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Abstract

The Gould–Dincer suite of techniques (normal, log-normal and Gamma), which is used to estimate the reservoir capacity–yield–reli-
ability (S–Y–R) relationship, is the only known available procedure in the form of a simple formula, based on annual streamflow sta-
tistics, that allows one to compute the S–Y–R relationship for a single storage capacity across the range of annual streamflow
characteristics observed globally. Several other techniques are available but they are inadequate because of the restricted range of flows
on which they were developed or because they are based on the Sequent Peak Algorithm or are not suitable to compute steady-state
reliability values. This paper examines the theoretical basis of the Gould–Dincer approach and applies the three models to annual
streamflow data for 729 rivers distributed world-wide. The reservoir capacities estimated by the models are compared with equivalent
estimates based on the Extended Deficit Analysis, Behaviour analysis and the Sequent Peak Algorithm. The results suggest that, in
the context of preliminary water resources planning, the Gould–Dincer Gamma model provides reliable estimates of the mean first pas-
sage time from a full to empty condition for single reservoirs. Furthermore, the storage estimates are equivalent to deficits computed
using the Extended Deficit Analysis for values of drift between 0.4 and 1.0 and the values are consistent with those computed using a
Behaviour simulation or a Sequent Peak Algorithm. Finally, a sensitivity analysis of the effect on storage of the four main streamflow
statistics confirms that the influential ones are mean and standard deviation, while effects of skew and serial correlation are orders of
magnitude lower. This finding suggests that the simple reduced form of the Gould–Dincer equation may profitably be used for regional
studies of reservoir reliability subject to climate change scenarios based on regional statistics, without having to perform calculations
based on time series, which may not be easily obtained.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

During the preliminary design phase of a water
resources development or for a reconnaissance review
of the yield from one or more reservoirs, it is useful to
have available a technique that one can use to examine
the reservoir capacity, yield and reliability (S–Y–R) rela-
tionship for a single reservoir. Sometimes, particularly in
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countries with poor infrastructure, the historical flow
record is short or even unavailable yet a preliminary
S–Y–R relationship is required. Furthermore, for water
resources assessments and to assess the impact of climate
change on hydrology at a continental scale, a simple pro-
cedure using annual statistics is required in which change
in precipitation and temperature can be related to reser-
voir characteristics.

There are very few general S–Y–R procedures that are
available for such preliminary analyses. Some are based
on limited empirical information and, therefore, are inade-
quate for wide hydrologic application. Computer-based
methods like Behaviour analysis are unsuitable where flow
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records are short or not available. For reconnaissance anal-
ysis in countries with inadequate hydrologic records, reser-
voir capacities can only be sized on the basis of an estimate
of the mean flow and its variability. The authors are aware
of only one technique – Gould–Dincer (G–D) suite of
equations – that potentially can be applied using annual
streamflows across the whole spectrum of global hydrol-
ogy. It should be noted here that there are preliminary
techniques that can be used for a restricted range of hydrol-
ogy (Buchberger and Maidment [1]) or are able to estimate
the reservoir capacity for no-failure yield (Vogel and Ste-
dinger [24]; and Phien [17]) but cannot estimate capacity–
steady state reliability relationships. The authors believe
the G–D approach is the only suitable candidate to exam-
ine such relationships and is, therefore, the subject of this
paper.

Although the G–D approach is widely recommended for
use as a preliminary S–Y–R technique (for example Gould
[4], Teoh and McMahon [19], McMahon and Adeloye [7]),
the techniques have not been fully reviewed. The first
author examined one aspect of the approach, but the anal-
ysis was based on data limited to Australia and Malaysia
(McMahon and Mein [8]; Teoh and McMahon [19]). With
the much larger data set of annual streamflows considered
here – 729 rivers globally with at least 25 years of continu-
ous clean data – we believe it is opportune to carry out a
more detailed review of the G–D techniques. This paper
reviews the Gould–Dincer suite of equations that can be
used to establish the relationship between reservoir capac-
ity, yield and reliability over the most extensive range of
streamflow records, and the widest range of climates, that
has ever been considered.

