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ABSTRACT

It has become standard practice in the design of hydraulic structures
to employ the average return period of a flood as the design event. An
analogous index is introduced for the design of a water supply system:
the average return period of a reservoir system failure, defined as the
expected number of years until the occurrence of the first reservoir
system failure. Other indices of the reliability of a water supply system
are introduced. The use of these reliability indices is discussed in the
context of a water supply reservoir design application.

1. INTRODUCTION

The storage-yield relation is the traditional tool used by water re-
source engineers to determine the required capacity of a storage reservoir
to maintain a prespecified reservoir release. Although stochastic stream-
flow models have been available for a few decades, the most common ap-
proach in practice -has been to base estimates of the required capacity of
a storage reservoir upon application of the sequent peak algorithm {Thomas
and Burden, 1963) or Rippl's mass curve (Rippl, 1883) to the historical
streamflow record. While this approach is still advocated in recent text-
books on the subject (Clark et al., 1977; Steel and McGhee, 1979), it
ignores the reliability associated with the resulting reservoir design
capacity. Other textbooks (Linsley and Franzini, 1979; Linsley et al.,
1982) discuss the application of stochastic streamflow models in conjunc-
tion with the sequent peak algorithm to generate the cumulative distribu-
tion function (cdf) of required reservoir storage, S, corresponding to a
fixed planning period of length N years, ’

The cdf of S describes the relationship between the required storage
capacity to meet a stated yield and the probability of failure-free reser-
voir operation, p, over an N-year planning period. Thus p is a measure of
the reliability with which a reservoir of size S will provide failure-free
operation over an N-year planning period. Duckstein et al. (1986) define
p in a more general context where p is simply one performance index (PI%)
among a set of ten possible indices. Similarly Plate and Duckstein (1986)
term p the project reliability for hydraulic design applications.

Engineers are often asked to convert statements of reliability over an
N-year planning period to equivalent statements of annual reliability,
Ra, or vice versa. Relationships between the annual reliability and the
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reliability over an N-year planning period associated with the design of
flood control structures were developed by Thomas (1948) and further
analyzed by Gumbel (1955) and Yen (1970) for independent events. These
relations are in widespread use as evidenced by their inclusion in many
textbooks on hydrology (Chow, pg. 8-34, 1964; Haan, pp. 70-75, 1977; ang
. Linsley et al., pp. 349-350, 1982). This study develops analogous
relationships between the annual reservoir reliability, Ry, and the
probability of failure-free reservoir operations, p, over an M-year
planning period.

Although use of stochastic streamflow models in conjunction with the
sequent peak algorithm to estimate the cdf of S has been advocated by many
authors since Fiering (1963), none of these investigators have evaluated
which quantile, S,, to choose in a design application. Similarly, when
the sequent peak algorithm is applied to a single n-year historic stream-
flow record one is not sure which value of p, the probability of n=N year
failure-free reservoir operation, to assign to the resulting estimate of
the required storage capacity S. Here the length of the available his-
toric streamflow sequence, n, is distinguished from the planning period or
economic life of the proposed structure, N,

This study introduces a new index, T, the average return period of a
reservoir system failure, analogous to the average return period of a
flood event. Duckstein et al. (1986) also define the average return
period, T, in a moge general context where again T is simply one per-
formance index (PI°) among a set of ten possible indices. The rel-
ationships between T, p and N developed here are instrumental in choosing
an appropriate quantite S, for design purposes. Other indices are
developed and their uti]igy in choosing an appropriate design storage
capacity is also considered.

2. RELATIONSHIP BETWEEN THE ANNUAL RELIABILITY OF A
RESERVOIR SYSTEM AND THE PROBABILITY OF FAILURE-
FREE OPERATION OVER AN N-YEAR PLANNING PERIOD

In this section, storage reservoir behavior is modeled, following
Stedinger et al. (1983), concentrating upon both failure and regular
(non-failure) years. In a given year a storage reservoir may be in either
one of two states: (1) failure or (2) regular operation. Here a
“failure" year is considered one in which the stated yield could not be
met and a "regular"” year is one in which the stated yield is provided or
exceeded. While this analysis includes both the year in which the first
reservoir system failure occurs as well as the duration of the failure,
the actual magnitudes of the failures are ignored. For a more complete
discussion of reliability measures associated with the frequency of
failure years, failure durations and magnitudes of failures see Klemes
(1979), Klemes et al. (1981) and Hashimoto et al. (1982).

