each of the 100 million years. If the reservoir contents plus the inflow
in a given period is less than the required demand al1., a failure is documented. If
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between standardized storage Slq, planning period, N, skewness of the inflows, 'Y,
serial correlation of the inflows, p, and the resiliency index, m for AR(l) lognormal
inflows. Vogel and Stedinger (1987) was compared with exact results from Pegram
(1980) arid Monte-Carlo simulations. We conclude that the two-state Markov model

-Vogel {1985) and 'l'wo-Slale
m=O 2 Markov Model. N=50

10 00 ,( ~ Buchberger and Maidmenl.m=0.4 ..., ~ {1989. Equation 27)

TS ~.'::~:~~ , ~
-l= ~ ~~ 'a ~ ~. ..'...,

~~~-- ., ,
m=1.0.1' :Y.. 1.00 :t,.~

0 Pegram (1980, Table 2) "

...Simulation re5ult5
0.2

0. ..

Figure 3. Comparison of the storage ratio, SI q as a function of failure probability q,
and resilience index m, for independent normal inflows.

accurately converts reliability p to reliability 1-q. Once again, the only exception is
for values of m less than or equal to 0.2.

CONCLUSION

This study has shown that a two-state Markov model provides a satisfactory
approximation to the mean and coefficient of variation of reservoir failure durations
for systems dominated by over-year behavior and fed by independent normal and
lognormal inflows. Vogel (1987) found that a two-state Markov model can also
accurately represent reservoir surplus and failure sequences for systems dominated
by within-year behavior.

In the U .S., reservoir design and operation studies usually focus upon the
critical drought in each inflow sequence, hence reliability is normally quoted in terms
of the probability of failure-free reservoir operations over an N-year period. Another
approach used elsewhere defines the storage-yield relationship in terms of the steady-
state probability of a reservoir system failure. The two-state Markov model enabled
us to explain the relationship between N-year failure free reliability p and steady-
state reliability 1-q for over-year reservoir systems providing a unified view of system

reliability.
Most importantly, this study demonstrates that a two-state Markov model can

adequately represent the structure of failure sequences to the extent that it can be
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