Following this introduction, we describe briefly in Sec-
tion 2 the global annual streamflow data set used to
assess the S–Y–R techniques. Next, we outline the back-
ground theory of the three variant forms (normal, log-
normal and Gamma) of the Gould–Dincer approach.
In Section 4, we compare the mean first passage time
from a full to empty reservoir (m0c) as defined theoreti-
cally by Pegram [14] for a finite reservoir with an approx-
imate equivalent recurrence interval calculated using the
G–D normal model. In the next section, the G–D
approach is applied to the data set and is compared to
three alternate S–Y–R techniques to assess the perfor-
mance of the G–D methods. Parameter sensitivity in esti-
mates of reservoir capacity based on the Gould–Dincer
model is explored in Section 6. There it is found that
the effects of skew and serial correlation are orders of
magnitude lower than those of changes of the mean
and standard deviation. This finding suggests that the
simple reduced form of the Gould–Dincer equation
may profitably be used for regional water resources
assessments and in studies of reservoir reliability subject
to climate change scenarios based on regional statistics,
without having to perform calculations based on time
series, which may not be easily obtained. Relevant con-
clusions are drawn in Section 7.
2. Streamflow data

The streamflow data set used in this analysis consists of
historical streamflows for 729 rivers with 25 or more years
of continuous annual data. The rivers are not regulated by
reservoirs nor are they affected by diversions upstream of
the gauging stations. The location of the 729 rivers suggests
that the data are reasonably well distributed world-wide.
Details of the data can be found in [10,12,13].
3. Gould–Dincer approach

The Gould–Dincer approach, which was offered to the
first author by C.H. Hardison in 1966, is a modification
of a method for reservoir storage–yield analysis derived
by Professor T. Dincer, Middle East Technical University,
Turkey. The Dincer method assumed the reservoir inflows
were normally distributed and serially uncorrelated. In
1964, Gould [4] independently derived a similar reservoir
storage–yield relationship but incorporated inflows that
were Gamma distributed. This method has become known
as the Gould Gamma method (McMahon and Adeloye
[7]). To apply this method to skewed flows Gould [4] pro-
vided a manual adjustment to modify normal flows to
Gamma distributed flows. Vogel and McMahon [23] pro-
posed that the Wilson–Hilferty transformation [27] be used
instead of the cumbersome Gould procedure to deal with
skewed flows and derived an adjustment to storage as a
result of auto-correlation which produced a result identical
to that of Phatarfod [16], but used a completely indepen-
dent approach. A further variation of the Gould–Dincer
approach that allows for lognormal inflows was offered
to the first author by G. Annanadale in 2004. To distin-
guish among these three variations of the Gould–Dincer
approach we have labelled them: Gould–Dincer Normal
(G–DN), Gould–Dincer Gamma (G–DG) and Gould–
Dincer Lognormal (G–DLN). The following summarizes
the methodology.

3.1. Gould–Dincer Normal (G–DN)

The equation representing G–DN model is developed as
follows. Assuming normally distributed and independent
annual flows (mean l and standard deviation r), consecu-
tive n-year inflows (i.e., the sum of n consecutive annual
flows) into a reservoir can be defined as:

n-year mean; ln ¼ nl ð1Þ

n-year standard deviation; rn ¼
Xn

r2

� �0:5

¼ r
ffiffiffi
n
p

ð2Þ

During a critical period (i.e., a period during which the res-
ervoir contents decline from full to empty) of length n:

Sn;p ¼ Dn � X n;p ð3Þ
where Sn,p is the depletion (thought of as a positive quan-
tity) of an initially full reservoir at the end of n years with-
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out having spilled, Dn = anl is the target draft over n years,
Xn,p is the n-year inflow with a probability of non-excee-
dance of 100p% and a is a constant draft defined as a ratio
of l. Assuming inflows are normally distributed

X n;p ¼ nlþ zprn ð4Þ
where zp is the standardised normal variate at 100p% prob-
ability of non-exceedance (zp < 0 because we are looking at
inflows below the mean). To obtain the maximum storage
required to supply the draft, combine Eqs. (3) and (4)
and differentiate with respect to n; this gives the required
capacity C to meet the target draft for 100p% probability
of non-exceedance, i.e., for 100(1 � p)% reliability, and
the equivalent critical period ncrit in years as follows:

ncrit ¼
z2

p

4ð1� aÞ2
Cv2 ð5Þ

which, after back-substitution into Eq. (3), gives:

C ¼
z2

p

4ð1� aÞCv2l ð6Þ

where Cv is the coefficient of variation of annual inflows to
the reservoir. ncrit is the period for the reservoir of capacity
C to empty from an initially full condition.