Let the row vector Zy = (x1y, x2y) specify the probability that
a reservoir system is in either: (1¥ the failure state or (2) the regular
(non-failure) state in year y. Also assume as did Stedinger et al.
(1983), that X,, y = 1, ..., N forms a Markov chain with probability
transition matrix
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A= (1)

where f is the probability that a failure year follows a regular year and
r is the probability that a reqgular year follows a failure year. The
two-state Markov model becomes

Y = A (2)

Figure 1 depicts the two-state Markov model. The Markaov assumption intro-
duces memory into the process although the transition of the reservoir
system in any given year y is only influenced by the reservoir system
state in the preceding year y-1. More complex models are possible and
have been considered by Klemes (1967, 1969). The simple model introduced
here provides an approximation to the behavior of reservoir storage state
transitions, and, most importantly, this model formulation leads to the
simple and useful reliability indices developed in the following sections.

Figure 1 - The Two-State Markov Mode]l of Reservoir System States
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As y increases, Xy reaches a steady-state, and the solution to (2)
becomes

. f r
lim X = ’ (3
~ <r+f r+f> )

Y=

for 0 <|rff <1. A derivation of this result may be found in Jackson
(1975). Thus in the Tong run, the probabilities that the reservoir system
will be in the failure or regular state are f/(r+f) and r/{r+f)
respectively, regardless of the initial state of the reservoir system.
Hence r/(r+f) is the steady-state probability of regular operation or the
annual reliability R,.

When the sequent peak algorithm is employed to determine the smallest
storage reservoir design capacity required to assure regular or failure-
free operation over an N-year planning period with probability p, then p
becomes a steady-state probability. This is due to the fact that the
sequent peak algorithm, as advocated by Thomas and Burden (1963), wraps the
streamflow record around which generates the steady-state solution to the
problem posed.

Now suppose we choose a reservoir capacity equal to S, (the pth
quantile of the distribution of S) using the sequent peak algorithm. Then
the steady-state probability of regular (failure-free) operation over an
N-year planning period, p, equals the probability of normal operation the
first year r/(r+f) times the probability that subsequent years remain free
of failures:

y(N-1)

p = o (1-F (4)

The critical parameters of this model which must be estimated are r and f
since p and N are usually taken as fixed values. Stedinger et al. (1983)
and Vogel (1985a) investigated equation (4) and concluded that knowledge
of p and N are not sufficient to determine r, f or Ra unless one knows

the values of r and f which is unlikely to be the case in practice. Vogel
(1985a) showed that the average return period of a reservoir system failure
does not depend upon the value of r in practice.

In this study (4) is simplified considerably by conditioning the analy-
sis upon the occurrence of regular or non-failure reservoir operations
during the first year. Now the steady-state probability of regular oper-
ation over an N-year planning period, p, conditioned upon regular reser-
voir operations in the first year equals the probability that all years,
subsequent to the first year, remain free of reservoir system failures:

(N-1)
p = (1-f) (5)
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Now due to this innovation p no longer depends upon r and (5) may be solved
directly for f without resorting to a numerical algorithm as is required
in the solution of (4).

(1/(N-1))
f=1-p (6)

Furthermore f is completely specified by our knowledge of p and N and does
not require assumptions regarding the value of r.

3. THE AVERAGE RETURN PERIOD OF A RESERVOIR SYSTEM FAILURE

In association with flood studies dealing with sequences of peak
annual streamflows, Gumbel (1941) and Thomas (1948) defined the return
period as the interval between flood events, where a flood event is de-
fined as an annual peak flow above some threshold. Alternatively the
return period may be thought of as the number of years until the occur-
rence of the first flood event. Since Thomas (1948), the meaning of the
return period has changed. For example, Haan (1977, pg. 3) defines the
return period as the average elapsed time between occurrences of a flood
event. Thus, the return period was initially defined as the random time
to an event, yet its meaning has changed to become the expected value of
that random variable. This study distinguishes between these two
definitions by using the terms return period and average return period.

Drawing an analogy to the average return period of a flood, the
average return period of a reservoir system failure may be defined as the
expectation of the return period, which is the number of years before the
occurrence of the first reservoir system failure.

Let Z be the year in which the first reservoir system failure occurs.
Then the steady-state probability of the first failure occurring in the
Zth year, conditioned upon regular reservoir operation in the first
year, equals the probability of Z-2 years of regular operation followed by
a failure year. The probability mass function (pmf) of the time to the
first failure is

0 if z =1
P[Z = 2] = , (7)
F(1-F)%7° ifz>2

Then the average return period of a reservoir system failure is

- ~ 1+f -
T = K, = R (8)
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which may be combined with (6) to obtain

(1/(N-1))
2-p
1 17T &

Similarly one obtains from (7) the variance of Z simply as

= —— (10)
Uz f

Equations (7) through (10) provide a measure of the 1ikelihood of
future reservoir system failures. In particular, equation (9) is a simple
relationship between T, p and N which provides a useful tool for deter-
mining which quantile, S,, to choose in a design application. Equation
(9) is the counterpart to the well known relationship between the average
return period of a flood discharge, the planning period N, and the non-

books on hydrology (see for example Chow 1964, Figure 9-61 and Linsley et
al., 1982, Table 11-7). The simplicity of equations (7) through (10)
results in large part from conditioning the entire analysis upon regular
(or non-failure) reservoir system operation during the first year, If an
unconditional approach is employed as was the case in the development of
(4), equations (7) through (10) begome much more complex because the
expressions for P[Z = 2], T and o include both r and f in addition to

P and N, as is shown in Vogel (1985a). The equations developed here are
recommended over those in Vogel (1985a) since the conditional approach
makes physical sense and the resulting expressions are much simpler.