By substituting 1�a
Cv
¼ m in Eq. (6), we obtain the dimen-

sionless relationship:

K ¼
z2

p

4m
ð7Þ

where K is the standardised storage (reservoir capacity di-
vided by the standard deviation of annual flows) and m is
known as drift [14,21] or standardized net inflow [5], in
other words, m is the inverse of the coefficient of variation
of net inflow. Note that for a given reliability, K reduces as
m increases.

To account for the auto-correlation effect on reservoir
capacity one can adjust the reservoir capacity computed
from Eq. (6) by (1 + q)/(1 � q) as follows [16,23]:

C ¼
z2

p

4ð1� aÞCv2l
1þ q
1� q

ð8Þ

where q is the lag-one serial correlation coefficient.
It is noted that probability p is the probability that

inflows into the reservoir will be just sufficient to allow
the reservoir to meet the targeted draft with reliability
(1 � p). In terms of Pegram’s definitions of failure [14] dis-
cussed in Section 4, 1/p is assumed to be a measure of the
mean first passage time from a full to an empty reservoir.

3.2. Gould–Dincer Gamma (G–DG)

If the inflows are assumed to be Gamma distributed, zp

in Eq. (8) is replaced by:

gp ¼
2

c
1þ c

6
zp �

c
6

� �n o3

� 1

� �
ð9Þ
where gp is an approximate Gamma variate based on the
Wilson–Hilferty transformation [27] (see also Chowdhury
and Stedinger [3] for developments relating to the transfor-
mation) and c is the coefficient of skewness of the annual
inflows. If the flows are also auto-correlated, then c needs
to be replaced by c 0 (Eq. (10)) in Eq. (9). Eq. (10) was first
proposed by Thomas and Burden [20] and published by
Loucks et al. [6, p. 284]. This correction adjusts c and is
separate from the correction in Eq. (8) which deals with
the effect of auto-correlation on reservoir inflows and is
independent of the inflow distribution:

c0 ¼ c
1� q3

1� q2ð Þ1:5

 !
ð10Þ

It should be pointed out that the Gamma transforma-
tion (Eq. (9)) based on the Wilson and Hilferty transforma-
tion breaks down for values of c > 4 [9]. This is equivalent
to Cv = 1 in the lognormal domain, however, very few val-
ues (only five out of the estimated values of c from the
world data-set) are >4.
3.3. Gould–Dincer Lognormal (G–DLN)

If the annual flows are considered to be lognormal, zp in
Eq. (8) can be replaced by Eq. (11) which is a rearrange-
ment of Chow [2, Eq. (8-I-53)]

z0p ¼
1

Cv
ezp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þCv2
p

Þ�0:5 ln 1þCv2ð Þ � 1
h i

ð11Þ
3.4. Attributes, limitations

A major advantage of the Gould–Dincer approach is that
it is based on a straight-forward and logical water balance of
simultaneous inputs and outputs of a storage reservoir.
Computationally, it is simple and, although the basic formu-
lation assumes inflows are independent, the storage esti-
mates can be adjusted to take the auto-correlation into
account as provided in Eq. (8). It has been shown elsewhere
[19] that for carry-over or over-year storages the Gould–
Dincer approach provides satisfactory estimates of reservoir
capacity. This issue is examined further in Sections 4 and 5.

A limitation of G–D models relates to the definition of
probability of failure (emptiness) (Pf). From Eq. (3), the
probability of failure is defined as the failure of the n-year
inflow to occur with a probability of non-exceedance of
100p%. Given that the unit of time in a G–D analysis is
a year, 1/p can be likened to and, for our analysis, has been
assumed equivalent to the mean first passage time from a
full reservoir to an empty condition. The theory does not
allow for failures beyond the first failure. The complement
of Pf is an approximate measure of the reliability to meet
the target draft from a full condition.

The procedure is restricted to annual inflows and,
hence, carryover storage. As a general rule reservoirs with
m < 1 operate as over-year or carry-over storages and as
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within-year systems if m P 1 [22,25]. Vogel et al. [26] sug-
gested that m < Cv and m P Cv maybe a more appropriate
guide. However, Montaseri and Adeloye [11] argue that
other variables in addition to m and Cv, such as reliability,
may be needed to classify reservoirs as carry-over or within-
year storages. In this paper, we have adopted the simple rule
that m < 1 or m P 1 and a further check was carried out by
ensuring that ncrit (Eq. (5)) was greater than 1 year.

Similar to some other S–Y procedures, net evaporation
losses cannot be explicitly taken into account, but proce-
dures are available [7] to adjust the storage size once the
capacity has been determined using only inflows and drafts.

4. The adequacy of the Gould–Dincer approach

A specific reservoir size computed using the Gould–Din-
cer approach is based on the definition of probability of
non-exceedance of inflows (Eq. (3)). As noted earlier this
has been assumed equivalent to the mean first passage time
from a full to an empty reservoir (m0c) as defined by
Pegram [14]. Employing numerical quadrature to solve
the integral storage equations and using the deferred
approach to the limit, Pegram [14] obtained a range of
results in reservoir storage reliability with known error
bounds. Choosing finite reservoirs with a range of stan-
dardized capacities, he selected inputs described by Normal
and lognormal distributions with a range of values of drift,
coefficient of skewness and lag-one serial correlation. Of
interest here are the results for reservoirs fed with indepen-
dent inputs, obtaining their reliability as measured by m00,
the mean recurrence time of emptiness and m0c, the mean
first passage time from full to empty; these were all com-
puted to a precision of at least three significant figures.

In Fig. 1, the mean first passage time to empty from
full, m0c, is plotted against the mean recurrence time of
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Fig. 1. Plot of m0c (mean first passage time to empty from full storage) compa
results for finite reservoirs fed by normally distributed inflows.
emptiness, m00, i.e. the mean time between failures,
based on results from Pegram [14]. The figure is based
on the standardised storage and drift with values rang-
ing mainly from 0.5 to 8 (for K) and 0–1 (for m). For
practical purposes and for annual flow data, values up
to perhaps 1000 time units are relevant. It can be seen
that as drift, m, increases m0c approaches m00. This is
reasonable given that as drift increases a reservoir tends
to spill more frequently, experiencing rarer empty
events, so that the first passage time to empty from full
becomes indistinguishable from the times between occur-
rence of emptiness; it is noted in the figure that the
means of the two types of passage time are very close
for drifts above about 0.4.

To test the adequacy of the Gould–Dincer Normal
procedure (Eq. (7)), values of the mean first passage time
from a full to empty condition were computed using Eq.
(7) for appropriate 1/p values and were compared with
Pegram’s exact solution values of m0c [14] for the equiv-
alent drift (m) and standardized storage values (K). The
comparison is plotted in Fig. 2 for values of time units
less than 1000. In the figure, m0c values for m = 0.3,
0.5, 0.7 and 0.9 were interpolated from Table III in
Pegram [14]. The other values were read directly from
the table. The slope of the regression without intercept
is 1.00035. From this analysis it can be concluded that
G–DN for m < 1 is a satisfactory estimate of the mean
first passage time from a full reservoir to an empty con-
dition. We are unable, however, to independently test the
adequacy of the other two forms of the G–D approach
namely G–D Gamma and G–D Lognormal, as the mean
first passage times based on Gamma and Lognormal
inflows are not available in Pegram [14]. The adequacy
of these two latter variations along with G–DN are
examined in the following section.
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red with m00 (mean recurrence time of emptiness) based on Pegram’s [14]
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Fig. 2. Comparison of m0c, mean first passage time from full reservoir to empty, for Gould–Dincer Normal procedure compared with Pegram’s exact
solution [14] using a range of drifts (0.2 6 m 6 0.9), standardised capacities in the range 0.25 6 C 6 8 and ncrit > 1. The 1:1 line is dashed.
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5. Application of Gould–Dincer to world data

In this section, we compare the reservoir capacities esti-
mated by the Gould–Dincer approach with those estimated
by the Extended Deficit Analysis (EDA), Behaviour analysis
and the Sequent Peak Algorithm (SPA). The EDA tech-
nique estimates for a river the deficit of providing a given
draft (from an initially full semi-infinite reservoir) at a given
level of reliability. It is based on estimating from the histor-
ical flows a series of independent deficits that are assessed in
a manner similar to a partial flood frequency analysis.
Details of the technique are set out in Pegram [15] (also
see [7] for an explanation). For Behaviour analysis, failure
is measured as the percentage of time (annual time units in
this study) that the reservoir is empty. It is a technique that
tracks the volumetric content of a finite reservoir by carrying
out a water balance of inputs (inflows) and outputs (yields or
reservoir releases and spills and other losses including net
evaporation). In the analysis in this paper, losses are not
taken into account. In contrast to the other techniques,
SPA estimates the firm yield which is the yield that can be
met over a particular planning period with a specified no-
failure reliability. Based on historical streamflows it is an
automated version of the Rippl mass curve procedure [20]
and has been used to estimate reservoir capacities world-
wide. In a complementary (as yet unpublished) paper based
on the same 729 annual river flows adopted in this paper, we
show that these three techniques produce consistent esti-
mates of reservoir capacity, with SPA and EDA procedures
computing virtually the same capacities.