4. OTHER INDICES OF RESERVOIR SYSTEM PERFORMANCE

The average return period of a reservoir system failure, T, is simply
the average number of years prior to the first reservoir system failure.
Perhaps a more reasonable statistic would be to report the "likely
recurrence interval" which is defined here to be that interval of time
over which reservoir system failures are likely to occur, say 90% of the
time.

The qth percentile of the distribution of the year in which the
first reservoir system failure occurs, Zq, may be obtained by choosing
the largest value of Zq such that

Zq’

Z Cf1- 0P q (11)

z=2

which may be solved for Zq as follows

_ 1In(1-q)
Zq = Tn(Toy * (12)
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ere f is uniquely determined from (6) given values of p and N. Again
yation (12) yields a very simple expression for a percentile of the
distribution of return periods due in large part to having conditioned the
entire analysis upon regular (or non-failure) reservoir system operation
during the first year. Without resorting to this conditional analysis,
the resulting expression for Z; depends upon both r and f in addition to
and N and must be solved using a numerical algorithm as shown in Vogel

(1985a).

wh

5. SUMMARY

In the design of hydraulic structures it has become standard practice
to employ the average return period of a flood discharge as the design
event. This study developed an analogous index for the design of a water
supply system: the average return period of a reservoir system failure.
The resulting expressions are simplified dramatically by conditioning the
entire analysis upon regular (or non-failure) reservoir operations during
the first year. Percentiles of the distribution of the return period of
reservoir system failures or simply the average return period of a
reservoir system failure are readily estimated from the simple expressions
developed here. These expressions are of particular value for the
following reasons:

(1) The return period concept is a widely accepted index of
reliability in the field of water resources engineering.

(2) The reliability indices developed here are simple to
understand and easy to apply.

(3) Use of these indices provides a measure of the 1ikelihood
of future reservoir system failures which until now was
unavailable in such a simple form. For an example of the
use of the reliability indices developed here see Vogel
(1985a, 1985b).

In a recent national assessment of our nation's water resources, the
Water Resources Council (1978) concluded that 17 of the nation's 21 water
resource regions have or will have a serious problem of inadequate surface-
water supply by the year 2000. As increasingly marginal surface-water
supply sites are pressed into service, target yields at both existing and
proposed sites can only increase. In many instances, increased demands
are being met by more efficient management and utilization of existing
reservoir systems rather than by construction of new facilities (for an
example of this recent phenomenon see Sheer and Flynn, 1983). Whether new
facilities are envisaged or the existing reservoir system is to be operated
more efficiently, the storage-reliability-yield relationship is a funda-
mental ingredient. The use of stochastic streamflow models in conjunction
with the sequent peak algorithm may be used to develop the storage-relia-
bility-yield relationship. The reliability indices developed here may
then be employed to develop explicit statements regarding the 1ikelihood
of future reservoir system failures.
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Past and recent research has identified weaknesses and potential
problems with the traditional techniques for estimating the storage-
reliability-yield relationship. Fiering (1967) documents important
shortcomings associated with the strict use of the histeric streamflow
record. Stochastic streamfiow models were developed to circumvent the
shortcomings of the use of the historical required storage alone. Recent
research indicates that stochastic streamflow models can be used to
significantly improve the precision of estimates of the storage-relia-
bility-yield relationship in comparison to the traditional approach of
employing the historical streamflow record alone (Vogel, 1985a; Vogel and
Stedinger, 1986) As is to be expected, the precision of estimates of the
storage-reliability-yield relationship depends primarily upon the length
of the available historic streamflow record. The precision of these
estimates may be improved by employing streamflow record augmentation
and/or extension procedures (Vogel and Stedinger, 1985). However, even
for relatively long records, Vogel (1985a) and Vogel and Stedinger (1986)
document substantial sampling variability associated with estimates of
Sp. Given the short streamflow records available in most practical
situations it has become evident that one should incorporate stream-
flow model parameter uncertainty into reservoir design and operations
studies to obtain an honest account of the true likelihood of reservoir
system failures (see Stedinger and Taylor, 1982 and Stedinger et al. 1985),
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