5.1. Gould–Dincer Gamma versus EDA

In order to apply the Gould–Dincer approach, we have
assumed in this application that the global annual flows are
Gamma distributed. Our analysis to be published elsewhere
would suggest this is not an unreasonable assumption.
Although the G–D approach and EDA are based on dif-
ferent probabilistic statements (G–D estimates are assumed
to approximate the mean first passage time to empty from
a full storage and EDA estimates the mean recurrence time
of emptiness), it is instructive to compare the storage esti-
mates generated by both approaches. We are able to do
this for the range of drift 0.4 < m < 1 where the mean first
passage time approximates the mean recurrence time of
emptiness (see Fig. 1 and Section 4). For this range of drift
we compared for the global rivers the G–D Gamma storage
estimates using Eqs. (8)–(10) with the EDA values, both
based on a = 0.75 (that is, a draft of 75% of the mean his-
torical flow) and restricting the applications to the 305 riv-
ers with c < 4.0 (see Section 3). In addition, we ensured that
ncrit computed from Eq. (5) > 1 year. The G–DG estimates
are for 99% annual time reliability and EDA values are for
a recurrence interval of 100 years.

In order to assess the similarity of the capacity estimates
between the two procedures, a weighted least squares
(WLS) regression was applied, with weights proportional
to record lengths, and excluding the outlier indicated in
Fig. 3 with a cross. The overestimate by G–DG relative
to the EDA value for this (outlier) river record is mainly
due to an annual auto-correlation value of 0.74. This value
is in the upper 1% of q values in the data set and the stor-
age estimate is 6.7 times larger (based on the adjustment
given in Eq. (8)) compared with a storage estimate for
q = 0. The slope of the WLS regression is 0.99. From this
analysis we can conclude that G–DG and EDA within
the range adopted in Fig. 3 provide similar estimates of res-
ervoir capacity for all practical purposes.

5.2. Gould–Dincer Gamma versus Behaviour analysis

Fig. 4 explores the relationship between Gould–Dincer
Gamma and a Behaviour analysis for a = 0.75 and restrict-
ing the applications to rivers with c < 4.0, m < 1.0 and
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ncrit > 1 year. The analysis is for annual data and for 95%
annual reliability. (We adopted 95% reliability to ensure
that with 25 or more years of data, at least one failure
per simulation would be recorded during a Behaviour
simulation.)

The figure shows a strong relationship between the two
estimates. The slope of the WLS regression, without an
intercept term, is 0.958 which is statistically different from
unity at the 5% level of significance. A slope less than one is
expected because the definitions of failure adopted in the
two procedures are different and result in the Behaviour
analysis estimates of reservoir capacity being larger than
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Fig. 4. Comparison of Gould–Dincer Gamma reservoir estimates with Behavio
0.4 < m < 1.0, ncrit > 1 year and annual coefficient of skewness of streamflow <
the G–DG estimates. In this paper the adopted failure cri-
terion for the Behaviour analysis is the one used in water
engineering practice. It is the proportion of time units dur-
ing simulation the reservoir fails to meet the target
demand, whereas for G–DG the criterion is an approxi-
mate estimate of the mean first passage time from full to
empty which approximates the mean recurrence time of
emptiness for 0.4 < m < 1.0 (Section 4). Considering for
the moment the mean recurrence time of emptiness, it
therefore follows that for each G–DG failure (emptiness),
there will be a corresponding period of failure observed
during the equivalent Behaviour analysis. However, for
1.000 100.000

analysis (106 m3)

ur estimates for a = 0.75 and 95% reliability. The analysis was restricted to
4.0. The 1:1 line is dashed.
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the latter each failure may last longer than one time unit.
As a result, for the same reliability criterion, say 95% (or
5% failure), there will be more time units of failure associ-
ated with the Behaviour simulation than for G–DG. This
means the reservoir capacity estimated using G–DG will
be smaller than the Behaviour capacity for the same reli-
ability or failure condition. For reservoir capacities where
m < 0.4, we observe from Fig. 1 that as m0c > m00 this effect
will be amplified.

Using the world data set the analysis confirms that the
G–DG procedure provides reservoir capacity estimates
which for the same numerical value of probability of failure
are smaller (on average about 25%) than capacities com-
puted using a Behaviour analysis. This result is consistent
with the definitions of failure adopted for the two
procedures.

5.3. Gould–Dincer Gamma versus SPA

Figs. 2 and 3 confirmed that Gould–Dincer Gamma is
able to reliably estimate the reservoir capacity for given tar-
get draft and probability of failure (emptiness) defined as
the mean first passage time from a full to empty storage.
Fig. 4 further showed that the G–DG reservoir capacity
estimates were consistent with those estimated using a
Behaviour analysis. The purpose of Fig. 5 is to observe,
firstly, the difference in storage estimates using the three
distributions associated with the Gould–Dincer suite of
equations namely G–DN, G–DG and G–DLN and, sec-
ondly, the relationship between estimates of reservoir
capacity by the G–D procedures and SPA.

The data plotted in Fig. 5 are for the G–DN, G–DG and
G–DLN and the SPA estimates based on a = 0.75, for
m < 1 and ncrit > 1 year. In order to provide an appropriate
comparison between the G–D and SPA estimates, the
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Fig. 5. Comparison of reservoir capacities for a = 75% target draft based on the
The analysis was restricted to m < 1.0 and ncrit > 1 year. Probability of failure
probability of failure in the G–D analysis was defined as
1/N where N is the number of years in the historical record.

Several observations follow from the figure. Firstly, the
regression slope coefficients being 1.021, 1.006 and 1.013
for G–DN, G–DG and G–DLN respectively are not signif-
icantly different from unity at the 5% level. Secondly, the
G–D estimates as a whole contain the 1:1 line with the
G–DN, G–DG and G–DLN values, on average across
the range of capacities, being respectively 34% larger,
32% smaller and 47% smaller than the equivalent SPA
value. (The intercepts cause the averages to vary from each
other; the trend-lines through the respective sets have been
omitted as they are swamped by the data.) This result
emphasizes the importance of choosing the correct proba-
bility distribution function for the reservoir inflows when
one is computing storage estimates using the Gould–Dincer
suite of equations.
6. Parameter sensitivity in estimates of reservoir capacity

estimation

In this section, we explore the impact of parameter sen-
sitivity in estimating reservoir capacity by considering the
effect of an equivalent change in the four parameters (l,
r, c and q) on reservoir sizing. To do this we use the
Gould–Dincer Gamma procedure and determine theoreti-
cally the effect of making a small change separately to each
of the four parameters in Eqs. (8)–(10). The resulting mar-
ginal (akin to partial differential) error relationships are
given as follows:

DC
C
¼ 1

a� 1

Dl
l

ð12Þ

DC
C
¼ 2

Dr
r

ð13Þ
1.000 100.000

lgorithm (106 m3)
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three Gould–Dincer alternatives compared with Sequent Peak Algorithm.
for G–D estimates based on 1/N. The 1:1 line is dashed.
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where D represents a small change in the variable, z is the
standardised normal variate and g and p (both functions
of serial correlation) are defined in Appendix A. The deri-
vation of these relationships is outlined in Appendix A.

Example results are shown in Table 1 for a +10%
change in l, r, c and q, and adopting median values from
the global data set of c = 0.55 and q = 0.1. We carried out
the analysis for a time reliability value of 95%
(z = �1.645) and a target draft ratio a = 75% (i.e. 75%
of the historical mean). Thus for these typical values, a
+10% increase in each parameter, considered individu-
ally, results in �40.0%, +20.0%, �2.52% and +1.95%
change in estimated storage capacity respectively. For a
value of c = 1.0 (29% of values in the global data set are
greater than this value), the effect on storage of a 10%
increase in c is a reduction in storage estimate of 5.50%.
We also note from Eqs. (12)–(15) that changing the draft
ratio a only produces changes associated with the mean
and not the other parameters.

These results are of particular interest to those wishing
to investigate the impact of climate change on streamflow
and the consequential effect on reservoir yield. This theo-
retical approach is in contrast to using empirical models
like those adopted by Vogel et al. [25] in the northeastern
United States. As our understanding of the impact of cli-
mate change on hydrology at the annual scale improves,
through techniques like precipitation elasticity of stream-
flow [18], information from exercises similar to the above
will inform water managers to the likely impact of climate
change on reservoir yield. Furthermore, as our understand-
ing of how climate change affects rainfall variability and
Table 1
Change in storage estimate as a result of +10% change in Gould–Dincer
Gamma parameters for reliability of 95% (z = �1.645), a = 75%, c = 0.55
and q1 = 0.1

Parameter +10% change in parameter

l �40.0%
r +20.0%
c �2.52%
q +1.95%
hence streamflow variability, such effects on reservoir yield
can be explored.

7. Conclusions

Arising out of these analyses a number of conclusions
follow.

1. The Gould–Dincer formulas which are based on a simple
water balance of storage content plus inflow less draft can
accommodate normal, Gamma and lognormal inflows.

2. Theoretically as drift m gets larger and approaches unity
(effectively when m > 0.4), the mean first passage time
from a full to an empty reservoir approaches the mean
recurrence time of emptiness for finite reservoirs fed by
independent normal inflows.

3. Mean first passage times from a full to an empty reser-
voir calculated using the Gould–Dincer normal proce-
dure were not significantly different to those calculated
by the Pegram [14] exact solution, for a range of drifts
and standardized storage capacities.

4. For conditions in which the Gould–Dincer procedure is
applicable, reservoir capacities estimated by Gould–
Dincer Gamma are, for all practical purposes, similar
to those using Extended Deficit Analysis.

5. Gould–Dincer Gamma estimates were also compared
with capacity estimates based on a Behaviour analysis.
The analysis showed that for the same numerical value
of probability of failure the G–DG procedure provides
reservoir capacity estimates that, on average, are
about 25% smaller than capacities computed using a
Behaviour analysis. This observation is consistent with
the definitions of failure adopted for the two
procedures.

6. Reservoir capacities determined by the Gould–Dincer
formulae were, on average, 34% larger and 32% and
47% smaller for the G–DN, G–DG and G–DLN models
respectively compared with capacities obtained from the
SPA technique, in which the reciprocal of the length of
record was used as the probability of failure.

7. Using the Gould–Dincer Gamma model to represent the
storage–yield relationship, a sensitivity analysis for a
typical set of values taken from the global data set
and based on a 10% change in their value was carried
out. For a draft ratio a = 0.75, a +10% error in the
mean or standard deviation of flows resulted in storage
estimates being underestimated by 40% or overestimated
by about 20% respectively. However, much smaller rela-
tive changes in storage resulted for a 10% change intro-
duced into the coefficient of skewness (�2.5%) or the
auto-correlation (2.0%). Because these are an order of
magnitude lower than the effects of mean and standard
deviation, they can be considered as second order effects.
This result suggests that the reduced forms of the G–D
equations (Eqs. (6) and (7)) might profitably be used
for assessing the effect of climate change scenarios on
regional storage reliability.
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Appendix A. Sensitivity of the Gould–Dincer Gamma

reservoir storage–yield relationships to inflow statistics

The Gould–Dincer Gamma storage equation (combin-
ing Eqs. (8)–(10)) is

C¼ r2
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where a in Eq. (2) is replaced by D/l where D is the target
draft.

To examine the sensitivity of a storage estimate to the
mean l, we consider Eq. (A1) and let
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To examine the sensitivity of a storage estimate to the stan-

dard deviation r, we consider Eq. (A1)
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To examine the sensitivity of a storage estimate to the
coefficient of skewness c, we consider Eq. (A1) but first let
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Consider only the derivative in second term of Eq. (A15)

o½ �2

oc
¼

o 1þ z cp
6
� c2p2

36

n o3

� 1

� �
oc

2

ðA16Þ

o½ �
oc

2

¼ zp � cp2

3

� �
½ �f g2 ðA17Þ

Substitute back into Eq. (A15) gives
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To examine the sensitivity of a storage estimate to auto-
correlation q, we consider Eq. (A1)
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Which, after rearrangement to obtain the relative changes,
becomes
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Substituting Eqs. (A29), (A32), (A35) and (A37) into Eq.
(A26) yields
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